混凝土结构基本原理第9章
混凝土结构设计原理课件(按新规范GB50010-2010编写)第9章变形和裂缝
3、第二批裂缝出现的瞬间
A C B Ncr< N3<Nq
混凝土c 钢筋s 粘结应力 l
砼实际强度
>2l
l
注:l为通过 粘结应力 的 积累可使砼达 到ft 的长度。
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
4、第二批裂缝出现后(裂缝已出齐)
A C B
Ncr < N3 <N4 < Nq
νi —纵筋的相对粘结特性系数,
普通钢筋中的光面钢筋νi=0.7, 带肋钢筋νi=1.0; 详见: 《规范》GB50010表7.1.2-2
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
As te Ate
Ate—有效受拉混凝土截面面积。 对轴拉构件,取构件截面面积; 对受弯、偏压和偏拉构件,见下图:
1、C-裂缝宽度、变形等的限值。
见P422附表1-15、 P423附表1-16 。
S C
附表1-15 最大裂缝宽度的限值(mm)
环境 类别 一 二a 钢筋混凝土结构 裂缝控制 wlim 等级 0.30(0.4) 三级 预应力混凝土结构 裂缝控制 wlim 等级 0.20 三级 0.10
二b 三a 三b
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
第9章 混凝土构件的裂缝宽度、变形 验算与耐久性设计 本章主要内容
9.1 概 述
9.2 裂缝宽度验算
9.3 变形验算
9.4 混凝土结构的耐久性
混凝土结构设计原理(第2版)配套课件,邵永健主编,北京大学出版社2013年8月出版
第9章 混凝土构件的变形、裂缝宽度验算与耐久性设计
推得
wm cy s lcr cy
sq
混凝土结构基本原理答案吕晓寅版第9章
58.9 × 106 463 × (615
+
402)
=
143.8������/������������2
������ = 1.1 − 0.65 ������������������ = 1.1 − 0.65 × 2.01 = 0.6533 > 0.2且������ < 1.0
������������������������������������
(������������
+
������������ ������������ )������02
=
1 8
×
(5
+
0.5
×
10)
×
5.22
=
33.8������������
•Leabharlann ������(2)C30 混凝土 ������������������ = 2.01������/������������2 ������������ = 3.0 × 104������/������������2 HRB335 级钢筋 ������������ = 2.0 × 105������/������������2
)
143.8
14.727
= 1.9 × 0.6533 × 2.0 × 105 (1.9 × 30 + 0.08 0.02034)
= 0.102566������������ < ������������������������ = 0.3������������
2.受均布荷载作用的简支梁,计算跨度������0 = 5.2������。永久荷载(包括自重在 内)标准荷载值������������ = 5������������/������,楼面活荷载的标准值������������ = 10������������/������,准永久值
中南大学混凝土结构设计基本原理课后答案总结
混凝土结构设计原理第一章 钢筋混凝土的力学性能1、 钢和硬钢的应力—应变曲线有什么不同,其抗拉设计值fy 各取曲线上何处的应力值作为依据?答:软钢即有明显屈服点的钢筋,其应力—应变曲线上有明显的屈服点,应取屈服强度作为钢筋抗拉设计值fy 的依据。
硬钢即没有明显屈服点的钢筋,其应力—应变曲线上无明显的屈服点,应取残余应变为0.2%时所对应的应力σ0.2作为钢筋抗拉设计值fy 的依据。
2、 钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。
冷加工的方法有冷拉、冷拔、冷弯、冷轧、冷轧扭加工等。
这几种方法对钢筋的强度都有一定的提高,4、 试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土黏结良好;(3)可焊性好;(4)有足够的塑性。
5、 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?用什么符号表示? 答:我国用于钢筋混凝土结构的钢筋有4种:热轧钢筋、钢铰丝、消除预应力钢丝、热处理钢筋。
我国的热轧钢筋分为HPB235、HRB335、HRB400和RRB400三个等级,即I 、II 、III 三个等级,符号分别为 ( R) 。
