《工程热力学》压气机实验指导书

合集下载

工程热力学实验指导书

工程热力学实验指导书

热能与动力工程专业工程热力学实验指导书编写教师:商福民能源动力学院热工实验室实验一 空气定压比热的测定一、实验目的比热是理想气体十分重要的热力性质。

气体定压比热的测定是工程热力学的基本实验之一。

实验中涉及温度、压力、热量(电功)、流量等基本量的测量。

本实验将通过流通量热法使学生掌握测定空气平均定压质量比热的基本方法,以加深对比热理论的理解,增强热物性实验研究方面的感性认识,促进理论联系实际,培养分析问题和解决问题的能力。

二、实验原理让空气连续而稳定地(即所谓稳定流动)流经一个特制的加热器,在加热器中空气被加热,温度升高,比容变大,流速加快,而压力只有一小部分消耗在摩阻上,当流动阻力相对工质压力而言很小时,若加热器入口压力恒定,则我们就可以近似地认为空气是定压流动。

当空气流速和温度都达到稳定后,若加热器对外热损失很小而忽略不计,则加热器内热源的放热全部被空气吸收(注意:必须是当达到稳定流动时才如此,因为温度等不稳定,说明有一部分热量储存在加热器本体内)。

此热平衡关系可用下式表示:)(1221t t mc Q tt p -=式中:t 1、t 2 —加热器入、出口空气温度,℃;m —空气的质量流量,kg/s ;21tt p c —空气在t 1、t 2范围内的平均定压质量比热,J/(kg·K);Q —加热器内热源单位时间内的放热,W 。

如上所述21tt p c 待求,而Q 、t 1、t 2、m 大小均可在实验中测出,方法如下:1.t 1、t 2大小由温度计直接读得。

2.111RT V p m =,式中T 1、p 1为加热器入口空气温度T 1=t 1+273.15和绝对压力p 1=p g +p b (Pa ),p g 和p b 大小由U 型管压力计和大气压力计读得(注意单位的统一)。

空气的容积流量V (m 3/s )大小由流量计上直接读取(m 3/h )(注意单位的换算)。

3.本实验用的是电加热器,电热源是一只电热丝,因而其放热量Q=IU(W)。

工程热力学实验指导书

工程热力学实验指导书

工程热力学实验指导书目录实验课注意事项 (3)有关从事实验的基础知识 (4)实验—二氧化碳p—v—T关系测定实验 (7)实验二可视性饱和蒸汽压力和温度关系实验 (13)实验三喷管实验 (16)实验四气体定压比热测定实验 (16)实验注意事项1、实践的观点是辩证唯物的认识之第一的基本的观点。

所以对待实验课必须严肃认真。

课前先做预习,明确目的要求。

课内亲自动手,留心观察现象,准确测取数据,及时分析问题,实验结束后,根据材料,进行科学的分析及综合,做出有材料,有观点,有分析,有讨论的精简扼要的实验报告。

2、爱护国家财产,珍惜实验设备,动手操作前先弄清仪器设备的使用方法,不要不懂装懂,乱行启动,以致损坏设备,造成损失,影响教学,非本次实验用的仪器设备,一律不准使用。

3、认真执行的原则,在保证实验质量的前题下,努力降低水电等物质的消耗额。

4、遵守下列安全规定,做好安全工作。

(1)进入实验室后,要严肃认真,不得追逐嬉笑。

(2)不要赤足或穿拖鞋进入实验室,以防触电。

有关从事实验的基础知识一、从事科学实验的基本态度实验人员首先要具有一种最基本的态度即实事求是的态度。

我们这里所说的“实事求是”就是要把实验中所观测到的现象、数据、规律忠实地记录下来,把它们当作第一手的材料来对待,科学推理以实验观测为依据,科学理论要用实验观测来检验,因此记录下来的应该是实际观测到的情况,而不能在任何理由下加以编造,修改或歪曲。

例如某个参数根据理论计算其值应该是100,而在实验中测到只是20的值记录下来,然后再去找原因,而不能用任何其他数字来搪塞。

实验中直接观测到的现象和数字,当然也可能不够准确,也可能有错误,但是某次实验数据不可靠也只能用反复多次的实验来核对,不能够“与书本已有的陈述不符”或“与依据某种理论的计算结果不符”就来修改记录或取消某次记录,对待实验观察必须严肃认真,决不能随便记录某个数字。

二、有关从事实验的基础知识(一)、实验课和重要性实验课在帮助同学们学好本课程的主要内容方面,在培养同学运用理论和实践相结合的方面及独立地从事科学实验的能力方面有极为重要的意义。

(教材)工程热力学实验指导书

(教材)工程热力学实验指导书

内容简介本书主要是工程热力学实验,分2章。

第一章介绍具体的工程热力学实验,对每个实验,着重于阐明其实验原理、实验装置、实验操作方法和实验数据处理等内容。

每一实验均附有思考问题,以帮助读者进一步分析实验中的问题。

第二章是测量误差与数据处理,介绍了误差分析及数据处理方面的知识和方法。

本书可供高等院校动力类相关专业的本科生或研究生使用,亦可供有关教师、实验技术人员在编写工程热力学实验指导书、安排热力学实验时参考。

工程热力学实验教程是依据《工程热力学》本科生课程的教学大纲编写的。

它可供开设实验课、编写实验指导书的教师参考,亦可作为高等院校本科生、研究生的实验参考用书,也可供有关工程技术人员参考。

本实验教程以工程热力学实验为主,并据此编写了测量误差与数据处理。

书中每一项实验的内容着重于阐明她的基本原理、实验装置结构系统、基本测试方法、数据整理以及某些技术问题等。

每项实验都附有思考问题,以期使读者能进一步分析实验中的一些问题。

本书由朱强编写。

在本书编写过程中,得到了汪健生教授许多有意义的指导,在此表示衷心的感谢。

此外,感谢为本书提供各种资料和帮助的其他专家教授们以及参与修改和校对工作的人员。

在编写过程中,参考了国内外一些教材和文献的内容,在此一并致谢!由于受时间和作者水平的限制,书中难免疏漏和错误,可能还存在许多不尽如人意的地方,恳请读者们批评指正!以后将更加努力的学习和工作,以使本书的修订趋于完善。

