指数函数题型汇总
指数函数的性质及常考题型(含解析)
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
4.2-指数函数 2025年高考数学知识点题型及考项复习
−
+
−1
+1
> , ≠ 的性质的研究
> 0, ≠ 1 .
(1)判断函数 的奇偶性;
【解析】易知函数 的定义域为,
因为 − =
− −1
− +1
=
− −1
− +1
定义域为,值域为[1,2],则下列说法中一定正确的是( BCD
A. = [0,2]
B. ⊆ (−∞, 1]
【解析】由于 = 22 − 2+1 + 2 = 2 − 1
C.0 ∈
2
)
D.1 ∈
+ 1 ∈ [1,2].当函数的最小值为1时,
仅有 = 0满足,所以0 ∈ ,故C正确;
当 = −0.5时,由图象观察可得
方法2 构造幂函数 = −0.5 =
2
又
3
<
3
2 −0.5
,所以
4
3
>
3 −0.5
.
4
3
1
>
2
3
3 −0.5
.
4
> 0 ,则该函数是减函数,
图4.2-10
(3)0.20.3 ,0.30.2 .
【解析】因为幂函数 = 0.2 在[0, +∞)上单调递增,且0.2 < 0.3,所以0.20.2 < 0.30.2 .
(2)0.2 < 25;
【答案】 > −
(3)−5 > +7 ( > 0,且 ≠ 1).
【答案】 < − 或 > −
指数函数题型学霸总结四(含答案)-
指数函数题型学霸总结四(含答案)阳光老师:祝你学业有成一、选择题(本大题共12小题,共60.0分)1.函数是指数函数,则有A. 或B.C. D. ,且【答案】C【解析】【分析】本题主要考查的是指数函数的概念,直接结合指数函数底数大于0且不等于1,前面系数为1,求解即可.【解答】解:由指数函数的概念,得,解得或当时,底数是1,不符合题意,舍去;当时,符合题意.故选C.2.若函数是指数函数,则a的取值范围是A. B. ,且C. D.【答案】B【解析】【试题解析】【分析】本题主要考查指数函数的定义,属于基础题.利用指数函数的定义中对底数的要求,列出不等式组,求解即得.【解答】解:因为函数是指数函数,得:,化简得故选B.3.有下列函数:;;;其中指数函数的个数是A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查指数函数的表达式和定义,属于基础题.根据指数函数的定义和表达式的要求即可得解.【解答】解:形如,且的函数称为指数函数,只有是指数函数.故选B.4.已知函数,若,则A. B. 0 C. D.【答案】C【解析】【试题解析】【分析】本题主要考查函数值的计算,属于基础题.发现是解题的关键.【解答】解:因为,所以,又,那么.故选C.5.下列各函数中是指数函数的是A. B. C. D.【答案】D【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易.根据指数函数的概念即可判断结果.【解答】解:根据指数函数的定义,且,可知只有D项正确,故选D.6.若函数在R上单调递减,则实数a的取值范围是A. B. C. D.【答案】C【解析】【分析】本题主要考查指数函数的单调性,属于基础题.根据指数函数的单调性,可知,解得实数a的取值范围.【解答】解:函数,在R上单调递减,则,解得,实数a的取值范围是.故选C.7.已知常数,函数经过点、,若,则a的值为A. 2B. 4C. 6D. 8【答案】B【解析】【分析】本题主要考察指数与指数幂的运算,考查运算求解能力,属于基础题.将p,q直接带入,计算即可求解得到答案.【解答】解:因为,,,,即,所以,所以,又因为,所以,又因为,所以,故选B.8.已知函数则A. 2B.C. 0D.【答案】B【解析】【分析】本题考查了函数定义域与值域、分段函数的相关知识,试题难度容易【解答】解:,.9.如图所示,面积为8的平行四边形OABC的对角线AC与BO交于点E,且若指数函数且的图象经过点E,B,则a等于A. B. C. 2 D. 3【答案】A【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度一般【解答】解:设点,则由已知可得点,,.因为点E,B在指数函数的图象上,所以所以,所以舍去或.10.下列图象中,可能是二次函数及指数函数的图象的是A. B.C. D.【答案】A【解析】【试题解析】【分析】本题主要考查指数函数的图象及性质、二次函数的图象及性质,属于基础题.指数函数在R上单调递减,则,可得,二次函数的图象与x轴的交点为、,结合选项即可判断.【解答】解:由指数函数的图象可知,指数函数在R上单调递减,则,,二次函数的图象与x轴的交点为、,只有选项A符合题意.故选A.11.函数与的图象关于A. 原点对称B. x轴对称C. y轴对称D. 直线对称【答案】C【解析】【分析】本题考查了函数的周期性和对称性、函数图象的变换平移、对称、伸缩、翻折变换的相关知识,试题难度较易【解答】解:设点为函数的图象上任意一点,则点为的图象上的点.因为点与点关于y轴对称,所以函数与的图象关于y轴对称,故选C.12.已知定义在R上的函数满足,且当时,,则A. 0B.C. 18D.【答案】C【解析】【分析】本题考查函数的周期性,涉及指数的运算,属于基础题.由题意可得函数为周期为2的周期函数,可得,代值计算可得.【解答】解:定义在R上的函数满足,函数为周期为2的周期函数,又当时,,,故选:C.二、填空题(本大题共14小题,共70.0分)13.指数函数的值域是__________.【答案】【解析】【分析】本题考查求函数值域的方法,考查指数函数的性质,解题的关键是将复杂函数化为基本函数,属于基础题.根据题意可知,函数,若令,于是可得y 转化为关于t的二次函数,根据指数函数的性质可知,结合二次函数的单调性还可得到在上函数单调递增,于是不难得到,对该不等式式求解,即可得到原函数的值域.