6、 除凝土立方体抗压强度外,为什么还有轴心抗压强度?答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。
所以除立方体抗压强度外,还有轴心抗压强度。
7、 混凝土的抗拉强度是如何测试的?答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。
由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。
8、 什么是混凝土的弹性模量、割线模量和切线模量?弹性模量与割线模量有什么关系?答:混凝土棱柱体受压时,过应力—应变曲线原点O 作一切线,其斜率称为混凝土的弹性模量,以E C 表示。
混凝土设计原理 邵永健第9章思考题与习题答案
−
0.65 ×1.78 0.01×196.1
=
⎧> 0.51⎩⎨<
0.2 1.0
(6)计算最大裂缝宽度 wmax cs=c=20mm,且 cs <65mmห้องสมุดไป่ตู้带肋钢筋 ν =1.0 则:deq=d/ν=12mm
wmax
= αcrψ
σ sq Es
(1.9cs
+ 0.08 deq ρ te
)
= 1.9 × 0.51× 196.1 (1.9 × 20 + 0.08 × 12 )
截面尺寸 b×h=350mm×900mm,Mk=400kN·m,Mq=355kN·m,C30 混凝土,采用 HRB335
钢筋,受拉钢筋为 4 25( As =1964mm2),受压钢筋为 4 14( As ' =615mm2),箍筋直径 dv
=8mm,构件允许挠度为 l0/300,试验算构件的挠度是否满足要求。 解: (1)确定基本参数 查附表 1-1、附表 1-9 得:C30 混凝土 ftk =2.01N/mm2,HRB335 钢筋 Es =2×105N/mm2 查附表 1-13 得:一类环境 c=20mm h0=h-c-dv-d/2=900-20-8-12.5=859.5mm (2)计算有效配筋率 ρte
矩形截面:γf'=0 短期刚度:
Bs
=
1.15ψ
Es As h02 + 0.2 +
6α E ρ
=
1.15
×
2.0 ×105 × 942 0.51 + 0.2 + 6 ×
× 2242 7.14 × 0.0042
1 + 3.5γ 'f
混凝土结构设计基本原理_最全选择题判断题名词解释简答题计算题归纳大全
第1章 钢筋和混凝土的力学性能1.混凝土立方体试块的尺寸越大,强度越高。
( )2.混凝土在三向压力作用下的强度可以提高。
( )3.普通热轧钢筋受压时的屈服强度与受拉时基本相同。
( )4.钢筋经冷拉后,强度和塑性均可提高。
( )5.冷拉钢筋不宜用作受压钢筋。
( )6.C20表示f cu =20N/mm 。
( )7.混凝土受压破坏是由于内部微裂缝扩展的结果。
( )8.混凝土抗拉强度随着混凝土强度等级提高而增大。
( )9.混凝土在剪应力和法向应力双向作用下,抗剪强度随拉应力的增大而增大。
( )10.混凝土受拉时的弹性模量与受压时相同。
( )11.线性徐变是指压应力较小时,徐变与应力成正比,而非线性徐变是指混凝土应力较大时,徐变增长与应力不成正比。
( )12.混凝土强度等级愈高,胶结力也愈大( )13.混凝土收缩、徐变与时间有关,且互相影响。
( )第3章 轴心受力构件承载力1. 轴心受压构件纵向受压钢筋配置越多越好。
( )2. 轴心受压构件中的箍筋应作成封闭式的。
( )3. 实际工程中没有真正的轴心受压构件。
( )4. 轴心受压构件的长细比越大,稳定系数值越高。
( )5. 轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2/400mm N 。
( )6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。
( )第7章 偏心受力构件承载力1.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。
( )2.轴向压力的存在对于偏心受压构件的斜截面抗剪能力是有提高的,但是不是无限制的。
( )3.小偏心受压情况下,随着N 的增加,正截面受弯承载力随之减小。
( )4.对称配筋时,如果截面尺寸和形状相同,混凝土强度等级和钢筋级别也相同,但配筋数量不同,则在界限破坏时,它们的u N 是相同的。
( )5.钢筋混凝土大偏压构件的破坏特征是远侧钢筋受拉屈服,随后近侧钢筋受压屈服,混凝土也压碎。
混凝土结构原理第9章正常使用极限状态验算课件
对于弹性均质材料截面,EI为常数,M- 关系为直线。
钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
由于混凝土开裂、 M
弹塑性应力-应变关
EcI0
系和钢筋屈服等影
响,钢筋混凝土适
My
筋梁的M- 关系不
Ms
再是直线,而是随
弯矩增大,截面曲
Mcr
Bs
