(函数的周期性):周期数列
专题06 函数的奇偶性与周期性 复习资料(解析版)

小正周期.
3.函数的对称性常见的结论
a+b (1)函数 y=f(x)关于 x= 对称⇔f(a+x)=f(b-x)⇔f(x)=f(b+a-x).
2
特殊:函数 y=f(x)关于 x=a 对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x); 函数 y=f(x)关于 x=0 对称⇔f(x)=f(-x)(即为偶函数). (2)函数 y=f(x)关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔f(2a+x)+f(-x)=2b. 特殊:函数 y=f(x)关于点(a,0)对称⇔f(a+x)+f(a-x)=0⇔f(2a+x)+f(-x)=0; 函数 y=f(x)关于(0,0)对称⇔f(x)+f(-x)=0(即为奇函数). (3)y=f(x+a)是偶函数⇔函数 y=f(x)关于直线 x=a 对称; y=f(x+a)是奇函数⇔函数 y=f(x)关于点(a,0)对称. [知识拓展]
数
f(x)就叫做奇函数
称
(2)定义域关于原点对称是函数具有奇偶性的必要不充分条件.
2.函数的周期性
(1)周期函数:对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f(x+T)=f(x),
那么就称函数 f(x)为周期函数,称 T 为这个函数的周期.
(2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最
综上可知:对于定义域内的任意 x,总有 f(-x)=-f(x)成立,∴函数 f(x)为奇函数.
【解法小结】 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断 f(x)与 f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关
周期数列详解

周期数列一、周期数列的定义:类比周期函数的概念,我们可定义:对于数列}{n a ,如果存在一个常数T )(+∈N T ,使得对任意的正整数0n n >恒有n T n a a =+成立,则称数列}{n a 是从第0n 项起的周期为T 的周期数列。
若10=n ,则称数列}{n a 为纯周期数列,若20≥n ,则称数列}{n a 为混周期数列,T 的最小值称为最小正周期,简称周期。
设{An}是整数,m 是某个取定的大于1的正整数,若Bn 是An 除以m 后的余数,即Bn=An(mod m),且Bn 在{0,1,2,...,m-1},则称数列{Bn}是{An}关于m 的模数列,记作{An(mod m)}。
若模数列{An(mod m)}是周期的,则称{An}是关于模m 的周期数列。
二、 周期数列的性质1、周期数列是无穷数列,其值域是有限集;2、如果T 是数列}{n a 的周期,则对于任意的+∈N k ,kT 也是数列}{n a 的周期。
3、若数列}{n a 满足21---=n n n a a a (+∈N n ,且2>n ),则6是数列的一个周期。
4、已知数列}{n a 满足n t n a a =+(+∈N t n ,,且t 为常数),n S 分别为}{n a 的前n 项的和,若r qt n +=(t r <≤0,+∈N r ),则r n a a =,r t n S qS S +=。
特别地:数列}{n a 的周期为6,(即:n n a a =+6)则262012335S S S += 5、若数列}{n a 满足s a a k n n =+-),(+∈>N n k n ,则数列}{n a 是周期数列; 若数列}{n a 满足s a a a k n n n =+++-- 1),(+∈>N n k n ,则数列}{n a 是周期数列。
若数列}{n a 满足s a a a k n n n =⋅⋅⋅-- 1)0,,(≠∈>+s N n k n ,则数列}{n a 是周期数列。
函数的周期性

函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2. 于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛•+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛•+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x +3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k . 【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02sin 4141=+x 得 4π=x故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。
函数的周期性解读

函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2.于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x + 3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k .【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02s i n4141=+x 得 4π=x 故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。
函数的周期

