利用奇偶对称性算二三重积分
二重积分及三重积分的计算

第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限.)0(21lim 1>++++∞→a nn a a a a n . 解 原式=⎰∑=⋅⎪⎭⎫ ⎝⎛=∞→1011lim aani n x n n i dx =a a x a +=++11111.例2 求极限 ⎰+∞→1021lim xx n n dx . 解法1 由10≤≤x ,知nn x x x ≤+≤210,于是⎰+≤1210x x n ⎰≤1n x dx dx .而⎰10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得⎰+∞→1021lim xx n n dx =0.解法2 利用广义积分中值定理()()x g x f ba⎰()()⎰=bax g f dx ξdx (其中()x g 在区间[]b a ,上不变号),().101111212≤≤+=+⎰⎰n n nn dx x dx xx ξξ由于11102≤+≤nξ,即211nξ+有界,()∞→→+=⎰n n dx x n01110,故⎰+∞→1021lim x x nn dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R -型可作相应变换.如对积分()⎰++3122112xxdx,可设t x tan =;对积分()02202>-⎰a dx x ax x a,由于()2222a x a x a x --=-,可设t a a x s i n =-.对积分dx e x ⎰--2ln 021,可设.sin t e x =-(2)()0,cos sin cos sin 2≠++=⎰d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]',可求出22d c bdac A ++=,22dc adbc B +-=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+'++=⎰.ln2dc B A +=π例3 求定积分()dx x x x ⎰-1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ⎰-1211arcsin 2t x xt ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==-⎰⎰.1632π= 解法2 ()dx x x x⎰-1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=⎰u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)⎰+=2031cos sin sin πx x xdx I , dx xx x I ⎰+=2032cos sin cos π; (2).1cos 226dx e xx ⎰--+ππ解 (1)⎰+=2031cos sin sin πxx xdxI)(sin cos cos 2023du uu uu x -+-=⎰ππ=.sin cos cos 223⎰=+πI dx xx x故dx xx xx I I ⎰++==203321cos sin cos sin 21π=()41cos cos sin sin 212022-=+-⎰ππdx x x x x . (2)=I .1cos 226dx e xx ⎰--+ππ()dxe xdu e uu x x u ⎰⎰--+=-+-=2262261cos 1cos ππππ⎥⎦⎤⎢⎣⎡+++=⎰⎰--2222661cos 1cos 21ππππdx e x dx e x e I x xx.3252214365cos cos 21206226πππππ=⨯⨯⨯===⎰⎰-xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n⎰⎰=2020cos sin ππ()()()()()()⎪⎪⎩⎪⎪⎨⎧=⋅⨯-⨯--=⨯-⨯--=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。
(整理)多元函数积分