率呈曲线变化。
9.3.1 截面弯曲刚度的概念及定义
9.2.3 平均裂缝宽度
裂缝宽度是指受拉钢筋截面重心水平处构件侧表面的裂缝 宽度。裂缝宽度的离散性比裂缝间距更大些。
平均裂缝宽度计算式 平均裂缝宽度wm等于构件裂缝区段内钢筋的平均伸长与相
应水平处构件侧表面混凝土平均伸长的差值。
9.2.3 平均裂缝宽度
wm
e smlm
e
l ctm m
e
sm
(1
偏心受压构件:
s sq
Nq (e h0 ) h0 As
0.87 0.12 1 f
h0 2 e
9.2.4 最大裂缝宽度及其验算
确定最大裂缝宽度的方法
最大裂缝宽度由平均裂缝宽度乘以“扩大系数”得到。 “扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力
则受弯构件的挠度为
f
S (M k
M
q
)l
2 0
S M ql02 q
Bs
Bs
上式仅用刚度B表达时,
f
S
M
k
l
2 0
B
令以上两式相等可得刚度B为,
B
Mk
M q (q 1) M k
Bs
混凝土结构基本原理课后答案(主编:梁兴文)
《混凝土结构基本原理》习题参考答案第4章 受弯构件正截面的性能与设计4.1 k 19.4kN/m q =4.2 20s 60040560mm, 875mm h A =-==,220 +118(s A =882mm 2) 4.3 20s 1000370mm, 177mm h A =-==, φ6@150(s =189mm 2/m )4.4 HRB400, C30,b × h = 200mm×500mm ,s A =450mm 2,314(s A =462mm 2)4.5 20s 450mm, 45040410mm, 915mm h h A ==-==20s 500mm, 50040460mm, 755mm h h A ==-== 20s 550mm, 55040510mm, 664mm h h A ==-==随梁截面高度增加,受拉钢筋面积减小。
4.6 20s 200mm, 50040460mm, 925mm b h A ==-==20s 250mm, 50040460mm, 709mm b h A ==-== 20s 300mm, 50040460mm, 578mm h h A ==-==随梁截面宽度增加,受拉钢筋面积减小。
4.7 20s C20, 50040460mm, 981mm h A =-==20s C25, 50040460mm, 925mm h A =-== 20s C30, 50040460mm, 895mm h A =-==随梁截面宽度增加,受拉钢筋面积减小。
4.8 20s HRB400, 50040460mm, 925mm h A =-==20s HRB500, 50040460mm, 765mm h A =-==随受拉钢筋强度增加,受拉钢筋面积减小。
4.9 (1)u 122.501M =kN·m(2)u 128.777M =kN·m (3)u 131.126M =kN·m (4)u 131.126M =kN·m4.10 s 45mm a =,2s 878mm A =,选配320(2s 942mm A =)4.11 's s 40mm a a ==,2s 1104mm A =,选配220+218(2s 1137mm A =)4.12 (1)u 121.882M =kN·m(2)u 214.169M =kN·m4.13 (1)2s 822mm A =,选配220+218(2s 1137mm A =)(2)2s 2167mm A =,选配622(2s 2281mm A =)4.14 s 60mm a =,2s 2178mm A =,选配622(2s 2281mm A =)第5章 受压构件5.1 2c 16.7N/mm f =,2y 410N/mm f '=,取400mm b =,400mm h =,2s 2718mm A '=,选配822。
混凝土结构原理第9章 正常使用极限状态验算
wm a cy
s sq
Es
l m 0.85 y
s sq
Es
lm
9.2.3
平均裂缝宽度
裂缝截面处的钢筋应力ssk
ssk是指按荷载效应的标准组合计算的混凝土构件裂缝截面处
纵向受力钢筋的应力.
受弯构件:
s sq
Mq
轴心受拉构件: s sq
0.87 As h0 Nq As
偏心受拉构件: s sq
cs——最外层纵向受拉钢筋外边缘到受拉区底边的距离(mm), 当c<20mm时,取c=20mm; d——钢筋直径(mm),当用不同直径的钢筋时,d改用换算直 径4As/u,u为纵向钢筋的总周长。
9.2.3
平均裂缝宽度
裂缝宽度是指受拉钢筋截面重心水平处构件侧表面的裂缝 宽度。裂缝宽度的离散性比裂缝间距更大些。 平均裂缝宽度计算式 平均裂缝宽度wm等于构件裂缝区段内钢筋的平均伸长与相 应水平处构件侧表面混凝土平均伸长的差值。
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es