想。 10.(2005广东)设函数 在 上满足 , f(7-x)=f(7+x),且在闭区间[0, 7]上,只有f(1)=f(3)=0。 (Ⅰ)试判断函数y=f(x)的奇偶性; (Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明 你的结论. 解:由 得 即 由已知易得 ,所以 ,而 ,从而 且 故函数 是非奇非偶函数; (II)由 ,从而知函数 的周期为 当 时, ,由已知 ,又 ,则 ∴当 时,只有 ∴方程 =0在一个周期内只有两个解 而函数 在闭区间[-2005,2005]共含有401个周期,所以方程 =0在闭 区间[-2005,2005]共含有802个解 【探索题】对于k∈Z,用Ik表示区间(2k-1,2k+1]。已知x∈Ik时,f(x) = (x-2k)2, (1)当k∈N*时,求集合Mk={a|使方程f(x)=ax在Ik上有两个不相等的 实根的a的值} (2)并讨论f(x)的周期性。 解:y=f(x)图像就是将y=x2(x∈(-1,1])向右平移2k个单位所得, 其中k∈N 设y1=f(x),y2=ax,由集合Mk可知,若a∈M,则函数y1=f(x)与y2=ax 图像有 两个交点,即当x=2k+1时,0<y2≤1 ∴0<a≤ ∴Mk={a|0<a≤ ,k∈N},即Mk=(0, ] 对任意
A.5 B.4 C.3 D.2
2.若函数y=f(x)是周期为2的奇函数,且当x∈(0,1)时f(x)=x+1,则f(π)的
值为
()
A.π-5 B.5-π C.4-π D. π-4
3. 是偶函数,且 为奇函数,则f(1992)=
4.设存在常数p>0,使 ,则 的一个周期是 ,f(px)的一个正周期是 ;
∵ x∈(1,2), 则-x∈(-2,-1), ∴ 2-x∈(0,1), ∵ T=2,是偶函数 ∴ f(x)=f(-x)=f(2-x)=2-x+1=3-x. x∈(1,2). 解法2(从图象入手也可解决,且较直观)f(x)=f(x+2) 如图:x∈(0,1), f(x)=x+1.∵是偶函数 ∴x∈(-1,0)时f(x)=f(-x)=-x+1. 又周期为2, x∈(1,2)时x-2∈(-1,0) ∴f(x)=f(x-2)=-(x-2)+1=3-x. 提炼方法:1.解题体现了化归转化的思想,即把未知的(1,2)上向已知的 (0,1)上转化; 2.用好数形结合,对解题很有帮助. 【例2】f(x)的定义域是R,且f(x+2)[1-f(x)]=1+f(x),若f(0)=2008,求 f(2008) 的值。 解: 周期为8, 法二:依次计算f(2、4、6、8)知周期为8,须再验证。 方法提炼: 1.求周期只需要弄出一个常数; 2.注意既得关系式的连续使用. 【例3】若函数 在R上是奇函数,且在 上是增函数,且 . ①求 的周期; ②证明f(x)的图象关于点(2k,0) 中心对称;关于直线x=2k+1轴对称, (k∈Z ); ③讨论f(x)在(1,2)上的单调性; 解: ①由已知f(x)=-f(x+2)=f(x+2+2)=f(x+4),故周期T=4. ②设P(x,y)是图象上任意一点,则y=f(x),且P关于点(2k,0)对称的点为 P1(4k-x,-y).P关于直线x=2k+1对称的点为P2(4k+2-x,y). ∵f(4k-x)=f(-x)=-f(x)=-y,∴点P1在图象上,图象关于点(2k,0)对称. 又f(x)是奇函数,f(x+2)=-f(x)=f(-x) ∴f(4k+2-x)=f(2-x)=f(x)=y, ∴点P2在图象上,图象关于直线2k+1对称.
高数发散和收敛的判断方法

高数发散和收敛的判断方法高数中的发散与收敛是一个非常重要的概念,它们与数列、函数及级数的性质密切相关。
在本文中,我们将介绍一些判断数列、函数及级数发散与收敛的方法。
一、数列的发散与收敛判断对于数列{an}来说,发散与收敛是判断其性质的基本问题。
数列的收敛性可以通过极限的存在与唯一性来判断。
如果数列{an}存在唯一的有限极限,则{an}是收敛的;如果数列{an}不存在有限极限,或者存在无穷极限,则{an}是发散的。
判断数列发散与收敛的方法有很多种,其中常用的有以下几种:1. 利用定义判断:根据数列极限的定义,当对于任意给定的正数ε,存在正整数N,使得当n>N时,|an - a| < ε,其中a为数列的极限。
如果找不到这样的正整数N,就可以认为数列发散。
2. 利用数列的单调性:如果数列单调递增且有上界(或单调递减且有下界),则根据实数完备性原理可知该数列存在极限。
3. 利用夹逼定理:如果存在两个数列{bn}和{cn},使得对于所有的n,有bn ≤ an ≤ cn,并且这两个数列都是收敛的,即lim(n→∞)bn = lim(n→∞)cn = a,则根据夹逼定理可知数列{an}收敛于a。
4. 利用数列的递推关系:对于递推定义的数列,可以通过找到其递推关系式,从而判断其收敛性。
例如斐波那契数列就是通过递推关系来判断其发散与收敛的。
二、函数的发散与收敛判断对于函数来说,收敛性的判断与数列类似,也是通过极限的存在与唯一性来判断。
如果函数在某一点存在有限极限,则该函数在该点收敛;如果函数在某一点的极限不存在或为无穷大,则该函数在该点发散。
判断函数发散与收敛的方法也有多种,其中常用的有以下几种:1. 利用定义判断:根据函数极限的定义,当对于任意给定的正数ε,存在正数δ,使得对于所有的x,只要0 < |x - a| < δ,就有|f(x) - L| < ε,其中L为函数的极限。
如果找不到这样的δ,就可以认为函数发散。
周期数列