(整理)多元函数积分多元函数积分1. 利用积分区域的对称性化简多元函数的积分1.1 利用积分区域的对称性化简多元函数的重积分题型一计算积分区域具有对称性,被积函数具有奇偶性的重积分类型(一)计算积分区域具有对称性、被积函数具有奇偶性的二重积分常用下述命题简化计算二重积分.命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则(1)f(x,y)是D 上关于x (或y )的奇函数时,有??=Ddxdy y x f 0),(;(2)f(x,y)是D 上关于x (或y )的偶函数时,有=D D dxdy y x f dxdy y x f 1),(2),(;其中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域.命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2.(1);),(2),(),,(),(1==--D D d y x f d y x f y x f y x f σσ则若(2).0),(),,(),(??=-=--Dd y x f y x f y x f σ则若命题4 积分区域D 关于y x ,具有轮换对称性,则+==DD D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),(,0),,(),( ,),(2),(1类型(二)计算积分区域具有对称性,被积函数具有奇偶性的三重积分.常用下述命题简化具有上述性质的三重积分的计算.命题1若Ω关于xOy 平面对称,而Ω1是Ω对应于z ≥0的部分,则Ω∈?=-Ω∈?--=-=ΩΩ;),,(),,,(),,(,),,(2,),,(),,,(),,(,0),,(1z y x z y x f z y x f d z y x f z y x z y x f z y x f d z y x f υυ 若Ω关于yOz 平面(或zOx 平面)对称,f 关于x (或y )为奇函数或偶函数有类似结论.命题2 若Ω关于xOy 平面和xOz 平面均对称(即关于x 轴对称),而Ω1为Ω对应于z ≥0,y ≥0的部分,则=ΩΩ为奇函数;或关于,当为偶函数,关于当z y f z y f d z y x f d z y x f 0,,),,(4),,(1υυ 若Ω关于xOz 平面和yOz 平面均对称(即关于z 轴对称),或者关于xOy 平面和yOz 平面均对称,那么也有类似结论.命题3 如果积分区域Ω关于三个坐标平面对称,而Ω1是Ω位于第一象限的部分,则=ΩΩ为奇函数;或或关于,当均为偶函数,关于当z y x f z y x f d z y x f d z y x f 0,,,),,(8),,(1υυ 命题4 若积分区域Ω关于原点对称,且被积函数关于x,y,z 为奇函数,即.0),,(),,,(),,(=----=Ωυd z y x f z y x f z y x f 则题型三计算积分区域具有轮换对称性的三重积分命题5 如果积分区域关于变量x,y,z 具有轮换对称性(即x 换成y,y 换成z,z 换成x ,其表达式不变),则ΩΩΩΩ++===υυυυd y x z f x z y f z y x f d y x z f d x z y f d z y xf )],,(),,(),,([31),,(),,(),,(.1.2 利用积分区域的对称性化简第一类曲线积分、曲面积分题型一计算积分曲线(面)具有对称性的第一类曲线(面)积分类型(一)计算积分曲线具有对称性的第一类曲线积分命题1.2.1 设曲线L 关于y 轴对称,则=??,0,),(2),(1L L ds y x f s d y x f 是奇函数,关于是偶函数,关于x y x f x y x f ),(),( 其中L 1是L 在x ≥0的那段曲线,即L 1是L 在y 轴右侧的部分;若曲线L 关于x 轴对称,则有上述类似结论.命题1.2.2 设f(x,y)在分段光滑曲线L 上连续,若L 关于原点对称,则=??,LL ds y x f s d y x f ),(2,0),( 为偶函数,关于若为奇函数,关于若),(),(),(),(y x y x f y x y x f 其中L 1为L 的右半平面或上半平面部分.类型(二)计算积分曲面具有对称性的第一类曲面积分第一类曲面积分的奇偶对称性与三重积分类似,可利用下述命题简化计算.命题1.2.3 设积分曲面Σ关于yOz 对称,则=∑∑1),,(2,0),,(dS z y x f dS z y x f 为偶函数,关于当为奇函数,关于当x z y x f x z y x f ),,(),,( 其中Σ1是Σ在yOz 面的前侧部分.若Σ关于另外两坐标面有对称性,则有类似结论.注意不能把Σ向xOy 面上投影,因第一类曲面积分的Σ投影域面积不能为0.题型二计算平面积分曲线关于y=x 对称的第一类曲线积分命题1.2.4 若L 关于直线y=x 对称,则??=L Lds x y f ds y x f ),(),(. 题型三计算空间积分曲线具有轮换对称性的第一类曲线积分命题1.2.5 若曲线Γ方程中的三变量x,y,z 具有轮换对称性,则ΓΓΓΓΓΓ====ds z ds y ds x zds yds xds 222,. 1.3 利用积分区域的对称性化简第二类曲线积分、曲面积分题型一计算积分曲线具有对称性的第二类曲线积分第二类曲线积分的奇偶对称性与第一类曲线积分相反,有下述结论.命题1.3.1 设L 为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续,(1)L 关于y 轴对称,L 1是L 在y 轴右侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为偶函数;关于若为奇函数,关于若x y x P x y x P ),(),( =??,),(2,0),(Q 1L L dy y x Q dy y x .),(),(为奇函数关于若为偶函数,关于若x y x Q x y x Q (2)L 关于x 轴对称,L 1为L 在x 轴上侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为奇函数;关于若为偶函数,关于若y y x P y y x P ),(),( =??,),(2,0),(1L L dy y x Q dy y x Q .),(),(为偶函数关于若为奇函数,关于若y y x Q y y x Q (3)L 关于原点对称,L 1是L 在y 轴右侧或x 轴上侧部分,则+=+,2,0),(),(1L L L Qdy Pdx dy y x Q dx y x P .),(),(),,(),(),(),,(为奇函数关于若为偶函数,关于若y x y x Q y x P y x y x Q y x P (4)L 关于y=x 对称,则.),(),(),(),(),(),(+-=+=+-LL L dx x y Q dy x y P dx x y Q dy x y P dy y x Q dx y x P 即若L 关于y=x 对称,将x 与y 对调,则L 关于直线y=x 翻转,即L 化为L —.因而第二类曲线积分没有轮换对称性.题型二计算积分曲面具有对称性的第二类曲面积分命题1.3.2 设Σ关于yOz 面对称,则=∑∑,0,),,(2),,(1dydz z y x P dydz z y x P .),,(),,(为偶函数关于当为奇函数,关于当x z y x P x z y x P 其中Σ1是Σ在yOz 面的前侧部分.这里对坐标y 和z 的第二类曲面积分只能考虑Σ关于yOz 面的对称性,而不能考虑其他面,这一点也与第一类曲面积分不同.2. 交换积分次序及转换二次积分题型一交换二次积分的积分次序※直接例题,无讲解.题型二转换二次积分转换二次积分是指将极坐标系(或直角坐标系)下的二次积分转换成直角坐标系(或极坐标系)下的二次积分.由极坐标系(或直角坐标系)下的二次积分的内外层积分限写出相应的二重积分区域D 的极坐标(或直角坐标)表示,再确定该区域D 在直角坐标系(或极坐标系)中的图形,然后配置积分限.3. 计算二重积分题型一计算被积函数分区域给出的二重积分含绝对值符号、最值符号max 或min 及含符号函数、取整函数的被积函数,实际上都是分区域给出的函数,计算其二重积分都需分块计算.题型二计算圆域或部分圆域上的二重积分当积分区域的边界由圆弧、过原点的射线(段)组成,而且被积函数为)(22y x f y x m n +或)/(x y f y x m n 的形状时,常作坐标变换θθsin ,cos r y r x ==,利用极坐标系计算比较简单.为此,引进新变量r,θ,得到用极坐标(r ,θ)计算二重积分的公式:=')sin ,cos (),(D D rdrd r r f dxdy y x f θθθ (其中rd θdr 是极坐标系下的面积元素). 用极坐标系计算的二重积分,就积分区域来说,常是圆域(或其一部分)、圆环域、扇形域等,可按其圆心所在位置分为下述六个类型(其中a,b,c 均为常数).类型(一)计算圆域x 2+y 2≤a 上的二重积分. 类型(二)计算圆域x 2+y 2≤2ax 上的二重积分.类型(三)计算圆域x 2+y 2≤-2ax 上的二重积分.类型(四)计算圆域x 2+y 2≤2ay 上的二重积分.类型(五)计算圆域x 2+y 2≤-2ay 上的二重积分.类型(六)计算圆域x 2+y 2≤2ax+2by+c 上的二重积分.4. 计算三重积分题型一计算积分区域的边界方程均为一次的三重积分当积分区域Ω主要由平面围成时,宜用直角坐标系计算,如果积分区域Ω的边界方程中含某个坐标变量的方程只有两个,则可先对该坐标变量积分。
高等数学§9.3.2三重积分的计算2

x c os z
显 然 : y s 。 in
z z
M(x,y,z)
c o s 0 i s n
y J ( ( x , , y , , z z ) ) s i c n 0 o , s O
00 1 x
P(,)
∴ f (x, y, z)dxdydz f ( cos, sin, z) dddz.
z cr cos .
x2 a2
by22
cz22
r2.
r1
I (a x 2 2 b y2 2c z2 2)dx d y r2 d Jd z rd d
Jabcr2sin
I a b c 0 2 d0 s in d0 1 r 4 d r 54abc.
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
f (rs ic n o ,rss isn i,r n c o )r2 s id n r d d
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
x ar sin cos , 解: y br sin sin ,
zzu,v,w
( 2 ) 上 面 变 换 中 的 函 数 在 区 域 具 连 续 偏 导 有 数 ;
( 3 ) J u x , , v y , , w z 0 , u , v , w , 则
f (x, y,z)dxdydz
f(xu ,v,w ,yu ,v,w ,z(u ,v,w )Jdudv
z
d
d
dz
计算二重积分的几种简便方法

计算二重积分的几种简便方法摘要:本文旨在探讨计算二重积分的几种简便方法,通过对不同方法的比较和分析,旨在提高计算效率和准确性。
文章首先介绍了二重积分的基本概念及其在计算中的重要性,随后详细阐述了极坐标法、换元法、对称性法,并结合具体实例展示了这些方法的应用过程。
关键词:二重积分;极坐标法;换元法;对称性法一、引言二重积分是数学分析中的重要内容,广泛应用于物理、工程、经济等领域。
然而,二重积分的计算往往较为复杂,需要选择合适的方法进行简化。
因此,本文旨在探讨计算二重积分的简便方法,为相关领域的研究者提供实用的计算工具。
二、二重积分的基本概念与重要性1.二重积分的定义二重积分是多元函数积分学中的一个基本概念,它描述了一个二元函数在某一给定二维区域上的面积积分。
具体而言,二重积分可以看作是函数值在二维平面上某区域内所有点的累积和,或者理解为函数曲面在指定区域内与坐标平面所围成的体积。
形式上,二重积分可以表示为对两个变量的连续积分,通常写成∫∫f(x,y)dxdy的形式。
2.二重积分的几何与数值意义从几何角度看,二重积分可以表示某个二维区域内函数曲面的面积或者体积。
当被积函数为1时,二重积分计算的就是该区域的面积;当被积函数表示某种密度或强度时,二重积分则计算的是该区域内的总质量或总强度。
因此,二重积分在几何和物理领域具有广泛的应用。
从数值角度看,二重积分提供了一种计算函数在一定区域内平均值的方法。
此外,通过二重积分还可以研究函数的极值、曲线的长度等性质,进而揭示函数图形的变化规律。
3.二重积分的应用领域与范围二重积分在自然科学、工程技术和社会科学等多个领域具有广泛的应用。
在物理学中,二重积分用于计算质心、转动惯量、引力势能等;在经济学中,可以用于计算总收入、总成本等经济指标;在图像处理、计算机视觉等领域,二重积分也被用于计算图像特征、积分变换等。
此外,二重积分还广泛应用于地理学、气象学、生物医学等领域,用于解决各种实际问题。
概率论 二重积分的计算(二)