1) 在裂缝出现前,应变均匀分布。 2) 即将出现裂缝的状态Ⅰa阶段。 3)当达到极限拉应变e0ct后,出现第一条(批)裂缝。 4) 裂缝出现瞬间,混凝土应力降低为零,而钢筋的拉力突然增 加,由ss,cr增至ss1。 5)裂缝出现后,混凝土向裂缝两侧回缩,但非自由,受到钢筋 的约束。混凝土与钢筋之间有相对滑移,产生粘结应力t。达 到l后,粘结应力消失,混凝土中又重新建立起拉应力sct。
第9章钢筋混凝土构件的变形、裂缝及混凝土结构的耐久性
§9.1 钢筋混凝土受弯构件的挠度验算 9.1.0 问题的提出 1.挠度验算的要求:满足公式( 22),即荷载产生的挠度应小于 1.挠度验算的要求:满足公式(9-22),即荷载产生的挠度应小于 挠度验算的要求 ), 或等于规定的挠度(限值); 或等于规定的挠度(限值); 2.试验结果发现: 2.试验结果发现:钢筋混凝土受弯构件的实际挠度大于按材料力学 试验结果发现 计算出的挠度; 计算出的挠度; 3.理论和试验指出: 3.理论和试验指出:钢筋混凝土受弯构件的实际截面刚度比弹性刚 理论和试验指出 度减小; 度减小; 4.若仍然应用材料力学的公式形式计算实际挠度, 4.若仍然应用材料力学的公式形式计算实际挠度,则应对弹性刚度 若仍然应用材料力学的公式形式计算实际挠度 加以修正; 加以修正; 5.基于以上原因,构件的挠度计算转化为对其刚度的计算。 5.基于以上原因,构件的挠度计算转化为对其刚度的计算。 基于以上原因
5
受弯构件(长期) 9.1.4 受弯构件(长期)刚度 B 1.荷载长期作用下刚度降低的原因: 1.荷载长期作用下刚度降低的原因:徐变 荷载长期作用下刚度降低的原因 2.(长期) 按公式( 20)计算, 2.(长期)刚度 B 按公式(9-20)计算,其实质是将短期刚度 修正(折减)后得到的。 修正(折减)后得到的。 9.1.5 最小刚度原则与挠度计算 1.问题的提出: 1.问题的提出: 问题的提出 (1)前述刚度是指梁纯弯段的平均刚度的计算方法,工程设计计 前述刚度是指梁纯弯段的平均刚度的计算方法, 算时如何使用此方法值得讨论。 算时如何使用此方法值得讨论。 (2)前述刚度未考虑靠近支座处刚度减小的幅度(若仅考虑弯矩) 前述刚度未考虑靠近支座处刚度减小的幅度(若仅考虑弯矩) 要小些和剪切变形的影响(将减小刚度)。 要小些和剪切变形的影响(将减小刚度)。
第9章肋形结构及刚架结构
V k3G k4Q
9.2 单向板肋形结构按弹性方法的计算
二、连续梁板的内力包络图
1.可变荷载的最不利布置 连续梁可变荷载最不利布置的原则:
(1) 求某跨跨内最大正弯矩时,应 在本跨布置活荷载,然后隔跨布置
(2)求某跨跨内最大负弯矩时,本 跨不布置活荷载,而在其邻跨布置, 然后隔跨布置;
二、塑性内力重分布板
2. 考虑塑性内力重分布的意义 (1) 内力计算方法与截面设计方法相协调; (2) 可以适当地调整截面的内力分布情况,更合适地布置钢筋
按弹性方法设计时,连续梁的支座M通常都比较大,由此 进行截面设计导致支座钢筋比较拥挤,施工不便。
按塑性方法设计时,可适当降低支座的弯矩设计值,允许 梁在支座处出现塑性铰,适当增大跨中弯矩。 3. 影响塑性内力重分布的因素 ①塑性铰的转动能力;②斜截面承载能力;③正常使用条 件 截面要有合适的受压区高度;构件必须要有足够的受剪承 载力。
一、结构平面布置 主梁沿纵向布置、次梁横向布置,适用于横向柱距比纵
向柱距大得多的情况。其优点是:减小了主梁的截面高度, 增加了室内净高,
只布置次梁,不布置主梁仅适用于有中间走道的砌体 墙承重的混合结构房屋。
一、结构平面布置
在满足使用要求的基础上,结 构布置应尽量做到经济和技术上的 合理。如果梁布置得比较稀,施工 时可省模板和省工,但板的跨度却 加大了,板厚也随之增加,主梁的 受力也不太合理。如果梁布置得比 较密,可使板的跨度减小,板厚减 薄,结构自重减轻,但施工时要费 模板和费工。
二、塑性内力重分布
1.塑性内力重分布的概念 对于超静定结构,当结构的某个截面出现塑性铰后,结构
的内力分布发生了变化,经历了一个重新分布的过程,这个 过程成为“塑性内力重分布”。
混凝土结构基本原理课后答案(主编:梁兴文)
《混凝土结构基本原理》习题参考答案第4章 受弯构件正截面的性能与设计4.1 k 19.4kN/m q =4.2 20s 60040560mm, 875mm h A =-==,220 +118(s A =882mm 2)4.3 20s 1000370mm, 177mm h A =-==, φ6@150(s A =189mm 2/m )4.4 HRB400, C30,b × h = 200mm×500mm,s A =450mm 2,314(s A =462mm 2)4.5 20s 450mm, 45040410mm, 915mm h h A ==-==20s 500mm, 50040460mm, 755mm h h A ==-== 20s 550mm, 55040510mm, 664mm h h A ==-==随梁截面高度增加,受拉钢筋面积减小。