常见递归数列通项公式的求解策略数列是中学数学中重要的知识之一,而递归数列又是近年来高考和全国联赛的重要题型之一。
数列的递归式分线性递归式和非线性递归式两种,本文仅就高中生的接受程度和能力谈谈几种递归数列通项公式的求解方法和策略。
一、周期数列如果数列满足:存在正整数M、T,使得对一切大于M的自然数n,都有成立,则数列为周期数列。
例1、已知数列满足a1 =2,an+1 =1-,求an 。
解:an+1 =1-an+2 =1-=-, 从而an+3 = 1-=1+an-1=an ,即数列是以3为周期的周期数列。
又a1 =2,a2=1-=, a3 =-12 , n=3k+1所以an= ,n=3k+2 ( kN )-1 , n=3k+3二、线性递归数列1、一阶线性递归数列:由两个连续项的关系式an= f (an-1 )(n,n)及一个初始项a1所确定的数列,且递推式中,各an都是一次的,叫一阶线性递归数列,即数列满足an+1 =f (n) an+g(n),其中f (n)和g(n)可以是常数,也可以是关于n 的函数。
(一)当f (n) =p 时,g(n) =q(p、q为常数)时,数列是常系数一阶线性递归数列。
(1)当p =1时,是以q为公差的等差数列。
(2)当q=0,p0时,是以p为公比的等比数列。
(3)当p1且q0时,an+1 =p an+q可化为an+1-=p(an-),此时{an-}是以p为公比,a1-为首项的等比数列,从而可求an。
例2、已知:=且,求数列的通项公式。
解:=-=即数列是以为公比,为首项的等比数列。
(二)当f(n),g(n)至少有一个是关于n的非常数函数时,数列{an}是非常系数的一阶线性递归数列。
(1)当f(n) =1时,化成an+1=an+g(n),可用求和相消法求an。
例3、(2003年全国文科高考题)已知数列{an}满足a1=1,an=3n--1+an -1 (n2) , (1)求a2 ,a3 ; (2) 证明:an= .(1)解:a1 =1, a2=3+1=4 , a3=32+4=13 .(2)证明:an=3n--1+an-1 (n2) ,an-an-1=3n—1 ,an-1-an-2=3n—2 ,an-2-an-3=3n—3……,a4-a3=33 ,a3-a2=32 ,a2-a1=31将以上等式两边分别相加,并整理得:an-a1=3n—1+3n—2+3n—3+…+33+32+31 ,即an=3n—1+3n—2+3n—3+…+33+32+31+1= .(2)当g(n)=0时,化为a n+1=f(n) an ,可用求积相消法求an 。
高中数学破题致胜微方法(函数的周期性):周期数列

1在研究函数时,我们学习过周期函数,类比数列,有一些数列也有周期性。
今天我们就来研究周期数列及其相关性质。
先看例题例:已知数列{a n }满足:11+=2,1n n a a a +=-且,则2016a =根据已知,可以求得:23a =,31a =-,43a =51a =-,63a =由此可知,数列{a n }是摆动数列,-1,3,-1,3,-1,3……所以该数列为:奇数项为-1偶数项为3,则20163a =周期数列对于数列{a n },如果存在一个常数T ,使得对任意的正整数i 恒有i i T a a +=成立,则称数列{a n }是周期为T 的周期数列先写出数列{a n }的前几项,观察发现规律,找到周期T.再看一个题目,加深印象。
2练:数列{a n }满足:*1112,()1n n na a a n N a ++==∈-则2017a = 根据已知,可以先写出几项的值,找到规律: 如23,a =-31,2a =-413a =52,a = 于是发现,21n n a a +=-类比周期函数的性质,可知:422211()1n n n na a a a a +++==-=-=- 所以可知,数列是以4为周期的周期数列,4n n a a += 注意:我们也可以通过计算3111111n n n n n a a a a a +--==++,再计算a 4的值, 但这种计算比较复杂,不建议使用。
又因为20172016145041=+=⨯+所以201712a a ==总结:1.明确周期数列的概念,以及通项形式2.当没有思路时,通过观察几项的值,找到数列规律3练习:1.数列{a n }的通项公式cos 12n n a π=+,前n 项和为S n ,则S2012=________.2.数列{a n }满足:*11513(),2,37n n n a a n N a a +-=∈=-则2017a =。
关于周期数列的重要性质与结论的探究

推广:若数列 {0n)满足 n ‘0n+1… ·‘0 + (常 数 ≠0),则 {0n)是周期为 k+1的周期数列·
3·若非零数列 {nn)满足 nn+。n+1+… +。叶 a .an+1..… an+ ,则 {0 }是周期为 k+1的周期 数列
是 周期 为 3七的周期数列.
+ 1的周期数列.
特别地,若 0 +1: 是周期为 3的周期数列 .
(即 = 1时),则 {0 }
2.a .an+ = 0忆+ ·an+2k= C,则 an+ ·nn+2k:
口 .a + ,故 a +2 =a ,{0 >是周期为 2 的数周期数列.
Hale Waihona Puke 6.若数列{o )满足n + :} ,则a }是周期为 推广 :由 an.a札+1.-… an+k= ,得 0n+1·0n+2… -· an+ +l= C,贝0 an+1·0n+2… ·-an+南+1= an"an+1。···。n竹+ ,
推 广:由 an+ an+1+ … + n +k = C,得 0 +1+
是周期 为 3的周期数列.
a礼+2+...+an+ +1:C,则 0札+1+0n+2+… +0n+ +1:
类似:若数列 {‰ )满足 口几+
,则 (0n) 0 +n +l+… +a +%,故 an+ +1= a ,a )是周期为
名誉 主编:柳柏 濂 顾 问:(以姓 氏笔 划为序)王林 全,柳柏 濂 社 长 :黎 稳 主 编 :吕杰 副主编:苏洪雨,吴有 昌 编 委:(以姓 氏笔 划为序)尤利 华,邓春 源,叶远 灵,吕伟 泉,吕杰,刘名 生,刘 秀湘,
孙 道椿 ,苏洪 雨,李健 全,吴有 昌,何 小亚,张敏 ,陈 小 山,陈奇斌,林 少杰,
高中数学公式知识点填空-答案版