2 ( y x2 )dxdy 2 ( x2 y)dxdy
D1
D2
201dx
1
x2
(
y
x2 )dy
201dx
x
0
2
(x2
y)dy.
例3.17——3.18不作要求
小结
一、二重积分在直角坐标系中计算
D
f (x, y)dxdy
b
dx
a
y2 ( x) y1 ( x )
2
dy
2 y y2
x2 y2 dx
D
0
0
二重积分在极坐标下的计算
例6 计算 (x2 y2 )dxdy,其中D由圆x2 y2 2y,
x2 y2 4y, x D 3y 0, y 3x 0所围成的平面区域.
解
x2 y2 2 y r 2sinθ
x2 y2 4 y r 4sin
当积分区域由直线和除圆以外的其它曲线围成时,
通常选择在直角坐标系下计算.
二重积分计算过程
选择坐标系
选择积分次序
化为累次积分
计算累次积分
二重积分在极坐标下的计算
二. 利用区域的对称性和函数的奇偶性计算二重积分
(1)若D关于y轴对称,则
2 f ( x, y)dxdy, f ( x, y) f ( x, y)
x
3y 0
θ1
π
6π
y 3x 0 θ2 3
故
( x2 y2 )dxdy
D
3 d
4sin r 2 rdr
6
2sin
15( 2
3).
二重积分在极坐标下的计算
例7 求广义积分 I e x2 dx.(泊松积分,例3.19)
01-积分的奇偶对称性

积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
考研数学中二重积分的计算方法与技巧

考研数学中二重积分的计算方法与技巧顾 贞 洪 港 高恒嵩高等数学作为大多数专业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,也考察学生解题的技巧.二重积分作为考研数学必考的知识点,在解题方面有一定的技巧可循,本文针对研究生考试中二重积分的考察给出具有参考性的解题技巧.二重积分的一般计算步骤如下:(1) 画出积分区域D 的草图;(2) 根据积分区域D 以及被积函数的特点确定合适的坐标系;(3) 在相应坐标系下确定积分次序,化为二次积分; (4) 确定二次积分的上、下限,做定积分运算.但是在历年考试题中,越来越多的题目注重解题技巧的考查,考题经常以下列几种情况出现:1分段函数的二重积分如果被积函数中含有函数关系min max,以及绝对值函数,则需要对二重积分进行分区域积分.例1:(2008年试题)计算⎰⎰Ddxdy xy }1,max{,其中}20,20),({≤≤≤≤=y x y x D .解:积分区域如图1所示:因为⎩⎨⎧>≤=111}1,max{xy xy xy xy ,所以有:max{,1}Dxy dxdy ⎰⎰1122222111022x xdx dy dx dy dx xydy=++⎰⎰⎰⎰⎰⎰2ln 419)ln 21(21ln 2ln 2212212+=-+-+⨯=x x2交换二重积分的次序交换积分次序的步骤如下: (1) 先验证二次积分是否是二重积分的二次积分(积分下限小于上限)(2) 由所给二次积分的上、下限写出积分区域D 的不等式组(3) 依据不等式组画出积分区域D 的草图(4) 根据积分区域D 的草图写出另一种积分次序下的二次积分。
例2:计算dy e dx xy ⎰⎰-222解:积分区域如图2所示:因为⎰-22xy dy e 不可积,所以交换二重积分次序,则有:)1(214022022222-----===⎰⎰⎰⎰⎰⎰e dx dy e dx e dy dy e dx yy yy xy图1 图2 图3 图43利用积分区域的对称性计算二重积分(1)利用积分区域的对称性,被积函数的奇偶性计算 设()y x f ,在积分区域D 上连续,D 关于y 轴对称,1D 为D 中0≥x 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=DD y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ设()y x f ,在积分区域D 上连续,D 关于x 轴对称,1D 为D 中0≥y 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=D D y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ 例3:(2017年试题)已知平面区域22{(,)2}D x y x y y =+≤,计算二重积分2(1).Dx dxdy +⎰⎰解析:积分区域具有对称性如图3,首先考虑使用奇偶性,其次,因为积分区域为圆域,需要使用极坐标进行求解。
利用区域对称性及函数奇偶性简化二重积分的计算归纳

利用区域对称性及函数奇偶性简化二重积分的计算归纳一、 设D 关于y 轴对称:1. 若f 关于x 为奇函数,则I =0.2. 若f 关于x 为偶函数,则I =2∬f (x,y )dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.3. 若f 关于x 没有奇偶性,则I =∬[f (x,y )+f(−x,y)]dσD 1,其中D 1={(x,y)∈D:x ≥0},即D 1为D 中位于y 轴右边的那一部分区域.(这是因为任意一个函数f(x)都可以表示成“奇函数+偶函数”的形式,即f (x )=f (x )+f(−x)2+f (x )−f(−x)2.)二、 设D 关于X 轴对称:1. 若f 关于y 为奇函数,则I =0.2. 若f 关于y 为偶函数,则I =2∬f (x,y )dσD 2,其中D 2={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.3. 若f 关于y 没有奇偶性,则I =∬[f (x,y )+f(x,−y)]dσD 1,其中D 1={(x,y)∈D:y ≥0},即D 1为D 中位于X 轴上边的那一部分区域.三、 设D 关于原点对称:1. 若f 关于x,y 为奇函数,则I =0.2. 若f 关于x,y 为偶函数,则I =2∬f (x,y )dσD 3,其中D 3={(x,y)∈D:x ≥0},即D 3为D 在上半平面的那一部分区域.四、 设D 关于y =x 对称:1. 若f (x,y )=−f (y,x ),则I =0.2. 若f (x,y )=f(y,x),则I =2∬f (x,y )dσD 4,其中D 4={(x,y)∈D:y ≥x},即D 4为D 在直线y =x 以上的那一部分区域.注:三重积分利用区域对称性与函数奇偶性简化计算与二重积分类似.例题.计算I =∭e |x|dxdydz Ω,其中Ω为:x 2+y 2+z 2≤1.解:设Ω在第一象限内的区域为Ω1,由于Ω关于三个坐标面均对称,同时,函数e |x|关于x,y,z 都为偶函数,所以I =∭e |x|dxdydz Ω=8∭e |x|dxdydz =8∭e x dxdydz Ω1Ω1. 由于Ω1在X 轴上的投影区间为[0,1],在Ω1上垂直于X 轴的截面区域D x 为y ≥0,z ≥0,y 2+z 2≤1−x 2,所以I =8∫dx 10∬e x D x dxdy =8∫e x 1014π(1−x 2)dx =2π∫e x (1−x 2)dx =2π10. 注:此题利用三重积分的对称性既简化了计算,又去掉了被函数中的绝对值符号,降低了计算的难度.若此题用球面坐标法计算,尽管积分限很简单,但被积函数的积分却不易求得.。
对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。
对称性及相对奇偶性在二重积分计算中的应用