第一章工程热力学实验1.1饱和蒸汽p-T关系曲线测量实验 (1)1.2CO2临界现象观测及p-v-t关系测定实验 (6)1.3绝热节流效应的测定实验 (15)1.4 喷管中气体流动实验 (22)1.5 压气机性能实验 (31)第二章测量误差与数据处理2.1 误差 (40)2.2 测量不确定度 (44)2.3 实验数据处理方法 (45)第一章工程热力学实验1.1饱和蒸汽p-T关系曲线测量实验一、实验目的1、通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而树立液体温度达到对应于液面压力的饱和温度时,沸腾便会发生的基本概念。

工程热力学第章 压气机热力过程

工程热力学第章 压气机热力过程

工程热力学第章压气机热力过程压气机简介压气机是一种能够将气体压缩到一定压力的机械设备,以提高气体的密度,降低气体体积,增加气体的能量密度。

压气机广泛应用于工业、航空、航天、能源等领域,其热力过程是压气机运行过程中最为关键和复杂的部分之一。

压气机的热力过程是指在压气机运行过程中所涉及的热力学性质和过程,包括压缩过程、加热过程、冷却过程等。

这些过程对于压气机的工作效率、能量损失等方面均有重要影响,因此对于研究和了解压气机的热力过程具有十分重要的意义。

压缩过程及其热力学特性压气机的压缩过程是指将气体从低压缩到高压的过程,这个过程中,气体被压缩,气体能量被转换为压缩机的机械能。

在压缩过程中,混合气体中的温度也会相应地上升,因此需要进行冷却和加热来控制温度。

在压缩过程中,气体的压力和温度随着时间的推移而变化,可以用热力学基本公式进行分析。

对于多级压缩机系统,每一级的压缩过程都会产生一定的温度升高和熵增,因此需要进行冷却,以避免温度升高过快和热损失。

加热过程及其热力学特性压气机的加热过程是指在压缩过程中,由于气体被压缩,使得气体的温度升高,这个过程中,需要将气体冷却至温度不致过高。

在加热过程中,气体通过加热流程,将气体热量转换为机械能。

在压缩过程中,加热的温度也是相对较高的,它需要在多级压缩机系统中进行非常复杂和严密的控制。

在实际的生产和应用中,可以通过改变加热温度、空气流量等多个参数来控制加热过程。

冷却过程及其热力学特性冷却是压缩机系统中非常重要的一个环节,它可以有效降低气体的温度,提高压缩机效率。

一般情况下,采用多级压缩机系统,同时进行冷却和加热的过程。

冷却的过程可以通过多种方式来实现,比如自然冷却、水冷却、空气冷却等。

其中空气冷却是一种比较常见的方式,它可以通过强制通风等方式来实现,从而将气体的温度降低到合理水平。

,压气机的热力过程是压缩机系统中非常重要的一部分,它涉及到气体的压缩、加热和冷却等多个方面,同时需要进行严密的控制和协调,以达到最佳的效果和效率。

工程热力学实验指导书

工程热力学实验指导书

工程热力学实验指导书土木工程学院2009年5月19日目录一、气体定压比热测量实验 (3)二、二氧化碳临界状态观测及P-V-T关系测定实验 (6)实验一气体定压比热测量实验一、实验目的和要求1、了解气体比热测定装置的基本设备与测量原理。

2、熟悉本实验中的温度测量、压力测量、热量测量、流量测量的方法。

3、掌握由基本数据计算出比热值和求得比热公式的方法。

4、分析本实验产生误差的原因及减小误差的可能途径。

二、实验装置和原理实验装置由风机、流量计、比热仪主体、电功率调节及测量系统等四部分组成,如图1所示,比热仪主体如图2所示。

流后流出。

在此过程中,分别测定:室温;空气在流量计进口处的干、湿球温度(t 1,t 1w );气体经比热仪主体的出口温度(t 2);每流过10L 空气所需的时间(τ);电热器的输入功率(W );以及实验时相应的大气压(B )和流量计出口处的表压(Δh )。

有了这些数据,并查用相应的物性参数,即可计算出被测气体的定压比热(c pm )。

气体的流量由调节阀控制,气体出口温度由输入电热器的功率来调节。

本比热仪可测300℃以下的定压比热。

三、实验内容开启风机,调节流量,使它保持在额定值附近。

调节电热器的输入功率,根据测得的室温;空气在流量计进口处的干、湿球温度(t 1,t 1w );气体经比热仪主体的出口温度(t 2);每流过10L 空气所需的时间(τ);电热器的输入功率(W );以及实验时相应的大气压(B )和流量计出口处的表压(Δh )等数据,并查用相应的物性参数,计算出被测气体的定压比热(c pm )。

四、实验步骤和数据处理1、接通电源及测量仪表,将U 型管(测量压力)安装好,将出口温度计插入混流网的凹槽中。

2、开动风机,旋转调节阀,读出每10L 空气通过流量计所需时间(τ,秒),使流量保持在额定值附近。

3、调节电热器功率至某值[可以根据下式预先估计所需电功率:τt W ∆≈12,式中:W为电热器输入电功率(W );Δt 为进出口温度差(℃)——可假设从25℃加热到200℃,取n 个间隔,预估出Δt ];τ为每流过10L 空气所需的时间(s )],连续加热进入设备的空气,记录加热后的出口温度。