第一部分:集合与常用逻辑用语
1.子集个数: 含 n 个元素的集合有 2n 个子集,有 2n 1 个真子集,有 2n 1 个非空子集,有 2n 2 个非 空真子集.
2.常见数集: 自然数集: N ,正整数集: N* 或 N+ ,整数集: Z ,有理数集: Q ,实数集: R .
3.空集: 是任何集合的子集,是任何非空集合的真子集.
(4)复合函数的单调性:根据“同增异减”来判断原函数在其定义域内的单调性.
4.函数的奇偶性: (1)函数的定义域关于原点对称是函数具有奇偶性的前.提.条.件.;
(2) f x 是奇函数 f (x) f (x) ; f x 是偶函数 f (x) f (x) ; (3)奇函数 f x 在 0 处有定义,则 f 0 0 ;
(4)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (5)偶函数图象关于 y轴 轴对称、奇函数图象关于原点中心对称.
5.函数的周期性: 周期有关的结论:(约定 a>0) (1) f (x) f (x a) ,则 f (x) 的周期 T= a ;
(2) f (x a) f (x) ,或 f (x a) 1 ( f (x) 0) ,或 f (x a) 1 ( f (x) 0) ,则 f (x) 的
R R 奇函数
在R 上为增 函数
{x∣x R且x 0} {y∣y R且y 0}
奇函数
在 (0, ) 上是减 函数;在 (,0)
上是减函数
[0, ) [0, ) 非奇非偶函数
在[0, ) 上为 增函数
函数 y ax 的反函数是 y loga x ;函数 y loga x 的反函数是 y ax .
16.常见函数的导数公式: ① (C) 0 ;( C 为常数)
证明函数有界的方法

证明函数有界的方法要证明一个函数是有界的,我们需要找到一对常数M和N,使得函数的值永远都在这个区间内。
下面将介绍几种常见的方法来证明函数的有界性:1.利用数列的极限性质:对于序列{an},如果能证明其极限为L,则可以得出函数的有界性。
具体而言,如果对于任意正实数ε,存在对应的整数N,使得当n>N时,an−L,<ε,那么函数f(x)在定义域上是有界的。
证明思路是找到足够大的N,使得函数在N之后的值都在一个有界的范围内。
2.用导数证明:如果一个函数在定义域上是单调递增(或单调递减)的,并且存在一个实数M,使得在其定义域上的导数,f'(x),≤M,那么函数f(x)是有界的。
证明思路是通过导数的性质,证明f'(x)≤M,进而得出f(x)在定义域上是有界的。
3.利用中值定理:如果一个函数f(x)在一个闭区间[a,b]上是连续的,并且在开区间(a,b)上可导,如果存在一个实数M,使得,f'(x),≤M,那么函数f(x)在闭区间[a,b]上是有界的。
证明思路是使用中值定理将函数变形,并结合导数的性质,证明,f(x),≤M。
4.利用有界闭区间上的连续函数的性质:如果一个函数在一个有界闭区间上是连续的,则它在这个区间上是有界的。
这是因为有界闭区间上的连续函数的值不会无限制地逼近无穷大或无穷小,而是在一定范围内浮动。
5.利用函数的周期性:如果一个函数是周期函数,并且在一个周期内是有界的,那么函数在整个定义域上也是有界的。
证明思路是通过周期性,将函数的定义域分解为多个周期,每个周期内都是有界的。
以上是一些常见的证明函数有界性的方法,具体的证明需要根据具体的函数和题目情况来选择合适的方法。
需要注意,在证明过程中需要合理运用数学定义和性质,严密推理,确保证明的正确性。
数列中的周期性和模周期性