被 积 函数 是 ,y的奇 函数 ,sinye 是
6,
D
的偶 函数 ,是Y的奇函数。原积分 区域无对称
性 ,为 构 造 对 称 性 ,作 直 线),=一 ,将 D分 成 4个
区域 ,故D=D,+D'+
y
\
、
、 、
、
D2
、
、
D3 、、、
D +D4,由对 称 性 知 在D,uD,上 及 D u
于 轴和 轴均对称 ,而被积函数 y关于 (或,, 使用合理的情况下 ,对称性 能极大 的减少计
轴)为奇函数则有:』戈ydxdy=O
算 量 。
2 关 于 不 对 称 区域
'
’ ,
(2)由 ‘ ‘)‘= 围成 的 区域 对 称 于 原
前 面讨 论 中积 分 区域 均是 具有 对 称 性 的
(A)2 0(sinye一)d ̄dy (B)2 0xydxdy
J ;,),)d =J 『/ )d (轮换对称性) 1
(c)4 +si
D
(D)0
一 37 —
第 34卷
保 山 学 院 学报 2015
第Байду номын сангаас5期
解 :积分 区域D如图3所示 ,
+), )d ̄dy :
+
+ xrf (x2+y2)d ̄dy+
当积分 区域不具 有 对称 性 时 ,我们 可 以尝 试着将 区域划分为几个部分 ,使其每个部分都 具有对称性 ,这样就可以根据积分的性质及其
得r==、/ 五 且由 >o,知 r2 in20>o
之前总结的对称方法来简化每一部分的计算 ,
从 而 到达 简化 整个积 分计 算 的 目的 。
对称性在二重积分计算中的应用