【解答】解:令,则,因为该二次函数在上递增,所以,即原函数的值域为.故答案为.14.若函数且在区间上的最大值与最小值之和为3,则实数a的值为________.【答案】2【解析】【分析】本题考查指数函数的性质,属基础题,难度不大.讨论底数a的大小,利用指数函数的单调性求解即可.【解答】解:当时,函数在区间上单调递增,的最大值为a,最小值为,,解得,当时,函数在区间上单调递减,的最大值为,最小值为a,,解得舍,综上所述:.故答案为2.15.函数的定义域为________.【答案】【解析】【分析】本题考查了函数定义域与值域、指数方程与指数不等式的相关知识,试题难度容易【解答】解:依题意得,,得,得,得.则函数的定义域为.故答案为.16.已知函数且在区间上的函数值恒小于2,则a的取值范围是________.【答案】【解析】【分析】本题考查指数函数的性质,属于基础题.分类讨论,由指数函数的单调性得最值,求a的取值范围.【解答】解:当时,函数且在区间上单调递增,最大值为,由题意,所以,当时,函数且在区间上单调递减,最大值为,由题意,所以,则a的取值范围是故答案为17.若指数函数的图象经过点,则,.【答案】;【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度较易【解答】解:设且.因为的图象经过点,代入得,解得或舍去,所以,所以.18.若指数函数的图象经过点,则.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:设且,由于其图象经过点,所以,解得或舍去,因此,故.19.已知,若,求的值.【答案】解:,若,则.所以.【解析】本题考查了指数与指数幂的运算的相关知识,试题难度一般20.已知函数是指数函数,且,则__________.【答案】 5x【解析】【分析】本题主要考查指数函数,由得,,解得即可.【解答】解:设x,且.由,得,,x.故答案为.21.若函数且的图象过点,则________.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:由于函数图象过点,则,解得,故.22.已知直线与函数,,,的图象依次相交于点A,B,C,D,则这四点按从上到下的顺序排列是________.【答案】C,D,B,A【解析】【分析】本题考查指数函数的图象和性质,根据底数对指数函数图象的影响,在同一坐标系中画出题中四个函数的图象,即得到四个点的顺序.【解答】解:根据在第一象限内,底数越大指数函数的图象越靠近y轴,在同一坐标系中画出函数,,,的图象如下图:由图象得:这四个点从上到下的排列次序是:C,D,B,A.23.已知函数与的图象关于y轴对称,则.【答案】【解析】【分析】本题考查指数函数,涉及图象的对称变换和指数幂的运算,属于基础题.利用图象关于y轴对称的函数的解析式的关系将x换成,求得的解析式,然后代入运算化简即得.【解答】解:函数与的图象关于y轴对称,,.故答案为.24.以下是三个变量,,随变量x变化的函数值表:x1234567824816326412825614916253649640123其中关于x呈指数函数变化的函数是________.【答案】【解析】【分析】本题考查对数函数、指数函数与幂函数的增长差异.解题时要认真审题,注意指数函数的性质的合理运用.观察题中表格,可以看出,三个变量、、都是越来越大,但是增长速度不同,其中变量的增长速度最快,画出它们的图象图略,可知变量呈指数函数变化.【解答】解:观察题中表格,可知,三个变量,,都是越来越大,但是增长速度不同,增长速度最快,画出它们的图象,可知呈指数函数变化.25.函数是指数函数,则_______【答案】【解析】【分析】本题考查指数函数的定义,比较容易根据指数函数的定义,先确定a的值,再求.【解答】解:函数是指数函数,则,解得.所以,.所以,.故答案为.26.给定下列函数:;;,且;;;;;其中是指数函数的有________填序号【答案】解:指数函数为,很显然为二次函数,为指数函数,底数不一定大于0,故不是指数函数,底数小于0,不是指数函数,是指数函数,不是指数函数,是指数型函数,不是指数函数,不是指数函数,故答案为【解析】此题考查指数函数的定义,属于基础题.根据指数函数的定义进行求解即可.三、解答题(本大题共4小题,共48.0分)27.已知指数函数满足,定义域为R的函数是奇函数.确定和的解析式;判断函数的单调性,并用定义证明;若对于任意,都有成立,求a的取值范围.【答案】解:设且,,,,,是定义域为R的奇函数,,即,解得.经检验,当时,为奇函数,是定义在R上的减函数,证明如下:任取,,,则.,,又,,,,是定义在R上的减函数;,且为奇函数,,所以,因为,所以成立,设,,由对勾函数的单调性可知,函数在单调递增,在上单调递减,所以当时,有最大值为,所以.【解析】本题考查了函数的奇偶性和单调性,本题难度适中,属于较难题.利用指数函数过定点和函数为奇函数,得到关于参数的方程,解方程得到本题结论;利用函数单调性的定义加以证明,得到本题结论;利用函数的奇偶性和单调性,将原不等式转化为相应自变量的比较,利用对勾函数的单调性得到本题结论.28.某镇现在人均一年占有粮食,如果该镇人口平均每年增长,粮食总产量平均每年增长,那么x年后若人均一年占有y kg粮食,求y关于x的函数解析式.【答案】解:设该镇现在人口数量为M,则该镇现在一年的粮食总产量为360M kg.1年后,该镇粮食总产量为,人口数量为,则人均一年占有粮食为,2年后,人均一年占有粮食为,,x年后,人均一年占有粮食为,即所求函数解析式为【解析】本题考查了函数模型的应用的相关知识,试题难度较易29.用描点法在同一平面直角坐标系中画出与的图象.在的条件下,分别计算并比较与,与,与的值,从中你得到什么结论?【答案】解:作,的图象如下,,,;,;,;故;即与的图象关于y轴对称.【解析】本题主要考查了指数函数的图象及其性质,属于较易题.结合指数函数的图象,利用描点法作,的图象.可求得;;;从而可判断.30.已知不相等的两个实数a,b满足,判断实数a,b的大小关系.【答案】解:画出,的图像如图所示:,当a,b同为负时,,当a,b同为正时,,当a,b不同号时,不存在,综上所述,答案:当或.【解析】本题主要考查了指数函数的图像与性质,属于较易题画出图像,由图像可得结果.。