工程热力学实验指导书(三个实验)

工程热力学实验指导书(三个实验)

工程热力学课程实验指导书兰州理工大学2006年6月实验1空气定压比热测定实验指导书一、实验目的1.掌握气体比定压热容的测量原理及其操作方法;2.掌握本实验中测温、测压、测热、测流量的方法;3.掌握由基本数据计算比热值的方法;4.分析实验产生误差的原因及减小误差的可能途径。

二、实验装置如图1.1所示,本实验装置由风机、流量计、比热仪主体、调压器和功率表等组成。

实验时,被测空气由风机经流量计送入比热仪主体,经加热、均流、旋流、混流后流出。

比热仪主体构造如图1.2所示,由多层杜瓦瓶、电热器、均流阀、绝缘垫、旋流片、混流网、出口温度计等组成。

气体的流量由节流阀调节,比热仪出口温度由电加热器输入功率来控制。

比热仪可测200℃以下气体的定压比热。

图1.1 比热仪全套装置图1.2 比热仪主体三、实验原理根据气体平均定压比热定义,当气体在定压加热过程中温度由t1升到t2时,其平均定压比热可以由下式确定:21,21|()ptp m tmQcq t t=-J/(kg.℃)式中:Q p-湿空气在定压加热过程中的吸热量J/sq m-湿空气的质量流量kg/s湿空气是干空气和水蒸气的混合物,当湿空气中水蒸气含量较少,分压力较低时,水蒸气可以当作理想气体处理。

显然,当已知湿空气中水蒸气的吸热量Q v时,干空气的定压比热可由下式确定:21,,21|()p v t pm a t m a Q Q c q t t -=- J /(kg.℃)式中: Q p -湿空气在定压加热过程中的吸热量 J /s Q v -水蒸气的吸热量 J /s q m ,a -干空气的质量流量 kg /s由1t 加热到2t 的平均定压比热则可表示为:()212112,212t t t p m t a bt dt t t ca bt t ++==+-⎰ 若以(t 1+t 2)/2为横坐标,21,t p mt c 为纵坐标,如图3所示,则可根据不同温度范围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式。

工程热力学——实验指导书样本

工程热力学——实验指导书样本

《工程热力学》课程实验指导书实验一空气绝热指数测定一、实验目的1、测定空气的绝热指数K和空气的比热C P和G2、熟悉以绝热膨胀、定容加热基本热力过程为工作原理的测定绝热指数实验方法;3、演示刚性容器充放气过程的热过程现象二、实验装置及原理空气绝热指数测定装置如图所示,利用气囊往有机玻璃容器内充气,经过U 型压力计测出容器内压力P i,压力稳定后,突然打开阀门5并迅速关闭。

在此过程中,空气绝热膨胀,在U型压力计上显示出膨胀后容器内的空气压力P2;然后,持续一小时左右,使容器中的空气与实验环境的空气进行热交换,最后达到平衡,即容器中的空气温度与环境温度相等。

此时,U型压力计显示出温度平衡后容器中空气压力P3三、实验方法与步骤1、测试前的准备1) 将阀门5 的锥形塞拔出, 抹上一些真空油, 以改进阀门的密封性能。

抹油后安装就位并拧紧。

2) 在阀门5开放的情况下( 即容器与大气相通) , 用医用注射器将蒸馏水注入U型压力计120〜150mn左右的水柱高。

水柱内应不含气泡。

如有气泡,应设法排除。

3) 调整装置的水平位置,使U型压力计两水管中的水柱高在一个水平线上。

2、测试步骤1) 记录U 型空压计初始读数h0。

2) 关闭阀门5, 把容器拧紧。

3) 用气囊往有机玻璃容器内缓慢充气,容器内的压力由U型压力计的水柱差显示。

此时的压差150〜200mn水柱为宜。

待压力稳定后,记录下此时的压差值厶h。

4) 突然打开阀门5并迅速关闭。

空气绝热膨胀后,在U型管内显示出膨胀后容器的气压。

记录此时的压差值△ h2.5) 持续1〜2小时后, 待容器内空气的温度与测试现场的大气温度一致时, 记下此时容器内空气压力的压力差△ h a6) 一般要求重复三次测试, 取其测试结果的平均值。

四、实验注意事项1 、气囊往往要漏气, 充气后必须用夹子将胶皮管夹紧。

2、在测试过程, 测试现场的温度要求保持基本恒定。

不然, 很难测出可靠的数据。

工程热力学——实验指导书

工程热力学——实验指导书

《工程热力学》课程实验指导书实验一空气绝热指数测定一、实验目的1、测定空气的绝热指数K和空气的比热C p和C V2、熟悉以绝热膨胀、定容加热基本热力过程为工作原理的测定绝热指数实验方法;3、演示刚性容器充放气过程的热过程现象二、实验装置及原理空气绝热指数测定装置如图所示,利用气囊往有机玻璃容器内充气,通过U型压力计测出容器内压力P1,压力稳定后,突然打开阀门5并迅速关闭。

在此过程中,空气绝热膨胀,在U型压力计上显示出膨胀后容器内的空气压力P2;然后,持续一小时左右,使容器中的空气与实验环境的空气进行热交换,最后达到平衡,即容器中的空气温度与环境温度相等。