㊀㊀㊀125㊀㊀对称性在二重积分计算中的应用对称性在二重积分计算中的应用Һ陈楚申1㊀廖小莲2㊀(1.湖南工业大学数学与应用数学专业1802班,湖南㊀株洲㊀412000;2.湖南人文科技学院数学与金融学院,湖南㊀娄底㊀417000)㊀㊀ʌ摘要ɔ‘数学分析“是所有高校数学与应用数学专业的一门重要的基础课,二重积分是‘数学分析“的内容之一,解二重积分的常见方法是在直角坐标系或极坐标系下根据积分区域的类型将其转化为定积分后进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.我们如果能灵活运用积分区域和被积函数的对称性,那么许多积分的解题过程可以得到简化.本文着重讨论了对称性在二重积分计算中的应用,并借助实例分五种情况进行了讨论,指出了对称性解题的优点及应该注意的条件.ʌ关键词ɔ二重积分;对称性;应用ʌ基金项目ɔ湖南省普通高校教学改革研究项目(编号:湘教通 2019 291号No920)1㊀引㊀言二重积分是二元函数在平面区域上的积分,在‘数学分析“中占据着重要的地位,对我们学习诸如‘概率论与数理统计“等后续课程至关重要,其在几何㊁力学等多方面都有着广泛的应用.因此,灵活掌握二重积分的计算是十分必要的.我们知道,二重积分的计算是通过将该二重积分转化为定积分而实现的,但这个转化过程既要受积分区域的类型又要受被积函数的特点的约束.在直角坐标系下,我们将积分区域分为X-型区域和Y-型区域,或者将区域的划分转化为X-型区域与Y-型区域的和,然后再将二重积分化为先对y后对x和先对x后对y的累次积分.有时我们利用二重积分的变量变换公式,可使得被积函数简单化或积分区域简单化.除此之外,用极坐标来计算二重积分也是常见的办法.但是,有些二重积分,单纯用这些方法来计算,计算量会很大且容易出错.我们如果能够充分利用积分区域的对称性和被积函数的奇偶性,有时就可达到事半功倍的效果.因此,本文对对称性在二重积分计算中的应用进行较详细的探讨,并辅以实例来分析二重积分的具体计算过程.2㊀文献综述积分学是‘数学分析“课程中的重要内容,而二重积分是积分学的重要组成部分,是学习曲线积分㊁三重积分问题的基础.许多学者对二重积分的计算的问题进行了研究,并给出了一些好的计算方法和计算技巧.张云艳在文献[1]中举例说明了积分区城的轮换对称性在积分计算中的应用,指出我们在某些复杂的积分计算过程中,若能注意并充分利用积分区域轮换对称性或被积函数的奇偶对称性,往往可以简化计算过程,提高解题的效率.马志辉在文献[2]中对对称性在积分中的应用进行了研究,文章首先阐述了对称性在多元函数积分下的性质,并借助实例对对称性在积分中的应用进行了研究,主要考虑了两种情况:一是当且仅当积分区域和被积函数都具有对称性时,我们可以利用对称性简化积分的计算,二是当积分区域和被积函数具有轮换对称性时,我们也可以利用对称性简化二重积分的计算.葛淑梅在文献[3]中通过由类比一元连续函数在对称区间上定积分的计算方法,导出二元连续函数在对称区域上二重积分的计算方法,使得对称区域上难于计算的二重积分得以简化.在原被积函数不具备奇偶性计算困难的情况下,利用积分对积分区域的可加性,将其转换为几个容易计算的二重积分来计算.景慧丽㊁屈娜在文献[4]中介绍了二重积分的计算具有较大的开放性,针对一道二重积分的题目存在许多计算方法,并且对每种方法的使用技巧及使用范围进行了说明,这可以培养学生的思维发散性.刘红梅在文献[5]中对二重积分的求解进行了研究,通过证明和推导指出二重积分在区域对称以及函数奇偶下有简便算法,并通过具体的实例进行求解进一步证明,巧妙利用二重积分的对称性质能极大地简化二重积分问题,提高求解的效率.3㊀对称性在二重积分计算中的应用利用对称性计算二重积分∬Df(x,y)dσ,既要考虑积分区域的对称性,又要考虑被积函数f(x,y)关于某一自变量x或y的奇偶性,而且还要将被积函数的奇偶性与积分区域的对称性相结合进行考虑.我们如果能充分利用对称性来考虑二重积分问题,那么很多时候可以简化计算.3.1㊀平面区域D是关于y轴对称的情形引理1㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量x为奇函数时,即f(-x,y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量x为偶函数时,即f(-x,y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1是平面区域D的右半部分,即D1=(x,y)ɪD|xȡ0{}.例1㊀计算二重积分∬Dxsin(x2+y2)dxdy,其中D=(x,y)x2+y2ɤ2y{}.解㊀因为积分域D关于y轴对称,被积函数f(x,y)=xsin(x2+y2)是关于x的奇函数,所以由对称性得∬Dxsin(x2+y2)dxdy=0.3.2㊀平面区域D是关于x轴对称的情形引理2㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于x轴对称,则有如下结论:(1)当被积函数f(x,y)关于自变量y为奇函数时,即f(x,-y)=-f(x,y),则二重积分∬Df(x,y)dσ=0;(2)当被积函数f(x,y)关于自变量y为偶函数时,即f(x,-y)=f(x,y),则二重积分∬Df(x,y)dσ=2∬D2f(x,y)dσ,其中D2是平面区域D的上半部分,即D2={(x,y)ɪD|yȡ0}.㊀㊀㊀㊀㊀126㊀例2㊀计算二重积分∬D(xy2+xyex2+y22)dxdy,其中D是由直线x=1,y=x与y=-x所围区域.解㊀由积分对区域的可加性,有∬Dxy2+xyex2+y22()dxdy=∬Dxy2dxdy+∬Dxyex2+y22dxdy.设区域D:0ɤxɤ1,-xɤyɤx,{区域D1:0ɤxɤ1,0ɤyɤx,{则区域D是关于x轴对称的区域,且函数f(x,y)=xy2是关于y的偶函数,函数g(x,y)=xyex2+y22是关于y的奇函数,因此,由上面的引理知,∬Dxy2dxdy=2∬D1xy2dxdy,∬Dxyex2+y22dxdy=0,所以原二重积分∬D(xy2+xyex2+y22)dxdy=∬D12xy2dxdy=ʏ10dxʏx02xy2dy=215.3.3㊀平面区域D是关于y轴以及x轴均对称的情形引理3㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于y轴以及x轴均对称,则如果f(x,y)关于变量x,y都是偶函数,即f(-x,y)=f(x,y),且f(x,-y)=f(x,y),则∬Df(x,y)dσ=4∬D3f(x,y)dσ,其中D3是平面区域D在第一象限的部分,即D3=(x,y)ɪD|xȡ0,yȡ0{}.例3㊀计算二重积分:∬D(x+y)dxdy,其中区域D的范围是x+yɤ1.解㊀区域D是关于两坐标轴都对称的区域,同时被积函数f(x,y)=x+y关于变量x,y都是偶函数,由引理3知∬D(x+y)dxdy=4∬D1(x+y)dxdy,其中D1为区域D中的第一象限所在的部分且D1是关于直线y=x对称的,所以∬D(x+y)dxdy=4∬D1(x+y)dxdy=4∬D1(x+y)dxdy=4ʏ10dxʏ1-x0(x+y)dy=43.其中D1是平面区域D在第一象限的部分,即D1={(x,y)ɪD|xȡ0,yȡ0}.3.4㊀平面区域D是关于原点对称的情形引理4㊀若二元函数f(x,y)在平面区域D上连续,且平面区域D关于原点对称,则:(1)如果f(x,y)关于变量x为奇函数而关于y是偶函数(或者f(x,y)关于变量x为偶函数而关于y是奇函数),则∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D1f(-x,-y)dσ=0;(2)如果f(x,y)关于变量x,y都是偶函数(或者f(x,y)关于变量x,y都是奇函数),则∬Df(x,y)dσ=2∬D1f(x,y)dσ,其中D1为原点一侧的部分.例4㊀计算二重积分:I=∬Dxydσ,其中平面区域D是由方程(x2+y2)2=2xy所确定的区域.解㊀因为区域D是关于原点对称的,且被积函数f(x,y)=xy关于变量x为奇函数,关于变量y也为奇函数,所以由引理4,有:I=2∬D1xydσ,其中D1为平面区域D的第一象限部分.下面利用极坐标计算此二重积分,得I=2∬D1xydσ=2ʏπ20cosθsinθdθʏsin2θ0γ2dγ.(计算略)3.5㊀平面区域D具有轮换对称性的情形引理5㊀若二元函数f(x,y)在平面区域D上连续,则:(1)如果积分区域D关于x,y具有轮换对称性,则∬Df(x,y)dxdy=∬Df(y,x)dxdy=12∬D(f(x,y)+f(y,x))dxdy.(2)如果区域D关于直线y=x对称,则:①如果被积函数满足f(x,y)=f(y,x),则∬Df(x,y)dxdy=2∬D1f(x,y)dxdy.②如果被积函数满足f(x,y)=-f(y,x),则∬Df(x,y)dxdy=0.其中D1为D位于直线y=x上半部分的区域.例5㊀计算二重积分I=∬Dx2-y2x+y+3dxdy,其中区域D=(x,y)丨x+yɤ1{}.解㊀因为在积分区域中x与y互换不影响积分结果,所以该积分具有轮换对称性,由引理5,我们可得:∬Dx2x+y+3dxdy=∬Dy2x+y+3dxdy所以I=∬Dx2x+y+3dxdy-∬Dy2x+y+3dxdy=∬Dx2x+y+3dxdy-∬Dx2x+y+3dxdy=0.小结:该题巧用了积分区域的轮换性简化了计算,解题十分容易,但如果用常规方法求解,计算量很大.二重积分是‘数学分析“中积分学的重要内容之一,是学习后续课程的基础.二重积分计算的方法灵活,常常是借助直角坐标系或极坐标系,将二重积分化为定积分进行计算,但遇到比较复杂的积分计算或证明时,常规方法解题有局限性.对于被积函数或者积分区域具有某种对称性的积分计算问题,我们如果能灵活运用对称性,那么许多积分的解题过程可以化繁为简㊁化难为易,提高解题效率.ʌ参考文献ɔ[1]张云艳.轮换对称性在积分计算中的应用[J].毕节师范高等专科学校学报,2002(03):90-92.[2]马志辉.对称性在积分计算中的应用[J].高等数学研究,2017(01):102-105.[3]葛淑梅.对称区域上二重积分的简化计算方法[J].焦作大学学报,2018(01):101-103.[4]景慧丽,屈娜.一个二重积分的计算方法探讨[J].商丘职业技术学院学报,2018(01):74-76.[5]刘红梅.二重积分计算巧用对称性简化求解[J].普洱学院学报,2018(06):45-47.。
三重积分的计算方法