高中数学指数函数对数函数重点题型汇总
指对函数题型分类一、指数函数:)0,1(>≠=a a a y x 题型一:比较大小1、(1) ; (2) ______ 1; (3) ______2、985316,8,4,2,2从小到大的排列顺序是 。
3、设111()()1222b a <<<,那么 ( ) A.a a <a b <b a B.a a < b a <a b C.a b <a a <b a D.a b <b a <a a 4、已知下列等式,比较m ,n 的大小:(1)22m n < (2)0.20.2m n <5、下列关系中,正确的是( )A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >5.比较下列各组数的大小 (1)31.13.11.1,1.1 (2)3.02.06.0,6.0-- (3)3241⎪⎭⎫ ⎝⎛、3251⎪⎭⎫ ⎝⎛、3141⎪⎭⎫⎝⎛; (4)0.42、20.4、log 402⋅题型二:复合指数函数图象 1、 函数( )的图象是()2.函数与的图象大致是( ).3.当时,函数与的图象只可能是( )4.在下列图象中,二次函数 与指数函数 的图象只可( )5、若,,则函数的图象一定在()A .一、二、三象限B .一、三、四象限C .二、三、四象限D .一、二、四象限6、已知函数xx f 2)(=,则)1(x f -的图象为 ( )ABCD7、函数b x a x f -=)(的图象如图,其中a 、b 为常数, 则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b a D .0,10<<<b a8、(全国卷Ⅳ文科)为了得到函数x y )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度9、画出12-=x y 和12-=xy 的图象。
指数函数常考题型归纳含详解
A. a b 1 c b B. b a 1 d c C.1 a b c d D. a b 1 d c 3、已知函数 f (x) (x a)(x b) (其中 a b) 的图象如图所示,则函数 g(x) ax b 的图象是( )
A.
B.
C.
D.
4、画出下列函数的图像
D.
0,
1 2
A. ab aa
B. ba bb
C. ab bb
D. ab ba
2、设 a , b , c R ,且 a b ,则( )
A. a2 b2
B.
1 2
a
1 2
b
C. a3 b3
D. 1 1 ab
3、已知集合 A {x | x2 3x 2 0}, B {x |1 2 x 4} ,则 A B ( )
题型九:复合函数的单调性
C. f x x 1
x
1、函数
y
1 2
82 xx2
的单调递增区间为_________.
D. f x 3 x
2、求下列函数的定义域和值域,并写出其单调区间.
(1) f ( x) 1 3x2 ;
1
(2)
f
(x)
1 2x 3
;
(3) f ( x) 2x22x3 ;
A.{x |1 x 2} B.{x |1 x 2} C.{x |1 x 2} D.{x | 0 x 2}
4、已知 a 0.20.3 , b 0.30.3 , c 0.20.2 ,则( )
A. a b c
B. b a c
题型八:指数函数的单调性
C. b c a
D. a c b
A.函数 f x 在 R 上既是奇函数,也是增函数 B.函数 f x 在 R 上既是奇函数,也是减函数
根据指数函数知识点及题型归纳总结
根据指数函数知识点及题型归纳总结指数函数是数学中的重要概念之一,它在各个领域中都有广泛的应用。
本文将对指数函数的知识点和常见题型进行归纳总结,帮助读者更好地理解和掌握这一概念。
一、知识点总结1. 定义:指数函数是以底数为常数,指数为变量的函数,一般形式为 f(x) = a^x,其中 a 是底数,x 是指数。
2. 指数的性质:- 正指数:a^x 是递增函数,即 x1 < x2,则 a^x1 < a^x2。
- 负指数:a^x 是递减函数,即 x1 < x2,则 a^x1 > a^x2。
- 零指数:a^0 = 1,任意数的零次方等于 1。
3. 底数的性质:- a > 1 时,指数函数呈现增长态势;- 0 < a < 1 时,指数函数呈现衰减态势;- a = 1 时,指数函数为常数函数。
4. 指数函数的图像:根据底数的不同,指数函数的图像可以是上升的曲线、下降的曲线或是一条直线。
5. 指数函数的特殊情况:- 当底数为 e(自然对数的底数)时,指数函数被称为自然指数函数,常用记作 f(x) = e^x。
- 当底数为 10 时,指数函数被称为常用对数函数,常用记作f(x) = log10(x)。
二、题型归纳1. 指数函数的图像绘制:- 根据给定的底数和定义域绘制指数函数的图像。
2. 指数函数的性质应用:- 判断给定的函数是指数函数还是其他类型的函数。
- 比较多个指数函数的增长趋势。
- 求解包含指数函数的方程或不等式。
3. 指数函数的变形与组合:- 利用指数函数的特性进行函数的变形与组合,如 f(x) = a^(2x)、f(x) = a^(x+1) 等。
4. 自然指数函数与常用对数函数的特性:- 探究自然指数函数和常用对数函数的特点及应用。
总结:指数函数是数学中重要的函数类型之一,掌握其基本概念及性质对于理解和应用数学知识具有重要意义。
通过练不同类型的题目,读者可以更好地熟悉指数函数的特点和应用,提高解题能力。