2中等数学!赦修活劲葆程讲農]数列中的周期性和模周期性田尚(湖南省长沙市第一中学,410005)中图分类号:0122.7文献标识码:A文章编号:1005-6416(2019)05-0002-07(本讲适合高中)数列是高中数学竞赛中的重要内容,其蕴含着丰富的性质.以数列为背景,经常可设计出一些构思精巧、形式优美、富有新意的问题.因此,各类竞赛都很注重对数列的考查.本文以研究数列的性质为出发点,主要探讨数列中的周期性和模周期性问题.1数列的周期性1.1知识介绍定义1对于数列山”1,若存在确定的正整数T及%,使得对一切n^n0,恒有a”+7 =a”成立,则称)«…!是从第n0项起的周期为T的周期数列.当n0=l时,称巾”}为纯周期数列;当%工2时,称{a”丨为混周期数列.定义2给定数列UJ,若项a”+*与项a“,a”+i,"・,a”+_i之间满足函数关系式F(a”+&,a”+*-i,・・・,a”)=0或a”+*=/(a”+Q,…,a”),则称此关系式为k阶递归式,由此递归式和初始值«1,a2,--,a k所确定的数列{a”|称为k阶递归数列.关于周期数列,以下性质在解题中应用较多.收稿日期:2018-08-21得回日期=2018-12-10性质1周期数列为无穷数列,其值域为有限集.证明设数列}是从第N项开始的周期为T的周期数列.则由定义知a n G{ct,,¾•',a N_\,a N,••',a^+T_i}(n C Z+),即其值域为有限集.性质2值域为有限数集的无穷递归数列必为周期数列.证明设也”}的值域为有限集D,\D\且巾”}满足%阶递归关系a n+k=/(a”,a”+i,…,a”+_i)56N).考虑无穷有序数组(5,°2,…,aQ,(°2,°3,…,a*+i),…,仏心+1,色+*-1),…由于=则上述不相同的有序数组至多个.由抽屉原理,知必存在两个相同的有序数组.不妨设(a m,a m+l,---,a m+k_1)与(為+『,a m+T+l,…,am+T+lc-J(k、T G Z*)相同,即£=5+/^=^,^+1,-,/71+:-1成立•用数学归纳法证明:当n^m时,恒有a n+T=a n-事实上,当n-m时,结论已经成立.设nWs(sMm+A:-l)时,结论成立.由a s+i+r=/(a j+r5a j-i+r»,"*>a J+t-i+r)=A a s,a s-i,---,a s+k-J=a s+l,即当n=s+l时,命题成立.2019年第5期3综上,当n ^m 时,恒有a n + T = a ”.因此,数列{ a ” I 是从第m 项开始的周期 为T 的周期数列.性质3周期数列必有界.证明 由性质1,知周期数列的值域是 有限集,进而知周期数列必有界.1.2例题选讲例1令S 为一个有限集,且SCQ.对任意正整数仁若能找到S 中的个数(允许 相同)其和为0,则b k =0;否则,b k = l.证明:实数0.力篦…为有理数.[分析】只要证:数列{b n !从某项开始为周期数列.只需考虑0幺S,且S 中同时存在正数和负数的情况.记s =冬 <•••< 如,_竺>...>其中,Pi 、qi 、Uj 、y E z +,且(P>,?;) = !(» 巳 1,2,…,, (吟,10 = 1()巳 1,2,...,/}).记 T= 71 (q “j +p :Uj),1 WiWm lCjCZv iN = mT + IT +屮+.・.+巴?1其中,[幻表示不超过实数X 的最大整数.下面证明:T 为数列{ b n |从某项开始的周期,即存在正整数N,使得当n^N 时,均有 6” = b*+T.故 6” =0 o b n + T =0.当b n =0时,取出这n 个和为0的数,再力廿上-------个丛及------------Pi ”i 个913 +p l v l q x qg +p®--J'J 这n + T 个数之和为0,即b n + T =0.v \当 U 时,由于n + T>(m + l )T,故qw存在一个正数至少出现T 次,不妨设该正数號•若负数的个数均小于八则正数至少有个.故正数之和大于”巴+ •••+巴).于是,这n + T 个数之和不为0,与bw= 0矛盾.从而,必存在一个负数至少出现T 次,不妨设该 负数为-勺,则可去掉一-—q iUj (< T )个生9 +PiVj qj及一7~P 円(< T )个-出•故这n 个数之Qi u j+Pi v j 弓和为0,即b n =0.因此,数列{ b n \从某项开始为周期数列,即实数0.久篦…为有理数.【评注】要证明实数0.价篦…为有理数的重要方法是说明无穷数列{ b n }为从某项开始的周期数列•本题有一定的组合色彩,可按照定义证明{ b n \从某项开始是周期为T 的 周期数列.例2设实数列怡”]满足:=a 9x 2 =/3,%”+2 = G Z+).证明:对任何实数a 、0,必存在整数p 、q,使得对任何正整数",均有p<x n <q.【分析】先取a 、0的几个特殊值,容易发现数列的周期为9•结合性质3,知周期数列有界.则可证明原命题的一个充分条件:数列中存在正整数N,使得对任何k^N,均有叫+9 = X k-若%…=0,则结论成立.若如不恒为0卫”不恒为正(否则,%+34中等数学=X n+2~X n+l=(%”+1一%”)一%”+1=一哲<°,矛盾),也不恒为负(否则卫”+2=+>0),则存在m C Z+,及a、6M0,a、b不全为零,使得陷=~a,x m+l=b.于是,%m+2="m+l=b+a,x m+3=\x m+2\-x m+l=a,X m+4=l%m+3I~X m+2=_b,x m+5=1陷+4丨_轧+3=b-a.(1)当b<a时,陷+6=\x m+5\-x m+4=a,%m+7=1陷+6丨-轧+5=2a-b,X m+S=I%m+7I_%m+6=Q_6,陷+9=l%m+8丨-%“+7X m+\0=l%m+9'~X m+&(2)当bNa时,类似(1)可得X m+9=-a,%m+10=b.从而,总有X m+g=x m,xm+w=X m+l.再结合二阶递归式,知对于任何k^n,均有x k+9=X k-结合性质3,知数列{%”}有界,即对任何 实数a、0,必存在整数p、g,使得对任何正整数口,均有p<x n<q.[评注】欲证数列{签}有界,可尝试加强命题,证明伙」为周期数列.例3已知两个整数列!a J J!满足方程(a“-a”-i)(a”-a”-2)+(%-b”_J(6”-b”_2)=0,①其中,/1=3,4,-.证明:存在正整数仁使得a k+^k=a t+2018+^4+2018-②【分析】本题所给条件有明显的几何意义,故设在平面直角坐标系下P”(a”,6”).由方程①,知点P"在以P”—P”_2为直径 的圆上.记d”=IP”P”+i F=(a”-a n+i)2+(b n -b n+1)2.显然,{d J为非负整数列,且由点P n在以P”-iP“-2为直径的圆上,知{d n|单调不增.于是,存在足够大的◎使得0=“”=血+i=力”+2=…,或0<d”=d”+i=d”+2=…,即点Pgn)与仇+i重合或与代+2重合.从而,数列I a”}从n项开始是周期为1或2的周期数列.类似地,数列{久|从“项开始是周期为1或2的周期数列.这表明,存在,使得式②成立.[评注】从结论上看,要证的是“年份数”为数列{的周期,实质上很可能存在比年份数更小的周期•此外,本题中构建几何模型解决代数问题的方法是十分漂亮的.例4已知正整数d,定义数列jaj:[牛,a”为偶数;a0=1,Q”+i=2a…+d,a n为奇数.求所有满足条件的整数必使得存在n>0,a n=1.⑴(2011,克罗地亚国家队选拔考试)【分析】先对d分奇偶讨论.若d为偶数,则a”=1+加,数列{a”|中的所有项均为奇数且数列是单调递增的,不合题意.设d为奇数•可由数学归纳法证明:若a”为奇数,则a»Wd;若%为偶数,则a“W2d.可见,数列{a”I的值域为有限集.由性质2,知数列{Q”}从某项开始为周期数列.设r(r>0)为存在sMr且使得a r=a s的最小下标.若a「Wd,则a「、a,均为其前一项除以2,即a严竽4=竽.2019年第5期5故a一1=a,_i,这与r是最小值矛盾.若a r>d,由a”W2d,得a八a,均为其前一项加d,仍有a r_i=a,_i,也与r的最小性 矛盾.因此,r=0,即对每一个奇数d,均存在s,使得a s=a0=1.【评注】观察数列的初始项a。
专题函数的周期性