此时,U型压力计显示出温度平衡后容器中空气压力P3。

三、实验方法与步骤1、测试前的准备1)将阀门5的锥形塞拔出,抹上一些真空油,以改善阀门的密封性能。

抹油后安装就位并拧紧。

2)在阀门5开放的情况下(即容器与大气相通),用医用注射器将蒸馏水注入U型压力计120~150mm左右的水柱高。

水柱内应不含气泡。

如有气泡,应设法排除。

3)调整装置的水平位置,使U型压力计两水管中的水柱高在一个水平线上。

2、测试步骤1)记录U型空压计初始读数h0。

2)关闭阀门5,把容器拧紧。

3)用气囊往有机玻璃容器内缓慢充气,容器内的压力由U型压力计的水柱差显示。

此时的压差150~200mm水柱为宜。

待压力稳定后,记录下此时的压差值△h。

4)突然打开阀门5并迅速关闭。

空气绝热膨胀后,在U型管内显示出膨胀后容器的气压。

记录此时的压差值△h2.5)持续1~2小时后,待容器内空气的温度与测试现场的大气温度一致时,记下此时容器内空气压力的压力差△h36)一般要求重复三次测试,取其测试结果的平均值。

四、实验注意事项1、气囊往往要漏气,充气后必须用夹子将胶皮管夹紧。

2、在测试过程,测试现场的温度要求保持基本恒定。

不然,很难测出可靠的数据。

五、实验报告及要求1、按照原始数据求出k值。

2、分析影响测试结果的因素。

《工程热力学》第八章--压气机的压气过程

《工程热力学》第八章--压气机的压气过程

5
三种压气方式能量转换比较: (WS)C,S >(WS)C,n(WS)C,T
P P2 b
2T 2n 2S
T
2S p2
2n
p1
2T
P1 a
1
1
V
(WS)C,S=P-V图面积1-2s-b-a-1
=T-S图面积1-2s-2T-c-e-1
c
d eS
(WS)C,n=P-V图面积1-2n-b-a-1 =T-S图面积1-2n-2T-c-e-1
T 2T T1
3、压气机耗功计算与比较
(wt )c.s
k
k 1
R g T1 1
(
p2 p1
) ( k 1) / k
( wt ) c.n
n n 1
R g T1 1
(
p2 p1
)
(n
1)
/
n
( w ) 2021/4/9 t c .T
R g T1
ln
v2 v1
R g T1 ln
p2 p1
(W2021S/4)/9C,T=P-V图面积1-2T-b-a-1 =T-S图面积1-2T-c-e-1 6
ξ7.2 活塞式压气机的压气过程(针对单 级活塞压气机压缩过程而言)
一、概述:压气机压气过程特点简介
概念:最大容积V1;余隙容积V3;工作容积VH 二、.压气机轴功计算
三、容积效率ηv 1、定义:有效吸气容积与汽缸工作容积之比表明压
2021/4/9
10
ξ7.4 压气机效率
一、衡量压气机不可逆程度---- 压气机效率 二、绝热压缩过程压气机效率 三、采用级间冷却的定温压缩过程压气机效率计

2021/4/9

第二篇 工程热力学实验指导书

第二篇  工程热力学实验指导书

第二篇工程热力学实验指导书实验一二氧化碳临界状态观测及p-v-t关系测定实验一、实验目的1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。

2、加深对课堂所讲工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。

3、掌握CO2的p-υ-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。

4、学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。

二、实验内容1、测定CO2的p-υ-t关系。

在p-υ坐标图中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线(见图三)及理论计算值相比较,分析差异原因。

2、测定CO2在低于临界温度时(t=20℃,25℃)饱和温度与饱和压力之间的对应关系并与图四中绘出的t s=p s曲线比较。

3、观测临界状态(1)临界状态附近汽液两相模糊的现象。

(2)汽液整体相变现象(3)测定CO2的t c、p c、υc等临界参数,并将实验所得的υc值与理想气体状态方程和范德瓦尔斯方程的理论值相比较,简述其差异原因。

三、仪器设备1、实验所用设备及仪表有实验台本体及其防护罩,恒温器,压力台等三大部分组成。

如图3-1所示。

2、实验台本体如图3-2所示.图3-1 CO 2实验台系统图 1-实验台本体;2-活塞式压力计; 3-恒温器图3-2 实验台本体示意图1-高压容器;2-玻璃杯;3-压力油;4-水银;5-密封填料;6-填料压盖7-恒温水套;8-承压玻璃管;9-二氧化碳空间; 10-温度计四、所需耗材液压油。

五、实验原理、方法和手段1.当简单可压缩热力系统处于平衡状态时,状态参数压力p 、温度t 和比体积v 之间存在一定的函数关系,有:(,,)F p v t p = (3-1)或者 (,)t f p v = (3-2)当温度维持不变时,测定与不同压力所对应的比体积数值,从而可获得等温线的数据。

1873年范德瓦尔对理想气体状态方程作了相应修正,提出下列实际气体状态方程:RT b v v aP =-+))((2 (3-3) 或者 =p b v T R --2va(3-4)式中,a 与b 是各种气体所特有的,数值为正的常数,称为范德瓦尔常数。

工程热力学燃气轮机循环中压气机的性能参数计算

工程热力学燃气轮机循环中压气机的性能参数计算

工程热力学燃气轮机循环中压气机的性能参
数计算
燃气轮机作为一种广泛使用的发电设备,通过燃烧燃气产生高温高压气体来驱动涡轮,并最终将动能转化为机械能。

其中,压气机作为燃气轮机的核心部件之一,负责将空气压缩到高压以供进一步燃烧,并直接影响燃气轮机的性能。

为了准确计算压气机的性能参数,我们首先需要确定以下几个关键参数:
1. 引入一些基本假设:
a) 压气机为等熵压缩过程,即输入质量流率不变且没有传热和传质;
b) 空气为理想气体,遵循理想气体状态方程;
c) 假设进口空气温度、进口静压和进口静温已知;
d) 忽略机械损失和内部流动效应。

2. 确定压气机的输入参数:
a) 进口空气温度 T_1;
b) 进口静压 P_1;
c) 进口静温 T_1.
3. 根据等墒压缩过程,利用理想气体状态方程可以得到压气机的输出参数:
a) 压气机出口压力 P_2;
b) 压气机出口温度 T_2.
4. 利用能量平衡方程来计算压气机的压缩功;
a) 由于忽略了机械损失和内部流动效应,压气机的压缩功可以近似为输入总焓减去输出总焓。