(完整word版)指数函数题型总结-孟-推荐文档
指数函数题型总结:题型一. 比较大小例1:已知函数满足, 且, 则与的大小关系是_____.小练: 1.比较下列各组数的大小:(1)若/ , 比较/ 与/ ;(2)若/ , 比较/ 与/ ;(3)若/ , 比较/ 与/ ;(4)若/ , 且/ , 比较a 与b ;(5)若/ , 且/ , 比较a 与b .2.曲线/ 分别是指数函数/ ,/ 和/ 的图象,则/ 与1的大小关系是 ( ).(题型二. 求解有关指数不等式例2 已知, 则x 的取值范围是___________.小练3: 5、设, 解关于的不等式.题型三. 求定义域及值域问题例3 求函数的定义域和值域.小练4: 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.小练5.若函数的定义域为R, 则实数的取值范围 .题型四. 最值问题例4 函数在区间上有最大值14, 则a 的值是_______.小练6.若函数, 求函数的最大值和最小值.小练7、已知函数在区间[-1,1]上的最大值是14, 求a 的值.题型五. 解指数方程例5 解方程.题型六. 图像及图象变换例6 为了得到函数的图象, 可以把函数的图象( ).A. 向左平移9个单位长度, 再向上平移5个单位长度B. 向右平移9个单位长度, 再向下平移5个单位长度C. 向左平移2个单位长度, 再向上平移5个单位长度D. 向右平移2个单位长度, 再向下平移5个单位长度小练8、若函数的图像经过第一、三、四象限, 则一定有( )A. B C. D.小练9、方程2|x|+x=2的实根的个数为_______________.小练10、函数在R 上是减函数, 则的取值范围是( )A. B. C. D.小练11、当时, 函数的值总是大于1, 则的取值范围是_____________题型七、定点问题例7、函数)10(33≠>+=-a a a y x 且的图象恒过定点____________.题型八、函数的奇偶性问题小练12.如果函数在区间上是偶函数, 则=_________A 、小练13.函数是( )奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数小练14、若函数是奇函数, 则=_________题型九、单调性问题小练14.函数的单调增区间为_____________.小练15.函数在区间上的最大值比最小值大, 则=__________.小练16.函数在区间上是增函数, 则实数的取值范围是 ( )A.[6,+....B...C....D.题型十、指数函数性质综合问题例8(1)已知是奇函数, 求常数m 的值;(2)画出函数的图象, 并利用图象回答:k 为何值时, 方程|3X-1|=k 无解? 有一解? 有两解?小练17、 求函数y =23231+-⎪⎭⎫⎝⎛x x 的单调区间.小练18、 已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.小练19、定义在R 上的奇函数有最小正周期为2, 且时,(1)求在[-1, 1]上的解析式;(2)判断在(0, 1)上的单调性;(3)当为何值时, 方程=在上有实数解.小练20、 函数y =a |x |(a>1)的图像是( )答案:例1: 解: ∵, ∴函数的对称轴是. 故, 又, ∴.∴函数在上递减, 在上递增. 若, 则, ∴;若, 则, ∴. 综上可得, 即.小练1: 解: (1)由/ , 故/ , 此时函数/ 为减函数. 由/ , 故/ .(2)由/ , 故/ . 又/ , 故/ . 从而/ .(3)由/ , 因/ , 故/ . 又/ , 故/ . 从而/ .(4)应有/ . 因若/ , 则/ . 又/ , 故/ , 这样/ . 又因/ , 故/ . 从而/ , 这与已知/ 矛盾.(5)应有/ .因若/ , 则/ .又/ , 故/ , 这样有/ .又因/ , 且/ , 故/ .从而/ , 这与已知/ 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2、首先可以根据指数函数单调性,确定,在 轴右侧令 ,对应的函数值由小到大依次为 ,故应选 例2: 解: ∵, ∴函数在上是增函数,∴, 解得. ∴x 的取值范围是. :小练4解:(1)∵x -3≠0, ∴y =2的定义域为{x |x ∈R 且x ≠3}.又∵≠0, ∴2≠1,∴y =231 x 的值域为{y |y>0且y ≠1}. (2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1的值域为{y |y>1}.例3解: 由题意可得, 即, ∴, 故. ∴函数的定义域是.令, 则, 又∵, ∴. ∴, 即.∴, 即. ∴函数的值域是.例4: 解: 令, 则, 函数可化为, 其对称轴为.∴当时, ∵, ∴, 即. ∴当时, .解得或(舍去);当时, ∵, ∴, 即,∴ 时, , 解得或(舍去), ∴a 的值是3或.小练7解: , 换元为, 对称轴为.当, , 即x=1时取最大值, 解得 a=3 (a= -5舍去)例5 解: 原方程可化为, 令, 上述方程可化为, 解得或(舍去), ∴, ∴, 经检验原方程的解是.例6解:∵, ∴把函数的图象向左平移2个单位长度, 再向上平移5个单位长度, 可得到函数的图象, 故选(C ). 例8、解: (1)常数m=1(2)当k<0时, 直线y=k 与函数的图象无交点,即方程无解;当k=0或k1时, 直线y=k 与函数的图象有唯一的交点, 所以方程有一解;当0<k<1时, 直线y=k 与函数的图象有两个不同交点, 所以方程有两解。
指数函数试题及答案解析