专题 函数的周期性一 知识点精讲1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期.周期函数的定义域一定是无限集2性质①若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则)(x f ϖ)0(≠ϖ是周期函数,且周期为||ωT。
3.几种特殊的具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中0a >为常数)(1)()()f x f x a =+,则()y f x =的周期T a =.(2)()()f x a f x +=-,则()x f 的周期2T a =.(3)()()1f x a f x +=±,则()x f 的周期2T a =. (4)()()f x a f x a +=-,则()x f 的周期2T a =.(5)1()()1()f x f x a f x -+=+,则()x f 的周期2T a =. (6)1()()1()f x f x a f x -+=-+,则()x f 的周期4T a =数. (7)1()()1()f x f x a f x ++=-,则()x f 的周期4T a =. (8)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.(9)函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数.(10)函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是()2b a -为周期的周期函数.(11)函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(12))-()()(a x f x f a x f -=+,则)(x f 的周期a T 6=.二 典例解析1.设f(x)是(-∞, +∞)上的奇函数,f(x+2)= -f(x),当0≤x ≤1时,f(x)=x ,则f=( )A.0.5B. -0.5D. - 2.若y =f (2x )的图像关于直线2a x =和)(2a b b x >=对称,则f (x )的一个周期为( ) A .2b a + B .)(2a b - C .2a b - D .)(4a b - 3.已知()f x 在R 上是奇函数满足2)1(),()3(=-=+f x f x f ,则=)5(f4.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)2008(f = 例5.已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。
周期数列详解

周期数列一、周期数列的定义:类比周期函数的概念,我们可定义:对于数列}{n a ,如果存在一个常数T )(+∈N T ,使得对任意的正整数0n n >恒有n T n a a =+成立,则称数列}{n a 是从第0n 项起的周期为T 的周期数列。
若10=n ,则称数列}{n a 为纯周期数列,若20≥n ,则称数列}{n a 为混周期数列,T 的最小值称为最小正周期,简称周期。
设{An}是整数,m 是某个取定的大于1的正整数,若Bn 是An 除以m 后的余数,即Bn=An(mod m),且Bn 在{0,1,2,...,m-1},则称数列{Bn}是{An}关于m 的模数列,记作{An(mod m)}。
若模数列{An(mod m)}是周期的,则称{An}是关于模m 的周期数列。
二、 周期数列的性质1、周期数列是无穷数列,其值域是有限集;2、如果T 是数列}{n a 的周期,则对于任意的+∈N k ,kT 也是数列}{n a 的周期。
3、若数列}{n a 满足21---=n n n a a a (+∈N n ,且2>n ),则6是数列的一个周期。
4、已知数列}{n a 满足n t n a a =+(+∈N t n ,,且t 为常数),n S 分别为}{n a 的前n 项的和,若r qt n +=(t r <≤0,+∈N r ),则r n a a =,r t n S qS S +=。
特别地:数列}{n a 的周期为6,(即:n n a a =+6)则262012335S S S += 5、若数列}{n a 满足s a a k n n =+-),(+∈>N n k n ,则数列}{n a 是周期数列; 若数列}{n a 满足s a a a k n n n =+++-- 1),(+∈>N n k n ,则数列}{n a 是周期数列。
若数列}{n a 满足s a a a k n n n =⋅⋅⋅-- 1)0,,(≠∈>+s N n k n ,则数列}{n a 是周期数列。
周期问题知识点总结六年级