5. 计算压气机的绝热效率:
a) 利用绝热效率的定义,即实际压缩功与等熵压缩功之比,可以得到压气机的绝热效率。

综上所述,通过以上步骤,可以得到燃气轮机循环中以压气机为核心部件的性能参数计算。

需要注意的是,实际工程中可能还需要考虑其他因素对性能参数的影响,并进行相应修正。

本文以工程热力学燃气轮机循环中压气机的性能参数计算为标题,按照合同的格式进行撰写。

以上就是对于该题目的详细讨论与计算过程,希望对你有所帮助。

《工程热力学》试验指导书

《工程热力学》试验指导书

《工程热力学》实验指导书赵文彬实验一 气体定压比热容测定实验一、实验目的1、了解气体比热测定装置的基本原理和构思。

2、熟悉实验中测温、测压、测热、测流量的方法。

3、掌握由基本数据计算出比热值和比热公式的方法。

4、分析本实验产生误差的原因及减小误差的可能途径。

二、实验原理引用热力学第一定律解析式,对可逆过程有:pdv du q +=δ 和 vdp dh q -=δ 定压时0=dppp T h dT vdp dh dT q c ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=δ 此式直接由p c 的定义导出,故适用于一切工质。

在没有对外界作功的气体的等压流动过程中:p Q mdh δ1=则气体的定压比热容可以表示为:()1221t t m Q c p t t pm-=kJ/kg •℃式中:m ——气体的质量流量,kg/s ;p Q ——气体在等压流动过程中的吸热量,kJ/s 。

由于气体的实际定压比热是随温度的升高而增大,它是温度的复杂函数。

实验表明,理想气体的比热与温度之间的函数关系甚为复杂,但总可表达为:+++=2et bt a c p式中a 、b 、e 等是与气体性质有关的常数。

在离开室温不很远的温度范围内,空气的定压比热容与温度的关系可近似认为是线形的,假定在0-300℃之间,空气真实定压比热与温度之间进似地有线性关系:bt a c p +=则温度由1t 至2t 的过程中所需要的热量可表示为:()dt bt a q t t ⎰+=21由1t 加热到2t 的平均定压比热容则可表示为:()221122121t t ba t t dtbt a ct t t t pm ++=-+=⎰ 若以(t 1+t 2)/2为横坐标,21t t pmc 为纵坐标(如下图所示),则可根据不同温度范围的平均比热确定截距a 和斜率b,从而得出比热随温度变化的计算式bt a +。

大气是含有水蒸气的湿空气。

当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式下式计算:()dt t m Q t t w w ⎰+=210001172.0844.1式中:w m ——气流中水蒸气质量,kg/s 。

压气机性能实验

压气机性能实验

YQJ-V型活塞式压气机性能实验台实验指导书压气机在工程上应用广泛,种类繁多,但其工作原理都是消耗机械能(或电能)而获得压缩气体。

压气机的压缩指数和容积效率是衡量起性能优劣的重要参数。

因此压气机性能实验是《工程热力学》课程教学的重要组成部分,通过该实验能加深学生对工程热力学理论的理解,使学生更好的学好这门工程基础课。

本活塞式压缩机性能实验台,采用传感器技术,在微机控制下采集处理数据,绘制压缩机的示功图,并据此进行压缩机性能指标的计算和热力过程的分析,以加深对压缩机热力学原理的理解,提高运用微机对实验压缩机进行性能分析的能力。

本实验台技术先进,适用于生产厂家的产品质量检验和教学科研的需要。

一、实验目的1. 了解活塞式压气机的工作原理及构造,理解压气机的几个性能参数的意义。

2. 熟悉用微机测定压气机工作过程的方法,采集并显示压气机的示功图。

3. 根据测定结果,确定压气机的耗功W C、耗功率P、多变压缩指数n、容积效率ηv等性能参数,或用面积仪测出示功图的有关面积并用直尺量出有关线段的长度,也可得出压气机的上述性能参数。

二、实验原理压气机的工作过程可以用示功图表示,示功图反映的就是气缸中的气体压力随体积变化的情况。

本实验的核心就是用现代测试技术测定实际压气机的示功图。

实验中采用压力传感器测试气缸中的压力,用接近开关确定压气机活塞的位置。

当实验系统正常运行后,接近开关产生一个脉冲信号,数据采集板在该脉冲信号的激励下,以预定的频率采集压力信号,下一个脉冲信号产生时,计算机中断压力信号的采集并将采集数据存盘。

显然,接近开关两次脉冲信号之间的时间间隔刚好对应活塞在气缸中往返运行一次(一个周期),这期间压气机完成了膨胀、吸气、压缩及排气四个过程。

实验测量得到压气机示功图后,根据工程热力学原理,可进一步确定压气机的多边指数和容积效率等参数。

另外,通过调节储气罐上的节气阀的开度,以改变压气机排气压力实现变工况测量。

工程热力学(压气机)

工程热力学(压气机)

1
RgT1
p2 p1
1
多变过程:
n1
wc,n
n
n
1
RgT1
p2 p1
n
1
等温过程:
wc,T
RgT1 ln
p2 p1
1
T2s
T1
p2 p1
n1
T2n
T1
p2 p1
n
T2T T1
工程热力学 Thermodynamics
叶轮式压气机的耗功计算
wC
h2
理想气体
1.4 1
1)
429.1 kJ/kg
工程热力学 Thermodynamics
因 T1 T2 T3 ,且各级压缩比相等,故各级压气机排气温度相等
p
T2
T3
T4
T1
1
1.41
293 4 1.4
435 K
(2) 单级压气机的排气温度
κ1
T5
T1
p5 p1
κ
O
0.4
293
6.304 106 98.5 103
一、概述
工程热力学 Thermodynamics
工程热力学 Thermodynamics
二、耗功计算
理想气体
wC h2 h1 cp (T2 T1)
1
T2
T1
p2 p1
理想气体
wC h2 h1 cp (T2 T1)
T2 T2 ,C,s
h2 h2 ,C,s
C,s
wC wC
-
Rgln
p2 ) p1
T
2
471.5
2
6 (1.004ln 0.287ln4) 0.336 ( kW K )