指数函数试题及答案解析一、选择题1. 函数f(x)=2^{x}的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)答案:A解析:指数函数f(x)=2^{x},底数2大于1,因此函数是单调递增的,当x趋向负无穷时,函数值趋向0,但永远不会等于0,所以值域是(0, +∞)。
2. 函数y=a^{x}(a>0且a≠1)的图像恒过定点()A. (0,1)B. (1,1)C. (0,0)D. (1,0)答案:B解析:指数函数y=a^{x}(a>0且a≠1)的图像恒过定点(1,1),因为当x=1时,y=a^1=a,所以点(1,a)在图像上,而a>0且a≠1,所以a=1,因此定点为(1,1)。
3. 函数f(x)=a^{x}(a>0且a≠1)在区间(-∞,+∞)上是()A. 增函数B. 减函数C. 先增后减D. 先减后增答案:A解析:指数函数f(x)=a^{x}(a>0且a≠1)在区间(-∞,+∞)上是增函数,因为底数a大于1,所以函数随着x的增加而增加。
二、填空题4. 函数f(x)=3^{x}的反函数是______。
答案:f^(-1)(x)=log3(x)解析:指数函数f(x)=3^{x}的反函数是f^(-1)(x)=log3(x),因为3^{x}和log3(x)互为反函数。
5. 函数y=2^{x}的图象向左平移1个单位后,对应的函数解析式为______。
答案:y=2^{x+1}解析:函数y=2^{x}的图象向左平移1个单位,相当于将x替换为x+1,因此对应的函数解析式为y=2^{x+1}。
三、解答题6. 已知函数f(x)=2^{x},求f(-1)的值。
答案:f(-1)=1/2解析:将x=-1代入函数f(x)=2^{x}中,得到f(-1)=2^{-1}=1/2。
7. 已知函数f(x)=a^{x}(a>0且a≠1),求证:当a>1时,f(x)是增函数。
对指数函数及其性质经典题型总结
对指数函数及其性质经典题型总结指数函数是数学中常见的一类函数,具有一些独特的性质。
本文对指数函数及其性质的经典题型进行总结,旨在帮助读者更好地理解和应用指数函数。
一、指数函数的定义指数函数是以底数为常数,指数为变量的数学函数,可以表示为:y = a^x,其中a为底数,x为指数。
二、指数函数的性质1. 指数函数的图像特点- 当a>1时,指数函数呈现递增的趋势,图像从左下向右上倾斜。
- 当0<a<1时,指数函数呈现递减的趋势,图像从左上向右下倾斜。
- 当a=1时,指数函数的图像为一条水平直线。
2. 指数函数的基本性质- a^0 = 1,任何数的0次方都等于1。
- a^m * a^n = a^(m+n),同底数相乘,指数相加。
- (a^m)^n = a^(m*n),同底数相乘,指数相乘。
- (a*b)^n = a^n * b^n,底数相乘,指数不变。
- (a^n)^m = a^(n*m),指数相乘,底数不变。
三、指数函数的经典题型1. 指数函数的求值问题- 根据指数函数的定义,计算给定指数函数的特定值。
2. 指数函数的图像问题- 根据指数函数的性质和底数的取值范围,画出指数函数的图像。
3. 指数函数的运算问题- 根据指数函数的性质,进行指数函数的加法、减法、乘法和除法运算。
4. 指数函数的应用问题- 利用指数函数的性质,解决实际生活中的问题,如人口增长、物质衰变等。
四、总结指数函数是数学中重要且常用的一类函数,具有特定的图像特点和基本性质。
熟练掌握指数函数的经典题型可以帮助我们更好地应用指数函数解决问题。
文档总字数:XXX字。
指数函数练习题
指数函数练习题1. 计算下列指数函数的值:- \( f(x) = 2^x \) 当 \( x = 3 \)- \( g(x) = 3^x \) 当 \( x = -2 \)- \( h(x) = 5^x \) 当 \( x = 0.5 \)2. 确定下列指数函数的单调性:- \( f(x) = 4^x \)- \( g(x) = (1/2)^x \)3. 给定函数 \( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \),求当 \( x \) 增加时,函数值 \( y \) 的变化趋势。
4. 用指数函数表示下列数列的通项公式:- \( 2, 4, 8, 16, \ldots \)- \( 1/8, 1/4, 1/2, 1, \ldots \)5. 已知 \( f(x) = 2^x \),求 \( f(-2) \) 和 \( f(2) \) 的值。
6. 给定 \( y = 3^x \),求 \( x \) 使得 \( y = 27 \)。
7. 证明指数函数 \( y = a^x \)(其中 \( a > 0 \) 且 \( a \neq1 \))在其定义域内是连续的。
8. 一个细菌种群每分钟翻倍,初始时有 100 个细菌。
使用指数函数描述 30 分钟后细菌的数量。
9. 一个投资账户的本金为 \( P \),年利率为 \( r \)(以小数形式表示),假设每年复利一次,求该账户 \( t \) 年后的金额。
10. 已知 \( f(x) = 10^x \),求 \( f(-1) \),\( f(0) \),和\( f(1) \) 的值。
11. 给定 \( y = 2^x \),求 \( x \) 使得 \( y = 32 \)。
12. 证明对于所有 \( x > 0 \),指数函数 \( y = e^x \) 总是大于\( y = x \)。
13. 一个物体从高度 \( h \) 落下,忽略空气阻力,其下落距离\( s \) 可以用 \( s = 0.5gt^2 \) 表示,其中 \( g \) 是重力加速度,\( t \) 是时间。
第17讲 指数函数及性质八大题型总结(原卷版)
2.(2021·全国高一课时练习)下列判断正确的是()
A.2.52.5>2.53B.0.82<0.83
C.4 <π D.0.90.3>0.90.5
3.(2022·全国·高一课时练习)已知 , , , ,则()