4.6 20s 200mm, 50040460mm, 925mm b h A ==-==20s 250mm, 50040460mm, 709mm b h A ==-== 20s 300mm, 50040460mm, 578mm h h A ==-==随梁截面宽度增加,受拉钢筋面积减小。
4.7 20s C20, 50040460mm, 981mm h A =-==20s C25, 50040460mm, 925mm h A =-== 20s C30, 50040460mm, 895mm h A =-==随梁截面宽度增加,受拉钢筋面积减小。
4.8 20s HRB400, 50040460mm, 925mm h A =-==20s HRB500, 50040460mm, 765mm h A =-==随受拉钢筋强度增加,受拉钢筋面积减小。
4.9 (1)u 122.501M =kN·m(2)u 128.777M =kN·m (3)u 131.126M =kN·m (4)u 131.126M =kN·m4.10 s 45mm a =,2s 878mm A =,选配320(2s 942mm A =)4.11 's s 40mm a a ==,2s 1104mm A =,选配220+218(2s 1137mm A =)4.12 (1)u 121.882M =kN·m(2)u 214.169M =kN·m4.13 (1)2s 822mm A =,选配220+218(2s 1137mm A =)(2)2s 2167mm A =,选配622(2s 2281mm A =)4.14 s 60mm a =,2s 2178mm A =,选配622(2s 2281mm A =)第5章 受压构件5.1 2c 16.7N/mm f =,2y 410N/mm f '=,取400mm b =,400mm h =,2s 2718mm A '=,选配822。
第九章:钢筋混凝土构件的裂缝和变形
MK 2 f =S l ––– 钢筋混凝土梁的挠度计算 B
的要求。 (3)满足公式: f<[f] 的要求。 满足公式:
混凝土结构设计原理
第9章
八.对受弯构件挠度验算的讨论
1.由计算公式可知:截面有效高度的影响最大; 1.由计算公式可知:截面有效高度的影响最大; 由计算公式可知 2.配筋率对承载力和挠度的影响:在适筋范围内, 2.配筋率对承载力和挠度的影响:在适筋范围内,提高配筋 配筋率对承载力和挠度的影响 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大, 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大,挠度 跨高比 越小;可选择适当的跨高比,可控制挠度; 越小;可选择适当的跨高比,可控制挠度; 减小挠度措施: 减小挠度措施: 提高刚度的有效措施 h0↑ 或As↑ 增加ρ'
gk+qk A Bmin Bmin(a) (b) Mlmax gk+qk B M Bmin (a) BBmin B1min
+
(b)
混凝土结构设计原理
第9章
七. 挠度计算步骤
(1)根据最小刚度原则确定所求刚度; 根据最小刚度原则确定所求刚度;
Mk B = M q ( θ − 1) + M
Bs
k
(2)代入材料力学公式计算挠度; 代入材料力学公式计算挠度;
混凝土结构设计原理
第9章
裂缝宽度和变形的验算表达式如下: 裂缝宽度和变形的验算表达式如下: 的验算表达式如下
主 页
SK≤RK 式中: 式中:
…9-1 目 录
SK —— 结构构件按荷载效应的标准组合、准永久 结构构件按荷载效应的标准组合、 组合或标准组合并考虑长期作用影响得到的裂缝宽 组合或标准组合并考虑长期作用影响得到的裂缝宽 上一章 度或变形值; 度或变形值;
2钢筋混凝土构件裂缝和变形计算
• 采用小直径筋、变形筋,分散布置;(提高粘结力) • 在普通钢筋混凝土梁中,不使用高强钢筋; • 构造措施:
避免外形突变;(减少应力集中) 配纵向水平钢筋;(控制腹板收缩裂缝) 纵向主筋在支座处加强锚固。
第
混凝土结构设计原理 九章源自施工方面:• 控制水灰比,振捣密实,提高混凝土密实度; • 加强养护; • 严格控制混凝土配合比,不加有害早强剂; •正确控制混凝土保护层厚度。
第
混凝土结构设计原理 九
章
➢平均裂缝宽度的计算公式:
如果把混凝土 的性质加以理想化, Ncr+DN 1 理论上裂缝分布应
2
1
(a)
Ncr+DN
为等间距分布,而 且也几乎是同时发
Ns 1
<ftk 2
(b)
3
Ns
生的。此后荷载的 增加只是裂缝宽度 sss 加大而不再产生新 的裂缝。
(c)
ssm
(d) (e)
使用方面:
• 定期对梁体裂缝检查; • 注意梁体所处环境的变化,注意防锈。
第
混凝土结构设计原理 九
章
§9. 3 受弯构件的刚度和挠度计算