三重积分的计算方法蒋银山【摘要】There are several calculation methods of triple integral, such as the first one then two methods, the first two then one method, the use of cylindrical coordinates triple integral calculation using the spherical coordinates triple integral calcul-ation, and the use of parity symmetry with the plot function integration region etc. several articles in this calculation method are discussed and illustrated respectively.%三重积分有几种计算方法,如先一后二法、先二后一法、利用柱面坐标计算三重积分、利用球面坐标计算三重积分、以及利用积分区域的对称性与被积函数的奇偶性等,文章对这几种计算方法进行了讨论,并分别举例说明.【期刊名称】《科教导刊》【年(卷),期】2015(000)034【总页数】2页(P51-52)【关键词】先一后二;先二后一;柱面坐标;球面坐标【作者】蒋银山【作者单位】广东外语外贸大学南国商学院公共课教学部广东·广州 510545【正文语种】中文【中图分类】O172AbstractThere are several calculation methods of triple integral,such as the first one then two methods,the first two then one method,the use of cylindrical coordinates triple integral calculation using the spherical coordinates triple integral calculation,and the use of parity symmetry with the plot function integration region etc.several articles in this calculation method are discussed and illustrated respectively.Key wordsfirst one then two;first two then one;cylindrical coordinates;spherical coordinates方法一:先一后二法。
高等数学同济大学版补充:利用对称性和奇偶性简化积分的运算

引入:当 f ( x)在[a,a]上连续, 则
(1)当 f ( x)为偶函数, 有
a
a
f ( x)dx 2 f ( x)dx;
a
0
(2)当 f ( x)为奇函数, 有
a
f ( x)dx 0.
a
1
例 计算 (| x | sin x)x2dx. 1
解 因为积分区间对称于原点, 且 | x | x2 为偶函数, sin x x2
利用对称性化简三重积分的计算时,应注意: 1. 积分区域关于坐标面的对称性; 2. 被积函数在积分区域上关于三个坐标分量的奇偶性.
一般地,对三重积分 f ( x, y, z)dv, 若积分区域 关于 xOy平面对称,且被积函数是关于变量
z的奇函数,即 f (x, y, z) f (x, y, z)时,
f (x, y) f (x, y)
D
f ( x, y)dxdy
2
f ( x, y)dxdy, f ( x, y)
D3
f (x, y),
其中D3是 D被过原点的直线切割的一半.
(4) 如果 D 关于y x 对称, 则
f ( x, y)dxdy f ( y, x)dxdy.
D
D
完
例 1 计算 I ( xy 1)dxdy, 其中 D : 4x2 y2 4.
则有
f ( x, y, z)dv 0.
若积分区域 关于 xOy平面对称,且被积函数是关于变量
z 的偶函数, 即 f (x, y, z) f (x, y, z) 时,
则有 f (x, y, z)dv 2 f (x, y, z)dv.
1
其中1 是区域 在 xOy 面上方的半个区域.
二重积分的对称性

二重积分的对称性
对称性计算二重积分:当被积函数integrand是奇函数时,在对称于原点的区域内积
分为0。
被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果
可以就可以用对称性,只用积分一半再乘以2。
性质须知:
1、被内积函数提供更多不定积分内积出的函数,虽然看看可以探讨原函数的奇偶性,但是探讨分数函数回去奇偶性时,考量的仅仅就是被内积函数。
2、有界性:设函数f(x)在区间x上有定义,如果存在m\ue0,对于一切属于区间x 上的x,恒有|f(x)|≤m,则称f(x)在区间x上有界,否则称f(x)在区间上无界。
3、单调性:设立函数f(x)的定义域为d,区间i涵盖于d。
如果对于区间上任一两点x1及x2,当x1\ucx2时,恒存有f(x1)\ucf(x2),则表示函数f(x)在区间i上
就是单调递减的。
计算二重积分的几种方法数学专业论文