A. B.
C. D.
题型六:解指数函数不等式
【例1】若 ,则实数a的取值范围是.
2.指数式大小比较方法
①单调性法:化为同底数指数式,利用指数函数的单调性进行比较.
②中间量法:当指数式的底数和指数各不相同时,需要借助中间量“0”和“1”作比较.
③分类讨论法:指数式的底数不定时,需要分类讨论底数的情况,在利用指数函数的单调性进行比较.
④比较法:有作差比较与作商比较两种,其原理分别为:
6.(2022·全国·高一专题练习)已知定义在 上的奇函数 .在 时, .
(1)试求 的表达式;
(2)若对于 上的每一个值,不等式 恒成立,求实数 的取值范围.
7.(2022·福建福州·高二期末)已知 是定义在 上的奇函数,当 时, .
(1)求函数 在 上的解析式;
(2)若 , 恒成立,求实数 的取值范围.
第17讲 指数函数及性质八大题型总结
【知识点梳理】
1.指数函数的定义及图像
图象
性质
①定义域 ,值域
② ቤተ መጻሕፍቲ ባይዱ即时 , ,图象都经过 点
③ ,即 时, 等于底数
④在定义域上是单调减函数
在定义域上是单调增函数
⑤ 时, ; 时,
时, ; 时,
⑥既不是奇函数,也不是偶函数
(1)当底数大小不定时,必须分“ ”和“ ”两种情形讨论.
题型七:指数函数的值域问题
【例1】已知 ,求 的最小值与最大值。
指数函数习题及答案(经典)
指数函数习题一、选择题1.定义运算a ⊗b =⎩⎨⎧a a ≤b b a >b,则函数f (x )=1⊗2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题 10.求函数y =2342x x --+11.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b得f (x )=1⊗2x=⎩⎪⎨⎪⎧2xx ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
指数与指数函数知识点及题型归纳总结
指数与指数函数知识点及题型归纳总结知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ∈R );(2)mm n n a a a-=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R );(4)(ab )m =a m b m (m ∈R );(5)pp a a-=1(p ∈Q ) (6)mm n n a a =(m ,n ∈N +)二、指数函数(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 0<a <1图象(1)定义域:R (1)定义域:R 值域(2)值域:(0,+∞) (2)值域:(0,+∞) (3)过定点(0,1)(3)过定点(0,1) (4)在R 上是增函数. (4)在R 上是减函数. (5)0<y <1⇔x >0y =1⇔x =0 y >1⇔x <0(5)0<y <1⇔x <0y =1⇔x =0 y >1⇔x >0题型归纳及思路提示题型1指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算例2.48化简并求值.(1)若a =2,b =4()()a a b b ab a b b+÷+--223333311的值; (2)若x x -+=11223,x x x x --+-+-33222232的值; (3)设nna --=11201420142(n ∈N +),求()n a a +21的值.分析:利用指数运算性质解题.===.当a=2,b=4,原式===12.(2)先对所给条件作等价变形:()x x x x--+=+-=-=11122222327,()()x x x x x x---+=++-=⨯=33111222213618,x2+x-2=(x+x-1)2-2=72-2=47.故x xx x--+--==+--3322223183124723.(3)因为n na--=11201420142,所以()n na-++=11222014201412,n n n nna---+--=-=111112014201420142014201422.所以)na-=12014.变式1 设2a=5b=m,且a b+=112,则m=( ).A. B. 10 C. 20 D. 100二、指数方程例2.49 解下列方程(1)9x-4⋅3x+3=0;(2)()()x x⋅=29643827;分析:对于(1)方程,将其化简为统一的底数,9x=(3x)2;对于()()x x⋅2938,对其底进行化简运算. 解析:(1)9x-4⋅3x+3=0⇒(3x)2-4⋅3x+3=0,令t=3x(t>0),则原方程变形为t2-4t+3=0,得t1=1,t2=3,即x=131或x=233,故x1=0,x2=1.故原方程的解为x1=0,x2=1.(2)由()()x x⋅=29643827,可得()x⨯=33294383即()()x=33443,所以()()x-=33344,得x=-3.故原方程的解为x=-3.变式1方程9x-6⋅3x-7=0的解是________.变式2 关于x 的方程()x aa+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式例2.50若对x ∈[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.解析:因为函数y =2x 是R 上的增函数,又因为x ∈[1,2],不等式x m +>22恒成立,即对∀x ∈[1,2],不等式x +m >1恒成立⇔函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.所以实数m 的取值范围是{m |m >0}.变式1 已知对任意x ∈R ,不等式()x mx m x x -+++>22241122恒成立,求m 的取值范围.变式2 函数()xf x x -=-21的定义域为集合A ,关于x 的不等式ax a x +<222(x ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.题型2 指数函数的图像及性质 思路提示解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像 例2.51 函数()x bf x a-=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).A. a >1,b <0B. a >1,b >0C. 0<a <1,0<b <1D. 0<a <1,b <0 分析:考查指数函数的图象及其变换.