周期问题知识点总结六年级周期问题知识点总结周期问题是数学中的一个重要概念,主要涉及到数列和函数的周期性特征。
在六年级的数学学习中,我们需要掌握一些周期问题的基本知识点,本文将对这些知识进行总结。
以下是几个重要的周期问题知识点:一、数列的周期性数列是由一串按照一定规律排列的数字组成的序列。
当数列中的数字按照一定的规律重复出现时,我们就称这个数列具有周期性。
1. 周期的定义一个数列如果存在一个正整数T,使得数列中的每个元素在位置上与它前面的第T个元素相等,则称T为该数列的一个周期。
2. 寻找周期要确定一个数列的周期,可以观察数列中的数字是否出现重复的现象。
如果发现某个数字在数列中多次出现,并且这些数字按照一定规律排列,那么这个规律所包含的数字个数就是数列的周期。
3. 常见周期在数列中,常见的周期有1、2、3等整数周期,也可能存在更大的周期。
例如,常见的斐波那契数列的周期是3。
二、函数的周期性函数是一种将一个变量的值映射到另一个变量上的规则。
当函数满足一定条件时,我们可以称之为周期函数。
1. 周期函数的定义如果存在一个正实数T,使得对于函数的定义域上的任意实数x,都有f(x+T) = f(x),则称函数f(x)是周期函数,T为该函数的周期。
2. 寻找周期要确定函数的周期,可以观察函数图像是否表现出了一定的重复性。
在函数图像中,如果存在一个最小的正周期,使得函数图像以该周期为单位重复出现,那么该周期就是函数的周期。
3. 常见周期常见的周期函数有正弦函数、余弦函数等。
例如,正弦函数的周期是2π。
三、周期问题的应用周期问题不仅仅是数学中的一个概念,它在现实生活中也有着广泛的应用。
1. 时间与周期我们生活在一个充满周期性的世界中。
一天有24小时,一周有7天,一年有365天等。
我们利用时间的周期性来组织和安排日常生活,如工作、学习和休息等。
2. 电子技术中的周期在电子技术领域,周期问题也有着广泛的应用。
例如,交流电的周期是指电流正弦波形从一个方向到另一个方向再返回来所需要的时间。
对“周期数列”的探究

对“周期数列”的探究浙江省绍兴县柯桥中学(312030) 陈冬良一般在数列中等差数列与等比数列考查较多,笔者在教学过程中感到一类特殊的数列也时常在各类高考或竞赛卷中出现,我们把它命名为“周期数列”,数列作为一类特殊的函数,函数性质在数列中的考查显得尤为自然,“周期数列”较好的渗透函数周期性的考查,笔者对 “周期数列”的考查作了以下一些探讨,仅供参考.周期数列定义:对一数列{a n },若存在一确定的正整数T 及n 0,对任一n ≥ n 0 恒有a n+T =a n 成立 ,则数列{a n }为周期数列,T 为数列{a n }的周期.周期数列性质:1)周期数列是无穷数列,其值域是有限集;2)若T 是{a n }的周期,则对任何k *∈N ,kT 也是{a n }的周期;3)周期数列必有最小正周期;一.直接定义考查例1.① (2001上海春季)若数列{a n }前8项的值各异,且a n+8=a n 对任意n *∈N 都成立,则下列数列中可取遍{a n }的前8项值的数列为( )A.{a 2k+1}B.{a 3k+1}C.{a 4k+1}D.{a 6k+1} 解:由数列{a n }前8项的值各异,且a n+8=a n 对任意n *∈N 都成立得数列{a n }的周期T=8,则问题转化为2k+1,3k+1,4k+1,6k+1中k=1,2,3,…代入被8除,若余数能取到0,1,2,3,4,5,6,7即为答案,经检验,3k+1可以,故{a 3k+1}可取遍{a n }的前8项值,答案为B.评注:若在给定数列{a n }中有a n+T =a n 出现,往往需考虑数列周期.②(04北京高考)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为_____. 解:由题可得5=a 1+a 2=a 2+a 3=a 3+a 4=…=a 2n-1+a 2n = a 2n +a 2n+1=…,得a 2n+1=a 2n+3,a 2n =a 2(n+1),得{a n }为周期数列,T=2,故a 18=a 2 ,又a 1=2,得a 2=3,所以a 18=3评注:上例考查是近年来较新的一种考查形式,通过自定义得一新数列,由新信息解题,上例作者定义为等和数列,其实质也是一周期数列.二.等价转化考查例2. (03高一“希望杯)整数数列{a n },对于每个n ≥3都有a n =a n-1-a n-2,若前2003项的和为a (a ≠0),则S 5= ( ) A.a B.5a C.a5 D.5a 探究1:由题得 213212341232211------=-=-=-===n n n n n n a a a a a a a a a a a a a a a a,n 个等式相加得S n =a n-1+a 2 ,则S 2003=a 2002+a 2=a,求S 5=a 4+a 2 ?由S n =a n-1+a 2 ,由于{S n }中都出现a 2,猜想a 2为常数,由S 2003=a 2002+a 2=a 猜想a 2=a,特例法,取a 1=0, a 2=a,则 a 3=a,a 4=0,a 5=-a,a 6=-a,a 7=0,a 8=a,…;由列举容易得{a n }满足 S 2003=a 2002+a 2=a,又{a n }周期T=6,则S 2003=a 2002+a 2=243336a a ++⨯=a 4+a 2=S 5=a,故答案选A.探究2:由探究1的特例探究可知{a n }是周期数列,下列我们进行一般探究.由题得 213212341232211------=-=-=-===n n n n n n a a a a a a a a a a a a a a a a,n 个等式相加得S n =a n-1+a 2 ,则S 2003=a 2002+a 2=a,求S 5=a 4+a 2 ?又a n =a n-1-a n-2可得a n-1=a n-2-a n-3 ,两式相加得a n = -a n-3 ,进一步可得a n = -a n-3= -(-a n-6)=a n-6,等同于n n a a =+6,由周期数列定义得{a n }的周期T=6,下面与探究1相同。
函数周期性在解题中的应用