工程热力学实验指导书[1]上交稿

工程热力学实验指导书[1]上交稿

“热工学基础”实验指导书天津大学机械工程学院编著二零一零年十二月前言热工学基础实验包括:“工程热力学”和“传热学”两部分实验内容,共有9个基础实验。

实验教学的目的是验证巩固和补充课堂讲授的理论知识,通过实验使学生初步掌握热能有效利用以及热能和其他能量转换规律的基本知识,以及热量传递的基本规律。

使学生能正确运用热力学的基本原理进行热工和热力循环的分析;培养学生运用所学的理论解决实际问题的能力以及对实验结果进行综合分析并撰写实验报告的能力,通过实验使学生能辨识热工设备、学会热工仪器仪表的使用方法。

《热工学基础实验指导书》是根据高等教育自学测试课程“热工学基础”实践教学大纲的教学计划编写的。

在编写过程中参考了《热工实验基础》(1986年高等教育出版社)、《工程热力学实验指导书》、《传热学实验指导书》(1996年工程热物理教研室、热工实验室编著)及教材《热工基础和使用》(机械工业出版社2009年第二版),并结合热工实验室的实际设备,吸收了多年来实验室设备的改进和科研工作的成果而编著的。

根据学生在实验过程中的表现及实验报告的质量对学生进行考核。

考核内容包括实验前预习、实验过程、实验方法和步骤以及实验结果的数据处理、分析等内容,进行综合考核。

本指导书由郑宗和、刘靖主持编整。

目录实验1 热电偶温度计的刻度和校验 (4)实验2 压力表校验 (8)附录1 压力表的常见故障机器发生原因和排除方法 (11)实验3 二氧化碳气体P-V-T关系的测定 (12)实验4 喷管中气体流动基本特性试验 (16).实验5 压气机性能试验 (23).实验6 蒸汽压缩制冷(热泵)装置性能实验 (27)..实验7 用球体法测量导热系数实验 (31)实验8 空气横掠单管强迫对流换热系数测定实验 (34)附录2 空气横掠单管强迫对流换热系数测定实验的简要说明 (39)实验9 套管式换热器性能测试试验 (40)实验1 热电偶温度计的刻度和校验温度是热力学中一个基本状态参数,在各种热工实验中都离不开温度。

工程热力学实验指导书

工程热力学实验指导书

《工程热力学》实验指导书工程热物理教研室编华北电力大学(北京)二 00六年十月前言1.实验总体目标通过实验能更好地理解工程热力学的一些现象和结论。

学习一些实验仪器的使用方法。

学习实验数据的处理方法。

⒉适用专业热能与动力工程、建筑环境与设备工程、核科学与核工程⒊先修课程高等数学、大学物理⒋实验课时分配⒌实验环境实验室环境干净整洁,水电齐全,能够满足实验的要求。

在醒目的地方有实验原理的说明,便于教师讲解和学生熟悉实验的步骤。

⒍实验总体要求通过实验能够帮助学生更好地理解工程热力学的一些基本原理。

指导教师要提前做好准备,提高实验的效率。

学生要提前预习实验的内容和要求(特别是注意事项),以免发生危险和损坏实验设备。

按指导教师的要求书写实验报告,及时上交。

⒎本实验的重点、难点及教案方法建议本实验的重点是气体定压比热容实验、二氧化碳压缩综合实验和喷管实验,这三个实验都是综合性实验,涉及到水浴的使用,真空泵的使用,表压力及真空度和绝对压力的关系,等等,需要大家对工程热力学的基本内容有清楚的了解。

难点是在临界温度下定温压缩二氧化碳时不好把握,绘出来的图和理想压缩有较大的差别,另外,如何通过间接方法求出二氧化碳的比体积也有一些技巧。

教案方法:学生提前预习,做实验之前老师提问;学生仔细观察指导教师的演示;实验室对学生开放,一次没有做成功,或者想更好地掌握实验技巧的学生,可以跟指导教师预约时间另做。

目录实验一、气体定压比热容实验 (3)实验二二氧化碳综合实验 (8)实验三喷管特性实验 (14)…实验一气体定压比热容实验一、实验目的1.了解气体比热容测定装置的基本原理和构思。

2.熟悉本实验中测温、测压、测热、测流量的方法。

3.掌握由基本数据计算出比热值和比热公式的方法。

4.分析本实验产生误差的原因及减小误差的可能途径。

二、实验类型综合性实验三、实验仪器实验所用的设备和仪器仪表由风机、流量计、比热仪本体、电工率调节测量系统共四部分组成,实验装置系统如图1-1所示。

工程热力学实验指导书

工程热力学实验指导书

实验一 CO2临界状态观察及P-T-V关系测定实验一、实验目的1.了解CO2临界状态的观测方法,增加对临界状态概念的感性认识;2.加深对课堂所讲的工质的热力状态、凝结、汽化、饱和状态等基本概念的理解;3.掌握CO2的P-T-V关系的测定方法学会用实际气体状态变化规律方法和技巧;4.学会活塞式压力计、恒温器等部分热工仪器的正确方法。

二、实验设备及原理1.整个实验装备由压力台,恒温器和试验本体及其防护罩三大部分组成,如图1-1所示;2.试验台本体如图1-2所示。

3.对简单可压热力系统,当工质处于平衡状态时,其状态参数p、υ、t之间有:F(p,υ,t)=0或t = f(p,υ)(1-1) 本试验就是根据(1-1),采用定温方法来测定CO2 p-υ之间的关系。