解析:由图2-14可知0<a <1,当x =0时,b a -∈(0,1),故-b >0,得b <0,故选D. 评注:若本题中的函数变为()xf x a b =-,则答案又应是什么?由图2-14可知ƒ(x )单调递减,即0<a <1,函数y =a x 的图像向下平移得到xy a b =-的图像,故0<b <1,故选C. 变式1 若函数y =a x +b -1(a >0且a ≠1)的图像经过第二、三、四象限,则一定有( ). A. 0<a <1且b >0 B. a >1且b >0 C. 0<a <1且b <0 D. a >1且b <0 变式2 (2012四川理5)函数x y a a=-1(a >0,a ≠1)的图象可能是( ).变式3 已知实数a ,b 满足()()a b =1123,下列5个关系式:①0<b <a ,②a <b <0,③0<a <b ,④b <a <0,⑤a =b =0.其中不可能...成立的有( ). A. 1个B. 2个C. 3个D. 4个例2.52 函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.解析:因为函数ƒ(x )=a x (a >0且a ≠1)的图像过定点(0,1),又函数ƒ(x )=x a +1(a >0且a ≠1)的图像是由函数ƒ(x )=a x (a >0且a ≠1)的图像向左平移一个单位得到的,故函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点(-1,1). 变式1 函数ƒ(x )=a x +1(a >0且a ≠1)的图像过定点________. 变式2 函数ƒ(x)=ax+x-2的图像过定点________.变式3 ƒ(x )=x a -1(a >0且a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n+11的最小值为________.二、指数函数的性质(单调性、最值(值域))例2.53 函数ƒ(x )=a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是_______. 分析:本题考查指数函数的单调性.解析:当0<a <1时,函数ƒ(x )=a x 在[1,2]上单调递减,故在[1,2]上最大值为a ,最小值为a 2,则a a a -=22,得a a =22,又0<a <1,所以a =12; 当a >1时,函数ƒ(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得aa =232,又a >1,所以a =32. 综上所述,a 的值是12或32.评注:函数ƒ(x )=a x (a >0且a ≠1),不论0<a <1还是a >1都是单调的,故最大值和最小值在端点处取得. 所以||a a a -=22,解得a =12或a =32. 变式1 函数ƒ(x )=a x (a >0且a ≠1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____.变式2 定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.变式3 若y =3|x |(x ∈([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).A. [2.4]B. [4,16]D. [4,12]例2.54 函数xx y a --+=+248145(0<a <1)的单调增区间是________.分析:复合函数xx y a --+=+248145内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+∞)上单调递减,在(-∞,-1]上单调递增,且y =a x (0<a <1)是减函数,所以xx y a --+=+248145(0<a <1)的单调增区间是[-1,+∞).变式1 函数()f x 1________.变式2 求函数()()()x x f x =-+11142(x ∈[-3,2])的单调区间及值域.变式3 已知0≤x ≤2,求函数x xa y a -=-⋅++1224212的最大值和最小值.变式4 设函数y =ƒ(x )在(-∞,+∞)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ⎧=⎨⎩()()f x kf x k ≤>,取函数ƒ(x )=2-|x |,当k =12时,函数ƒk (x )的单调增区间为( ). A. (-∞,0] B. [0,+∞) C. (-∞,-1] D. [1,+∞)变式5 若函数||()x y m -=+112的图像与x 轴有公共点,则m 的取值范围是________.变式6 已知函数()||x f x -=-21,x ∈R ,若方程ƒ(x )=a 有两个不同实根,则a 的取值范围是__________. 题型3 指数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合指数函数图像求解.(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.例2.55 设()x x f x a =++⋅124(x ∈R),当x ∈(-∞,-1]时,ƒ(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ≤1时,x x a ++⋅124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值. 解析:因为当x ∈(-∞,1]时,ƒ(x )的图像在x 轴上方,所以对于任意x ≤1,x x a ++⋅124>0恒成立,即x x a +>-214(x ≤1)恒成立.令()()()x x x x u x +=-=--2111424(x ≤1),a >u (x )max ,x ∈(-∞,1].因为()x y =12,()x y =14均是减函数,所以u (x )在(-∞,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-34.故实数a 的取值范围为(-34,+∞).