函数周期性在解题中的应用函数的周期性是新教材第四章中的难点,也是高考常考的内容之一,一些学生对解周期性的问题无从下手、无所适从。
根据笔者近几年的教学实践,现将函数周期性问题的解法归纳总结如下。
解决函数周期性问题的要点是通过代换、变形,使f(x+T)=f(x)成立(其中T≠0为常数),借此确定函数的周期,然后再通过函数的其他性质去解决问题。
一、在求函数周期上的应用例1.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),则函数f(x)的一个周期是______。
解:∵ f(x+2)=-f(x),∴作代换将x换为x+2,得f[(x+2)+2]=-f(x+2),即f(x+4)=-f (x+2)=f(x),∴函数f(x)的一个周期是4。
二、在求函数值上的应用例2.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(π)=______。
解:∵x∈(-∞,+∞),f(x+2)=-f(x),故将x换为x+2得f(x+4)=-f(x+2)=f(x),∴函数f(x)是以4为周期的奇函数,∴f(π)=f(-1×4+π)= f(π-4)= f[-(4-π)]=- f(4-π)。
而4-π∈[0,1]且x∈ [0,1]时f(x)=x,∴f(π)=- f(4-π)=-(4-π)=π-4。
三、在求函数解析式上的应用例3.设奇函数f(x)是定义在R上的周期为4的周期函数,当x∈[0,2] 时,f(x)=2x-x2。
当x∈[2,4]时,求f(x)的解析式。
分析:要求x∈[2,4]时f(x)的解析式,须将x换为x+2k(k∈Z),且使x+2k∈[0,2],则可由已知条件求得f(x)的解析式。
解:∵ x∈[2,4],∴ -x∈[-4,-2], ∴4-x∈[0,2];又∵x∈[0,2] 时, f(x)=2x-x2 ∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8;又∵ f(4-x)=f(-x)=-f(x),∴-f(x) =-x2+6x-8,即 f(x)=x2-6x+8,x∈[2,4]。
函数周期性在数列问题中的妙用

函数周期性在数列问题中的妙用
梁小红
【期刊名称】《数理化解题研究:高中版》
【年(卷),期】2016(000)001
【摘要】数列是一种特殊函数,即定义域为正整数集或它的有限子集的函数,这样,我们就可以用函数中的性质来求解数列中的问题.周期性是函数的一个重要性质,利用函数的思想方法和函数的周期性类比解决周期数列的有关问题,不仅实现了函数思想方法的正迁移还有利于知识的构建与重整.本文对利用周期性解决数列有关问题进行分类解析并作一定深层次挖掘.
【总页数】1页(P7-7)
【作者】梁小红
【作者单位】甘肃省金塔县中学,735300
【正文语种】中文
【中图分类】G632
【相关文献】
1.函数的对称性、周期性及其关系在抽象函数问题中的应用 [J], 怙悛
2.别把数列不当函数——对数列问题中n的范围之限定 [J], 宋卫东
3.构造函数在数列解题中的几例妙用 [J], 劳德耀;
4.构造函数在数列解题中的几例妙用 [J], 劳德耀;
5.还原数列本质提高解题效率——例析函数思想在解决数列问题中的应用 [J], 严正旺;
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(函数的周期性):周期数列
在研究函数时,我们学习过周期函数,类比数列,有一些数列也有周期性。
今天我们就来研究周期数列及其相关性质。
先看例题
例:已知数列{a n }满足:11+=2,1n n a a a +=-且,则2016a =
根据已知,可以求得:23a =,31a =-,43a =
51a =-,63a =
由此可知,数列{a n }是摆动数列,-1,3,-1,3,-1,3……
所以该数列为:
奇数项为-1
偶数项为3,则20163a =
周期数列
对于数列{a n },如果存在一个常数T ,使得对任意的正整数i 恒有i i T a a +=成立, 则称数列{a n }是周期为T 的周期数列
先写出数列{a n }的前几项,观察发现规律,找到周期T.
再看一个题目,加深印象。
练:数列{a n }满足:*1112,()1n n n
a a a n N a ++==∈-则2017a = 根据已知,可以先写出几项的值,找到规律:
如23,a =-31,2a =-413
a =52,a =
于是发现,21n n
a a +=- 类比周期函数的性质,可知:
42221
1()1n n n n
a a a a a +++==-=-=- 所以可知,数列是以4为周期的周期数列,4n n a a += 注意:我们也可以通过计算3111111n n n n n a a a a a +-
-==++,再计算a 4的值, 但这种计算比较复杂,不建议使用。
又因为20172016145041=+=⨯+
所以201712a a ==
总结:
1.明确周期数列的概念,以及通项形式
2.当没有思路时,通过观察几项的值,找到数列规律
练习:
1.数列{a n }的通项公式cos 12
n n a π=+,前n 项和为S n ,则S2012=________. 2.数列{a n }满足:*11513(),2,37
n n n a a n N a a +-=∈=-则2017a =。