从而找出CO2的p-υ-t关系。

4.实验中由压力台送来的压力油进入高压容器和玻璃杯上半部,迫使水银进入预先装了CO2的承压玻璃管。

CO2被压缩,其压力和容积通过压力台上的活塞螺杆的进,退调节,温度由恒温器供给的水套里的水温来调节。

5.实验工质二氧化碳的压力由装压力台的压力表读出(如要提高精度可由加在活塞转盘上的砝码读出,并考虑水银柱高度的修正)。

温度由插在恒温水套中的温度计读出。

比容首先由承压玻璃管内的二氧化碳柱的高度来度量,而后这根据承压玻璃管内径均匀、截面积不变等条件换算得出。

三、实验步骤(一)使用恒温器调定温度1.将蒸馏水注入恒温器内,注至30~50mm为止。

检查并接通电路,开动电动泵,使水循环对流。

2.旋转点接点温度计顶端的帽形磁铁调动凸轮示标使凸上端面与所要调定的温度一致,要将帽形磁铁用横向螺钉锁紧,以防转动。

3.视水温情况,开、关加热器,当水温未达到调定的温度时,恒温器指示灯是亮的,当指示灯时亮时灭闪动时,说明温度已达到所需恒温。

4.观察玻璃水套上两支温度计,若其读数相同且与恒温器上的温度计及点接点温度计标定的温度一致时(或基本一致)则可(近似)认为承压玻璃管内的CO2的温度处于所标定的温度。

压气机性能实验 实验指导书

压气机性能实验 实验指导书

《压气机性能实验》实验指导书发动机燃烧实验室2006年3月压气机性能实验1 实验目的1) 掌握轴流压气机内部流动、加功增压原理和特性;2) 熟悉压气机气动参数测量和计算方法。

2 实验基本原理在单级轴流压气机试验台上改变压气机工作状态,测量气流通过压气机级的流量以及压力和温度变化,然后根据测得参数计算得出单级轴流压气机典型特性曲线。

通过对特性曲线的分析,掌握轴流压气机内部流动、加功增压原理。

3 实验内容1) 压气机设计状态和近失速状态转子进出口和静子出口气流参数及转子进出口速度三角形;2) 额定折合转速下的压气机特性曲线。

4 实验设备实验装置:单级压气机实验台。

一排动叶和一排静叶组成的单级轴流压气机,压气机进口流场均匀,空气流量可微调。

气流通道外径500mm ,内径375mm (轮毂比0.75),通道平直,可改变叶片安装角和动静叶排间轴向间隙。

额定转速2400转/分。

计算机控制数据采集处理,可测气流参数:空气流量,动叶进口、动静叶排间和静叶出口三个截面上外壁气流静压和气流总压、静压、速度及偏角沿叶高分布,级温升,流量测量精度1%,压升(或压比)测量精度1%,效率测量精度3%。

气动参数和几何参数详见附图。

仪器设备:压力信号引出管路,压力信号处理箱,压力测量探针,温度测量探针,数据采集板,计算机,大气压力表,温度计。

5 具体实验步骤1. 了解实验台构造和测试仪器功能;2. 读取实验时大气压力和大气温度;3. 根据当时的大气温度0T ,算出换算转速2400转/分时的实际转速,启动后平缓加速到该转速;15.28824000T n ⋅=转/分; 4. 改变压气机工作状态,记录进出口压力、温度参数,包括流量管静压00p (表压);转子进口、转子出口和静子出口截面外壁气流静压1s p (表压)和3s p (表压);转子进口总温1t T 和静子出口与转子进口总温差t T ∆;5. 计算得出压比和效率同流量的关系;6. 记录设计状态压气机进出口流动参数,包括静压、总压,绘出速度三角形;6 实验准备及预习要求回忆叶轮机原理相关知识、消化实验内容。

工程热力学8压气机热力过程

工程热力学8压气机热力过程

有余隙容积压缩机示功图
压缩1kg 气体所消耗的功为: Wc,n
Wc,n m'
n
n 1
p1v1
1
(
p2 p1
)
n1 n
无余隙容积时,压缩1kg 气体所消耗的功为

Wc,n '
n n 1
p1v1 1 (
p2 p1
)
n1 n
有余隙容积和无余隙容积时,压缩1kg 气体所消耗的功是相同的
p
3
2
解 单级多变压缩时排气温度为
T3
T1
(
p3 p1
)
n 1 n
290(
二、容积效率
余隙容积 clearance volume
产生原因: 布置进、排气结构 制造公差 部件热膨胀
1、有余隙容积存在时,对 Wc 的影响
Wc,n Wt,12 Wt,34
p
3
2
4
1
V
Vc
Vh V1-V4
有余隙容积压缩机示功图
n n 1
p1V11
(
p2 p1
)
n1 n

n
n
1
p4V4 1
第二节 单级活塞式压气机所消耗的机械功和容积效率
2
技术功
wt
1
vdp
压气机所需的功Wc,在 数值上等于压缩过程的
技术功。
2
WC p1V1 1 pdV p2V2
2
1 Vdp Wt
示功图 p-V 图所包围的面积表示压气机的耗功,可 以看出定温压缩耗功最少,排温最低,而绝热压缩所消耗 的机械功最大,排温最高。因此对压气机应加强冷却,不 仅减少耗功,而且保证润滑条件。

工程热力学实验指导书

工程热力学实验指导书

《工程热力学》实验指导书喷管特性实验一、实验目的1、验证并进一步加深对喷管中气流基本规律的理解,树立临界压力、临界流速和最大流量等喷管临界参数的概念;2、比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法;3、明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。