计算二重积分的几种方法数学专业论文计算二重积分的几种方法摘要二重积分的计算是数学分析中一个重要的内容,其计算方法多样、灵活,本文总结了二重积分的一般计算方法和特殊计算方法.其中,一般计算方法包括化二重积分为累次积分和换元法,特殊计算方法包括应用函数的对称性、奇偶性求二重积分以及分部积分法.关键词二重积分累次积分法对称性分部积分法1 引言本人在家里的职业教育高中实习,发现这里有些专业的的学生要计算很多面积或者体积问题,已经略微涉及到大学的积分问题,如曲顶柱体的体积,他们用最普遍的求面积/体积的方法求解,而用二重积分进行计算求解就会更容易理解,方法和步骤也带给学生一个新的认知领域。
职业教育的学生在大学知识中解决实际问题应用积分的方法更频繁。
在解决一些几何、物理等的实际问题时,我们常常需要各种不同的多元实值函数的积分,而二重积分又是基本的、常见的多元函数积分,我针对自己在《数学分析》这门课程中的学习,总结了累次积分、根据函数对称性积分、元素法、分部积分法、极坐标下的积分等内容,以下是我对二重积分方法的总结。
2 积分的计算方法2.1化二重积分为两次定积分或累次积分法定理 1 若函数(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],x a b ∀∈,定积分()(),d cI x f x y dy=⎰存在,则累次积分(),bda c f x y dy dx ⎡⎤⎢⎥⎣⎦⎰⎰也存在,且(,)(,)b d ac Rf x y dxdy f x y dy dx⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰证明 设区间[],a b 与[],c d 的分点分别是011011i i n k kma x x x x x bc y y y y yd --=<<⋅⋅⋅<<<⋅⋅⋅<==<<⋅⋅⋅<<<⋅⋅⋅<=这个分法记为T .于是,分法将T 闭矩形域R 分成m n ⨯个小闭矩形,小闭矩形记为 11(,),1,2,,;1,2,,.ik i i k k R x x x y y y i n k m --≤≤≤≤=⋅⋅⋅=⋅⋅⋅ 设(){}(){}[]1sup ,,inf ,.,ik ik i i i M f x y m f x y x x ξ-==∀∈,有()1,,ik i ik k km f y M y y y ξ-≤≤≤<.已知一元函数(),if y ξ在[]1,k k yy -可积,有()11,,kikki ik k k k k k m y f y dy M y y y y ξ--∆≤≤∆∆=-⎰.将此不等式对1,2,k m=…相加,有()1111,k k mmmy ikki ik ky k k k m y f y dy M y ξ-===∆≤≤∆∑∑∑⎰,其中()()()11,,k k my di i i y ck f y dy f y dy I ξξξ-===∑⎰⎰,即()11mmikki ik kk k m yI M y ξ==∆≤≤∆∑∑.再将此不等式乘以ix ∆,然后对1,2,i n=…相加,有()11111n mn n miki k i i ik i ki k i i k mx y I x M x y ξ=====∆∆≤∆≤∆∆∑∑∑∑∑.此不等式的左右两端分别是分法T 的小和()s T 与大和()S T ,即 ()()()1ni i i s T I x S T ξ=≤∆≤∑.(1) 已知函数(),f x y 在R可积,根据定理有()()0lim lim (,),T T RS T s T f x y dxdy →→==⎰⎰又不等式(1),有()()01lim ,niiT i RI x f x y dxdy ξ→=∆=∑⎰⎰,即()()(),,.bbdaa c Rf x y dxdy I x dx f x y dy dx ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰类似地,若(),f x y 在闭矩形域(),R a x b c y d ≤≤≤≤可积,且[],,y c d ∀∈定积分存在,则累次积分(),d b caf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰,也存在,且()(),,dbcaRf x y dxdy f x y dx dy⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰.也可将累次积分(),b dacf x y dy dx⎡⎤⎢⎥⎣⎦⎰⎰与(),d bcaf x y dx dy⎡⎤⎢⎥⎣⎦⎰⎰分别记为(),b dac dx f x y dy⎰⎰和(),dbcadx f x y dy ⎰⎰. 定义 1 设函数()()12,x x ϕϕ在闭区间[],a b 连续;函数()()12,y y ψψ在闭区间[],c d 连续,则区域()()()[]{}12,,,x y x y x x a b ϕϕ≤≤∈和()()()[]{}12,,,x y y x y y c d ψψ≤≤∈分别称为x 型区域和y 型区域.如下图(1)和(2)所示 .定理2 设有界闭区域R 是x 型区域,若函数(),f x y 在R 可积,且[],x a b ∀∈,定积分()()()21,x xf x y dy ϕϕ⎰存在,则累次积分()()()21,bxaxdx f x y dy ϕϕ⎰⎰也存在,且()()()()21,,bxaxRf x y dxdy dx f x y dy ϕϕ=⎰⎰⎰⎰.利用极坐标计算二重积分公式:()(),cos ,sin RRf x y dxdy f r r rdrd ϕϕϕ=⎰⎰⎰⎰例 1 计算二重积分()sin Rx y dxdy +⎰⎰,其中0,0.22R x y ππ⎛⎫≤≤≤≤ ⎪⎝⎭解 被积函数()cos x y +在R 连续,则有()cos Rx y dxdy +⎰⎰=()220cos dy x y dxππ+⎰⎰=220(cos cos sin sin )dy x y x y dxππ-⎰⎰=()20cos sin y y dy π+⎰= 1+01-例2 计算二重积分22Dxdxdyy⎰⎰,其中D是由直线2,x y x==和双曲线1xy=所围成,D既是x型区域又是y 型区域,如图(3)所示.解先对y积分,后对x积分.将D投影在x轴上,得闭区间[]1,2.[]1,2x∀∈,关于y积分,在D内y的积分限是1yx=到y x=,然后在投影区间[]1,2上关于x积分,即()222231221194xxDx xdxdy dx dy x x dxy y==-=⎰⎰⎰⎰⎰.先对x积分,后对y积分.因为D的左侧边界不是由一个解析式给出,而是由两个解析式1xy=和y x=给出的,所以必须将图(3)所示的区域D分成两个区域()1D PRS与()2D PRQ,分别在其上求二重积分,然后再相加,即2122222122211222221294yyD D Dx x x x xdxdy dxdy dxdy dy dx dy dxy y y y y=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰.例3 设函数()f x在[]0,1上连续,并设()2,f x dx B=⎰求()()22.xI dx f x f y dy=⎰⎰解因为()()()()222yxI dx f x f y dy dy f x f y dx==⎰⎰⎰⎰ ()()()()22yxf y dy f x dx f x dx f y dy==⎰⎰⎰⎰所以()()()()()()2222222x xI f x dx f y dy f x dx f y dy f x dx f y dy B =+==⎰⎰⎰⎰⎰⎰所以22B I =.2.2 换元法求二重积分,由于某些积分区域的边界曲线比较复杂,仅仅将二重积分化为累次积分并不能得到计算结果.如果经过适当的换元或变换可将给定的积分区域变为简单的区域,从而简化了重积分的计算. 定理3若函数(),f x y 在有界闭区域R 连续,函数组()(),,,x x u v y y u v == (2)将uv 平面上区域'R 变换为xy 平面上区域R .且函数组(2)在'R 上对u 与对v 存在连续偏导数,(),'u v R ∀∈, 有()(),0,,x y J u v ∂=≠∂则()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰ (3)证明 用任意分法T 将区域R 分成n 个小区域:12,,,nR R R ⋅⋅⋅.设其面积分别是12,,,nσσσ∆∆⋅⋅⋅∆.于是,在'R 上有对应的分法'T ,它将'R 对应地分成n 个小区域12',',,'nR R R ⋅⋅⋅.设其面积分别是12',',,'n σσσ∆∆⋅⋅⋅∆.根据定理可得(),'ku v R ∀∈,有()()(),','.,k k k x y J u v u v σσσ∂∆≈∆=∆∂(),k k kR ξη∀∈,在'kR 对应唯一一点(),kkαβ,而()(),,,k k k k k k x y ξαβηαβ==.于是,()()()()11,,,,,'.nnkkkkkk k k k k k k f f x y J ξησαβαβαβσ==∆≈∆⎡⎤⎣⎦∑∑(4)因为函数组(2)在有界闭区域R 上存在反函数组()(),,,u u x y v v x y ==,并且此函数组在R 一致连续,所以当T →时,也有'0T →.对(4)取极限()0T→,有()()()()',,,,,RR f x y dxdy f x u v y u v J u v dudv =⎡⎤⎣⎦⎰⎰⎰⎰.例4 计算两条抛物线2y mx=与2ynx=和两条直线y xα=与y x β=所围成R 区域的面积()0,0R m n αβ<<<<,如图(4)所示.解 已知区域R 的面积RR dxdy =⎰⎰.设2,.y yu v x x==这个函数将xy 平面上的区域R 变换为uv 平面上的区域'R ,'R 是由直线,u m u n ==和,v v αβ==所围成的矩形域.()()()()43224222,11.,,2,1x y x y x uu v u v y x y v y yx y x xy x x∂⎛⎫===== ⎪∂∂⎝⎭-∂-由定理3可知,()()4',,n m RR x y u R dxdy dudv dv duu v v βα∂===∂⎰⎰⎰⎰⎰⎰()()223322433.26n m n m dv v βαβααβ---==⎰本题是典型的运用换元法解决二重积分求面积的问题。
多重积分计算方法小结