一般混凝土构件对变形有一定的要求,主要基于以下4个方 面的考虑:
1、保证结构的使用功能要求。结构构件产生过大的变形将影 响甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度过 大,将难以使仪器保持水平;屋面结构挠度过大会造成积水而产 生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆的正常运行 等。
cm ——与纵向受拉钢筋相同水平处侧表面混凝土
的平均拉应变;
第
混凝土结构设计原理 九
章
l cr ——平均裂缝间距;
《结构设计原理》_第三版第9章_钢筋混凝土受弯构件应力、裂缝和变形计算
若 x h f,表 明 为 第 一 类 T 形 截 面 , 可 按 宽 度 为 b f的 矩 形 截 面 计 算 若 x h f,表 明 为 第 二 类 T 形 截 面 , 重 新 计 算 x
9.3 应力计算
求Icr (公式不一样) 求截面应力(方法同上) 应力计算结果:当施工阶段应力验算不满足时,应该 调整施工方法,或者补充、调整某些钢筋。
Ⅰ类和Ⅱ类环境:0.2mm Ⅲ类和Ⅳ类环境:0.15mm
9.4 裂缝宽度计算——裂缝控制目的
1、保证使用功能的要求 结构构件的变形较大时,会严重影响甚至丧失它的使用功 能。如桥梁上部结构过大的挠曲变形使桥面形成凹凸的波 浪形,影响车辆行驶,严重时将导致桥面结构的破坏。 2、满足观瞻和使用者的心理要求 构件的变形过大,还引起使用者明显的不安全感。 3、避免对其他结构构件的不利影响 构件的变形过大,会影响到与它连接的其他勾结也发生过 大变形,有时甚至会改变荷载的传递路线、大小和性质。
9 钢筋砼受弯构件的应力、裂缝和变形计算
裂缝与钢筋的腐蚀
结构构件 的可靠性
9.1 概述
安全性 适用性 耐久性
具有足够的承载力和变形 能力
在使用荷载下不产生过大 的裂缝和变形
在一定时期内维持其安全 性和适用性的能力
本章的主要内容
9.1 概述
一、两种极限状态的区别 l 承载能力极限状态计算: 讨论构件在各种不同受力状态下的承载力计算,
9.1 概述——正常使用阶段的特点
3、荷载效应及抗力的取值不同 正常使用极限状态: 汽车荷载应可不计冲击系数,作用(或荷载)效应应 取用短期效应和长期效应的一种或几种组合。 短期效应组合就是永久作用(结构自重)标准值与可 变作用频遇值效应的组合;长期效应组合则为永久作用标 准值与可变作用准永久值效应的组合
混凝土结构设计原理 课件及试题9
第九章 预应力混凝土构件本章的意义和内容:本章讲述了预应力混凝土的基本知识、预应力混凝土构件设计的一般规定、预应力混凝土轴心受拉构件的应力分析、预应力混凝土轴心受拉构件的计算和验算、预应力混凝土受弯构件的应力分析与设计计算以及预应力混凝土的构造要求。
通过本章的学习,使学生对预应力混凝土有全面的了解,并使学生掌握了以下的重点、难点:1. 预应力混凝土构件的工作原理,预应力混凝土改善了普通混凝土构件抗裂性差、刚度小、变形大、不能充分利用高强材料、适用范围受到限制的缺陷,可以运用到有防水、抗渗要求的特殊环境及大跨、重荷载结构。
2. 施加预应力的方法:先张法、后张法。
先张法是靠预应力钢筋和混凝土粘结力传递预应力的,在构件端部有预应力传递长度;后张法是依靠锚具传递预应力的,端部处于局压的应力状态。
3. 张拉控制应力con σ的取值。
con σ的大小对预应力混凝土构件非常重要,取值过高对构件安全有影响,过低预应力效果不好,因此张拉控制应力的取值应适当。
4. 与普通混凝土构件不同,预应力混凝土应采用高强钢筋和高强混凝土,对使用的锚具要求及施工要求比普通混凝土构件要更高。
5. 各项预应力损失的原因,损失的分析、计算方法以和减少各项损失的措施,以及先张法、后张法各有哪些损失,第一批和第二批损失是哪些组合。
6. 预应力混凝土轴心受拉构件,从施加预应力到施加荷载构件破坏经历了六个特殊阶段,各个阶段混凝土、钢筋的应力、应变情况,先张法和后张法有何相同点和不同点。
7. 预应力混凝土构件在外荷载作用后的使用阶段,两种极限状态的计算与普通混凝土构件类似,为了保证施工阶段构件的安全性,应进行相关的验算。
对后张法构件还应计算端部的局压承载力。
预应力混凝土受弯构件除了同普通混凝土受弯构件要进行使用阶段的承载能力计算(正截面、斜截面)、使用阶段的抗裂验算、使用阶段的变形验算,还要进行施工阶段的强度及抗裂验算。
一、概 念 题(一)填空题1.先张法构件的预应力总损失至少应取 ,后张法构件的预应力总损失至少应取 。
混凝土设计原理第9章作业题解答复习进程
混凝土结构设计原理作业题第9章 正常使用极限状态验算及耐久性设计 说明:题目9-1~9-6选作3道,题目9-8必做。
9-1(基本题目) 已知在教学楼楼盖中一矩形截面简支梁,截面尺寸mm mm h b 500200⨯=⨯,配置4根直径16mm 的HRB400级受力钢筋,混凝土强度等级为C30级,保护层厚度mm c 25=,箍筋直径8mm ,m l 6.50=;承受均布荷载,其中永久荷载(包括自重在内)标准值m kN g k /4.12=,楼面活荷载标准值m kN q k /8=,楼面活荷载的准永久值系数5.0=q ψ。