二、实验装置喷管实验台1.进气管2.空气吸气口3.孔板流量计4.U形管压差计5.喷管6.支架7.测压探压针8.可移动真空表9.手轮螺杆机构 10.背压真空表 11.背压用调节阀12.真空罐13.软管接头渐缩喷管三、实验原理1、喷管中气流的基本规律cdcM A dA )1(2-= , 来流速度 1<M ,喷管为渐缩喷管)0(<dA . 2、气流动的临界概念当某一截面的流速达到当地音速(亦称临界速度)时,该截面上的压力称为临界压力(c p )。

临界压力与喷管初压(1p )之比称为临界压力比,有:1p p c=γ 当渐缩喷管出口处气流速度达到音速,通过喷管的气体流量便达到了最大值(ma x m ),或称为临界流量。

可由下式确定:1112minmax 1212νp k k k A m k ∙⎪⎭⎫⎝⎛++=-式中:min A —最小截面积(本实验台的最小截面积为:19.625 mm 2)。

3、气体在喷管中的流动渐缩喷管因受几何条件)0(<dA 的限制,气体流速只能等于或低于音速(a C ≤);出口截面的压力只能高于或等于临界压力(c p p ≥2);通过喷管的流量只能等于或小于最大流量(max m )。

根据不同的背压(b p ), 渐缩喷管可分为三种工况: A —亚临界工况(c b p p >),此时m<max m , c b p p p >=2 B —临界工况(c b p p =),此时 m=max m , c b p p p ==2 C —超临界工况(c b p p <),此时 m max m >, b c p p p >=2四、操作步骤1、用“坐标校准器”调好“位移坐标板”的基准位置;2、打开罐前的调节阀,将真空泵的飞轮盘车一至二圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、实验步骤:
①接通所用测试仪器设备的电源,调试应变仪,启动压气机计算机采集处理系统;
②用计算机采集测试初始压力p0;
③启动压气机。待工作稳定后,由计算机采集处理数据,然后由绘图仪绘制示功图;
④在示功图上用测面仪测量:示功图包围的面积、压缩过程线与横坐标包围的面积、压缩过程线与纵坐标包围的面积;
⑤在示功图上用尺子测量:反映有效吸气线段 的长度、反映活塞行程线段 的长度;
3、平均多变指数(n0):
压气机的实际压缩过程介于定温压缩与定熵压缩之间,过程指数在压缩过程中不断变化,根据压气机的理论轴功和气体压缩功的关系,可求得平均的多变指数(n0):
在P-v图上为压缩过程线与纵坐标围成的面积同压缩过程线与横坐标围成的面积之比,即:
4、容积效率(ηc)
由热力学定义有:
在(P-v)示功图上,即为有效吸气线段长度与活塞行程线长度之比,即:
图1压气机实验系统
1-压气机2-压力传感器3-飞-排气阀8-储气罐
压气机型号:Z-0.03/7
汽缸直径:D=50mm,活塞行程L=20mm
连杆长度:H=70mm,转速:n=1400转/分
为了获得反映压气机性能的示功图,故在汽缸头安装了一个应变式压力传感器,供实验时输出瞬态压力信号。该信号经桥式整流后送至动态应变仪放大;对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄转角信号的同步。这二路信号经放大器分别放大后送入A/D板转换为数字量,然后送入计算机,经计算机处理便得到了压气机工作过程中的有关数据及展开示功图。
(kgf-m)
式中:
S—由测面仪测定的面积(mm2);
K1—单位长度代表的容积(mm3/mm);
式中:
L—活塞行程(mm);
—活塞行程的线段长度(mm)。
K2—单位长度代表的压力(at/mm)。
式中:
p—工作时的表压力(at);
—表压力在纵坐标上对气体所做的功(Ni),可用下式表示:
(KW)
式中:
n—转速(转/分)。
六、数据处理:
①计算指示功Li;
②计算平均多变指数n0;
③计算容积效率ηc。
七、思考题:
①试根据测绘出的示功图,分析该压气机的工作是否正常。
②分析各项效率随压力变化的趋势,及改善压气机性能的主要途径。
③如何设法测得压气机余隙容积。
根据动力学公式,活塞位移量x与曲柄转角α有如下关系:
式中:
α—曲柄转角;
λ—曲柄连杆长度比。
式中:
R—曲柄半径;
H—连杆长度。
2、指示功(Li)和指示功率:
指示功——压气机进行一个工作过程,活塞对气体所做的功,记作Li。显然其功量就是P-v图上过程线所包围的面积。即:
(kgf-m)
该面积可用面积仪测得,不过在使用P-v图时应注意:其纵坐标是以线段长度表示压力值,而横坐标则表示活塞的位移量(x)、故所测的面积都需要经过换算才能得到功的数值,其具体换算如下:
⑥在示功图上用尺子测量:压气机初始压力p0、排气压力pb;
⑦关闭所用测试仪器设备的电源,结束实验。
五、实验数据:
表 1 空气压缩机实验设备规范
序号
名 称
规范
序号
名 称
规范
1
型号
5
活塞直径(mm)
2
生产量(m3/min)
6
额定转速(r/min)
3
最高工作压力(bar)
7
额定功率(kw)
4
活塞行程(mm)
《工程热力学》实验:
压气机性能实验
一、实验目的:
1、了解压气机结构和工作原理;
2、掌握指示功、压缩指数和容积效率的基本测试方法;
3、对使用微机采集、处理数据的全过程和方法有所了解。
二、实验设备:
DF-18型制冷系统实验台
三、实验原理:
1、实验装置及测量系统:
本实验装置主要由压气机和与之配套的电动机以及测试系统组成。测试系统包括压力传感器、动态应变仪、放大器、A/D板、微机、绘图仪及打印机,详见图1所示。
相关文档
最新文档