多重积分计算方法小结多重积分是微积分中的一个重要概念,它是对具有多个自变量的函数进行求积的方法。
在实际问题中,往往需要对多个变量间的关系进行综合考虑,多重积分就提供了一个有效的工具。
多重积分可以分为二重积分和三重积分两种情况,分别对应于二维平面和三维空间中的函数求积。
在计算多重积分时,我们常常需要利用几何图形、物理问题以及正交曲线坐标系等概念和方法。
下面我将对多重积分的计算方法进行小结。
首先,我们来看二重积分的计算方法。
二重积分可以看作是对一个平面区域上的函数进行求积。
二重积分的计算可以分为直角坐标系和极坐标系两种情况。
在直角坐标系下,我们常常利用矩形分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小矩形,然后计算每个小矩形上函数值的积累,最后将所有小矩形的积累相加,得到整个区域上函数的积分值。
这种方法又称为“矩形分割法”或“Darboux和”方法。
在极坐标系下,我们常常利用极坐标的性质来简化计算。
具体而言,我们将整个积分区域表示成极坐标下的简单几何形状,如直线段、圆、扇形等,然后利用极坐标变换和对称性来计算积分值。
这种方法又称为“极坐标变换法”。
除了这两种基本方法外,还可以利用换元积分法、对偶积分法和奇偶性等方法来简化计算。
换元积分法是通过坐标变换将积分区域变换成更简单的形式,然后进行计算。
对偶积分法是通过对倒数进行积分变换,将二重积分转化为两个单变量积分,更便于计算。
奇偶性是指若被积函数在积分区域上的对称性,利用奇偶性可以简化计算过程。
接下来我们来看三重积分的计算方法。
三重积分可以看作是对一个空间区域上的函数进行求积。
三重积分的计算可以分为直角坐标系和柱面坐标系两种情况。
在直角坐标系下,我们常常利用分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小立方体,然后计算每个小立方体上函数值的积累,最后将所有小立方体的积累相加,得到整个区域上函数的积分值。
这种方法又称为“立方体分割法”。
二重积分■f(x,y)dxdy的对称性计算技巧

二重积分■f(x,y)dxdy的对称性计算技巧
二重积分是数学中一个重要的概念,它是指在一个二维平面上,将一个函数分解为两个独立的变量,通过不断积分来计算出函数的定义域。
在计算二重积分时,有一种特殊的技巧,即对称性计算技巧。
对称性计算技巧是指,当二重积分的定义域是对称的,即它的边界是对称的,我们可以利用它的对称性来提高计算效率。
例如,假设f(x,y)dxdy的定义域是以原点为中心,垂直于x轴和y轴的正方形,此时,我们可以利用它的对称性,将它分解为四个独立的定义域,分别是以原点为中心,垂直于x轴和y轴的两个半正方形,然后将它们的积分值相加,就可以得到f(x,y)dxdy的积分值。
因此,对称性计算技巧是一种有效的技巧,可以帮助我们提高计算效率,节省时间。
然而,我们也必须注意,这种技巧只适用于定义域是对称的情况,如果定义域不是对称的,我们就不能使用这种技巧。
因此,在使用对称性计算技巧时,我们需要仔细分析定义域,以确保它是对称的。
利用对称性求定积分与二重积分

利用对称性求定积分与二重积分
利用对称性求定积分与二重积分
豆俊梅
【期刊名称】《科技资讯》
【年(卷),期】2007(000)025
【摘要】本文给出了利用对称原理解积分问题方法,它较之积分中的常现方法更独特、巧妙,能使一些计算较繁,难度较大的问题迅速,简捷地获得解答.
【总页数】1页(191)
【关键词】对称性;积分
【作者】豆俊梅
【作者单位】河南工业大学理学院
【正文语种】中文
【中图分类】O1
【相关文献】
1.对称性在定积分及二重积分计算中的应用 [J], 薛春荣; 王芳
2.利用对称性简化二重积分计算教学初探 [J], 王忠英
3.利用对称性、奇偶性计算二重积分 [J], 李娟
4.利用对称性计算二重积分 [J], 朱永婷; 王桦
5.利用对称性简化二重积分计算 [J], 刘连福
以上内容为文献基本信息,获取文献全文请下载。
三重积分的计算方法

学法教法研究任水平,对公司、对社会也将是一件善事。
一是建立明晰的伦理道德责任。
从目前来看,各种类似“天津港的爆炸案”的案例已经不在少数,每天可能都在上演着,尽管造成这种事故的原因各式各样,有的是自然因素,有的是人为因素,但只要我们细细分析,大多与我们工程师的道德观念崩塌有着或多或少的关系,更有甚者,工程师没有履行职责,尤其是伦理责任没有到位而造成了巨大的损失。
二是建立责任评价和追究机制。
目前,我国的工程师主要是在公司、企业、政府担任一定的职责,在承担责任时往往都是单位,尤其是在追究道德层面的责任,由于责任不清晰,无法认定。
或者根本就没有单独制定这样的评价机制。
对工程师的约束就很少以至于没有,所以,建立公开、公正、公平的工程责任评价和追究机制是非常必要的,从制度机制层面明确工程活动主体的责任,对于社会、对企业或者工程师个人都是大有裨益的。
三是加强伦理教育,提升工程师伦理责任意识。
我们无论大学还是社会,对于工程师的伦理道德教育都不能放松,没有一定的伦理道德教育作为基础,想要工程师们的伦理责任有大幅的提高也是不可能的。
目前,我们的高校在人才培养上,可能注重工程专业技术的培训多,而对于工程师伦理责任的培养却是非常的少,重视程度还不是很够。
所以我们大学应该采取多种措施,加大对工程师伦理道德的培养。
当然,在现实社会中,工程伦理又是实践性和应用性很强的学科,必须结合工程的实际问题,培养出具有生态伦理价值观、思维观和执行力的工程技术人才。
通过以上结合天津港爆炸事件分析,对工程师的伦理责任有了更深层次的认识。
社会的进步和发展离不开工程建设活动,生态文明建设更离不开有效的工程活动,我们的工程师要切实树立增强伦理责任的理念,在工程的设计、施工中既要体现对企业、对公司的经济效益负责,又要体现出对社会、对环境的责任。
参考文献:[1]李世新.谈谈工程伦理学[J].哲学研究,2013(02).[2]张铁山.论阻碍工程师伦理责任发挥的因素及其对策[J].漯河职业技术学院学报,2012(01).[3]何放勋.论工程师的伦理责任[J].湖南工程学院学报,2012(04).[4]胡岩.对工程师伦理责任的探讨[J].中北大学学报(社会科学版),2012(04).三重积分的计算方法张辉李应岐陈春梅(火箭军工程大学理学院陕西西安710025)【摘要】介绍了计算直角坐标下三重积分的六种方法,给出相应的求解思路,并辅以典型例题,旨在使学生对三重积分的计算有更深的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、利用奇偶对称性算二三重积分(简单)
这类题目看上去很难。首先看积分区间。积分区间为对称区间。
判别法:比较判别法、比值判别法、根植判别法、莱布尼茨判别法
再看被积函数,奇函数直接为0,偶函数2倍
2、直角坐标二重积分(一般边界函数为一次函数)
书p86 4-7题
3、极坐标二重积分的计算(一般积分函数为二次,形式圆方程Байду номын сангаасX^2+y^2<8)
书p87 17题20 21题
4、交换积分次序
书p87 13题
5、三重积分
P97 6题9题
6、级数收敛的必要条件
把书上的定义,和性质看几遍。