要求:验算其挠度f 。
9-2(基本题目) 已知如图所示八孔空心板,混凝土强度等级为C30,配置9根直径6mm 的HRB300级受力钢筋,没有箍筋,保护层厚度mm c 15=,计算跨度m l 04.30=,承受荷载标准组合m kN M k ⋅=47.4,荷载准永久组合m kN M q ⋅=91.2,200/0lim l f =。
要求:验算其挠度是否满 足。
9-3(基本题目) 已知某屋架下弦按轴心受拉构件,截面尺寸为mm mm 160200⨯,保护层厚度mm c 25=,纵向受拉钢筋配置4根直径16mm 的HRB400级钢筋,箍筋直径6mm ,混凝土强度等级为C40,荷载效应准永久组合的轴向拉力mm w kN N q 2.0,142lim ==。
试验算最大裂缝宽度。
9-4(基本题目) 条件同题9-1,mm w 3.0lim =。
试验算最大裂缝宽度。
9-5(基本题目) 条件同题9-2,mm w 2.0lim =。
试验算最大裂缝宽度。
9-6(基本题目) 有一矩形截面的对称配筋偏压柱,截面尺寸mm mm h b 600350⨯=⨯。
计算长度m l 50=,受拉及受压钢筋均为4根直径20mm 的HRB335级钢筋,采用混凝土强度等级为C30,混凝土保护层厚度mm c 30=,箍筋直径10mm ;荷载效应准永久组合的kN N q 380=,m kN M q ⋅=160。
混凝土结构设计原理课件第九章
《规范》规定张拉控制应力限值[ con]为:
张拉控制应力限值[ con]
钢筋种类
张拉方法
先张法
后张法
预应力钢丝、钢绞线 热处理钢筋
0.75 fptk 0.70 fptk
0.75 fptk 0.65 fptk
为避免 con的取值过低,影响预应力筋充分发挥作用,《规 范》规定 con不应小于0.4 fptk。
pc
fcu
C+D
受拉区或受压区预应力钢筋在 各自合力作用点处混凝土的法 向压应力
高湿环境中可降低50%
干燥环境中应增加20~30%
受拉区或受压区各自预应力钢 筋和非预应力钢筋的配筋率
系数A、B、C、D参见教材中的相关规定
5
6.钢筋挤压混凝土损失 l6
采用螺旋式预应力筋作为配筋的环形构件, 由于预应力筋对混凝土的局部挤压使构件直径减 小所引起的损失。
l1 = 2
l con f
(µ rc
+
)(1
x) lf
lf =
aE p
1000
con
(
µ rc
+
)
(m)
(2)摩擦损失 l2
摩擦损失是指在后张法张拉钢筋时,由于预应力筋与 周围接触的混凝土或套管之间存在摩擦,引起预应力筋应 力随距张拉端距离的增加而逐渐减少的现象。
直线预应力筋
曲线预应力筋
(2)摩擦损失 l2
1
预应力混凝土结构
•预应力混凝土结构就是构件在承受外荷载之前,人为地预先通过 张拉钢筋对结构使用阶段产生拉应力的混凝土区域施加压力,构 件承受外荷载后,此项预压应力将抵消一部分或全部由外荷载所 引起的拉应力;从而推迟裂缝的出现和限制裂缝的开展。 •优点:
混凝土结构设计原理:第9章 正常使用极限状态验算及耐久性设计
为可变荷载组合系数。
ci
i=2
由于可变荷载达到其标准值Qk的作用时间较短,故Sk也称为短期效应, 其值约为作用效应设计值的50%~70%。
在荷载长期作用下,构件的变形和裂缝宽度随时间增长,需要考虑长期
荷载的影响,荷载效应的准永久组合为:
n
∑ Sq = SGk +
ψ qi SQik ,
ψ
为可变荷载准永久系数。
2
9.1 概述
第9章 正常使用极限状态验算及耐久性设计
结构设计的 功能要求
安全性
承载能力极限状态
适用性 耐久性
正常使用极限状态
n 正常使用极限状态的设计特点
p 可靠指标可适当降低 p 这种设计为验算而非计算 p 材料和荷载采用标准值或准永久值 p 考虑荷载的长期作用效应
变形 抗裂 裂缝宽度
3
9.1 概述
Mk
12
σ sm = ω 1σ s2
lm
εs
ψ
=
ω
1
σ σ
s2 sq
εctm εsm
εct
p 由2-2截面的平衡条件可得
Mq = Asσ s2η2h0 + Mct
σs2
=
Mq − Mct Asη2h0
ψ
=ω
1 (1 −
M ct Mq
)
ψ = 1.1(1− Mct ) Mq
22
9.3 裂缝宽度的计算
第9章 正常使用极限状态验算及耐久性设计
9.3.3 平均裂缝宽度
wm
= ε smlm
− ε cmlm
=
ε sm (1 −
ε ε
cm sm
)lm
令: αc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题
9-1冲切破坏的主要特点是什么?
答:破坏时,在板上、下表面的局部范围内存在环状的裂缝,环状裂缝内部的锥台状块体在荷载作用方向相对于其外围部分的板向板面外脱落(或有这样的趋势)。
9-2影响受冲切承载力的因素有哪些?
答:(1)混凝土强度;
(2)板的有效高度;
(3)荷载面积;
(4)尺寸效应;
(5)抗弯钢筋;
(6)边界条件。
9-3为什么设置柱帽和托板能提高板的受冲切承载力?
答:柱帽增加局部荷载的作用面积;托板增大冲切破坏区域的板的厚度,提高受冲切承载力。
9-4常用的抗冲切钢筋有哪些形式?
答:箍筋,弯起钢筋。
9-5局部受压破坏的机理是什么?
答:在局部受压面上纵向压应力的数值较大,经过一定长度的过渡区段后(这个过渡区段的长度约等于构件截面的宽度2b),纵向压应力在整个截面中变成均匀分布。
在端部的区段内,还存在横向应力。
在局部受压荷载的表面附近,横向应力为压应力,往下逐渐转为拉应力,且在(0.5-1.0)b处出现最大拉应力,再往下趋近于零。
构件局部受压端范围内的这种应力状态可以分为三个区域:荷载面积下的混凝土在竖向压应力作用下产生横向膨胀变形,受到周围混凝土的约束而处于三轴受压状态;周围混凝土则因受向外级压力而产生沿周边的水平拉应力,处于二轴或三轴拉压状态;在主应力轨迹线和水平拉应力范围内则为三轴拉压状态。
各区域的具体划分和应力值的大小主要取决于构件
截面面积和局部受压面积的比值,并因此决定了构件的局部受压破坏形态。
当
较小(一般小于9)时,劈裂破坏的特征较明显;当很大(一般大于36)时,
局部荷载下混凝土的陷落现象较明显。
9-6间接钢筋有哪些形式?对局部受压承载力有何影响?
答:方格网配筋、螺旋式配筋。
可提高局部受压承载力。
练习题
9-1板柱借点的情况同例9-1,但柱子的轴压力为N=600kN。
如果抗冲切钢筋分别采用配置箍筋和弯起钢筋两种方案,试确定所需的抗冲切钢筋面积各为多少,并画出配筋构造图。
解:根据题意得,
kN h b q N F l 3.593)2(20=+-=
mm h b u m 2300)(*40=+=
21400/400<==s β,取40,2==s s a β
261.12300*4175*405.0,0.122.14.021=+==+=ηη 0.1=∴η
当配置箍筋时,
s v u yv m t l A f h u f F 8.05.00+=η,取2/270mm N f yv =
2'26.3534,4.1414mm A A mm A svu svu svu ==
=∴ 取n=3,2'09.58)2*3/(,3.58/mm A mm n h svu ==
取箍筋为,50@10φ配筋图如下:
当配置弯起钢筋时,
αηs i n 8.05.00s b u
yv m t l A f h u f F +=,取︒==45,/3002αmm N f y ,2.1800
2mm A sbu =取211502*2*3,3mm A A n sbu sb ==∴=
∴取143φ,配筋如下:
9-2板柱借点的情况同例9-1,但柱子的轴压力为N=350kN 。
现在柱边开了一个200mm ×200mm 的洞口,见图9-25,试验算受冲切承载力是否满足。
练习题9-2图
解:
根据题意得,10502400,105060<=mm h
∴需要考虑开孔
∴kN F l 3.343)175.0*24.0(*123502
=+-=
考虑开孔影响后,mm u m 25.215675.1432300=-=
其余数据如9-1,
l m t lu F kN h u f F >==∴7.3777.00η
∴满足要求
9-3如图9-26所示的柱下单独基础,作用在基础顶面的轴力N=750kN ,弯矩M=100kN ·m ,剪力V=25kN 。
基础顶面在地下水位以上。
基础底面上部土体与基础的平均重度为20kN/。
基础采用C25级混凝土(
)。
基础在柱边的有效高度
,试验算基础高度是否满足要求?
练习题9-3图
解:
根据题意得,
作用于底面弯矩M 为: m kN M ⋅=+=5.1229.0*25100
kN N 8.51420*75.1*4.2*8.2750=-=
2
22m i n .m a x ,/5.37/7.1156/8.2*4.25.1224.2*8.28.514m kN m kN W M A N p p s s =±=±= 又∵22611900110260*2400mm A =-=
992.0)9.00.1(*800
20008009000.1,8.70m ax ,=----===∴h s l kN A p F β l m t h F kN h b f >=++=∴1003865*22*865450450*
27.1*992.0*7.07.00β ∴高度满足
9-4如图9-27所示,局部荷载作用在混凝土结构的不同位置,试对每种情况画出局部受压承载力计算底面积b A ,并计算局部受压承载力提高系数l β.
练习题9-4图
解:(a)414.1==l
b
l A A β
(b) 912
.1==l
b
l A A β (c) 449
.2==l
b
l A A β
(a )
(b )
(c ) 图9.1 局部受压计算简图。