变式1 已知函数()()x x af x a a a -=--21(a >0且a ≠1). (1)判断函数ƒ(x )的奇偶性; (2)讨论函数ƒ(x )的单调性;(3)当x ∈[-1,1]时,ƒ(x )≥b 恒成立,求实数b 的取值范围. 变式2定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1) 求a,b 的值.(2) 若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 变式3 已知函数1()22x xf x =-,若2(2)()0tf t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.最有效训练题1.函数2(33)xy a a a =-+是指数函数,则有( )A a=1或a=2B a=1C a=2D 0a >且1a ≠ 2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31xf x =-,则有( )A 132()()()323f f f <<B 231()()()323f f f <<C 213()()()332f f f <<D 321()()()233f f f <<4. 函数()22xxf x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340xxa ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞-6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10xf x =,在[0,2014]x ∈上的解的个数是 .11.已知函数()xf x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a). (1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。
指数函数中几类常见的题型
指数函数中几类常见的题型江苏 袁军指数函数是三类重要函数中的一类,也是考试的重点,而考查的内容主要是性质的应用,下面就指数函数中的几种常见的题型进行详解,希望对同学们的学习有所帮助. 题型一.应用定义求参数的值例1.若函数2(23)x y a a a =-+是指数函数,则a 的值为 .解:∵2(23)x y a a a =-+是指数函数,根据指数函数定义得331,01,a a a a ⎧-+=⎨>≠⎩且解得 2.a =∴ 2.a = 【点评】:本题利用指数函数的定义解题,指数函数的定义有两个特点①系数为1;②底数10a a >≠且.应用时注意这两个条件的使用即可.随堂训练:1. 若函数2(44)x y a a a =-+⋅是指数函数,则a = .答案: 3.a =题型二.求指数函数的值域例2.求下列函数的值域⑴221()2x x y -=; ⑵y = 解:⑴ ∵ 222(1)11,x x x -=--+≤∴ 221111()().222x x -≥=故函数的值域为1,2⎡⎫+∞⎪⎢⎣⎭.⑵ 设t =则0,5t t y ≥=,∴ 05 1.y ≥=故函数的值域为[)1,+∞. 【点评】:求与指数函数有关的值域问题时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性,对于解析式中某些较复杂的式子,往往采用换元法求解,这样可使问题变得清晰简洁,避免出错.随堂训练:2.函数211()2x y -=的值域为 .答案:(]0,2.题型三.比较大小问题例3.将下列各数从小到大排列起来:23(3)- ,122()3 ,132()3 ,232()3-- ,13(3)- ,31()3- ,433()2,21()2-- . 解:在这8个数中,负数有13(3)-与31()3-两个,且1331(3)1,1()0.3-<--<-<∴13(3)-<31()3-. 正数有:2233(3)3-= ,122()3 ,132()3 , ,433()2,21()42--=. 其中大于0而小于1的有:122()3 ,132()3两个, 大于1的有:222242333332331(3)3,()(),(),()43222---=-=-=四个. 又∵233(3)9,=而34433381()()9,2216⎡⎤==<⎢⎥⎣⎦∴224222333332331()()()(3)3() 4.3222---=<<-=<-= 综上所述:8个数从小到大的排列顺序为:13(3)-<31()3-<122()3<132()3<232()3--<433()2<23(3)-<21()2--. 点评:比较两个数的大小,首先按数的范围(如大于0还是小于0,大于1还是小于1等)进行分类,后再依据有关性质比较大小(如若两个数的底数相同,则运用指数函数的增减性比较大小).随堂训练:3.比较0.20.4 ,0.20.2 ,0.22 , 1.62的大小.答案:0.20.2<0.20.4<0.22< 1.62.题型四.求指数函数的单调区间例4.求函数2321()3x x y -+=的单调区间. 解:设21(),32,3u y u x x ==-+y 关于u 递减,当3(,]2x ∈-∞时,u 为减函数,∴此时y 关于x 为增函数;当3[,)2x ∈+∞时,u 为增函数,y 关于x 为减函数. 点评:求指数函数的单调区间问题通常是求与指数函数相关的复合函数的单调区间,对形如[()]y f g x =这一复合函数的单调性,除根据定义外,还可以根据下面的结论判断:当()y f u =与()u g x =的单调性相同时,则[()]y f g x =为增函数,当()y f u =与()u g x =的单调性相反时,[()]y f g x =为减函数. 而对形如()()(01)g x f x a a a =>≠且这一复合函数而言,若1,a >则()g x 与()f x 的单调性相同,若01,a <<则()g x 与()f x 的单调性相反.随堂训练:4.函数14()5x y -=的单调减区间是 ;单调增区间是 . 答案:减区间是[1,);+∞增区间是(,1]-∞.学习指数函数时,关键是熟记指数函数的图像,利用指数函数的单调性去解决问题,当然指数函数的学习其实是对前面所学知识的巩固.。
指数函数常见题型
(2)若直线y=2a与函数y=|ax-1|(a>0,且a≠1)的图像只 有两个公共点,则实数a的取值范围是________.
【解析】 ①当a>1时,如图知y=2a与y=|ax-1|的图像 只有一个公共点.
②当 0<a<1 时,由图知 当 0<2a<1,即 0<a<12时,y=2a 与 y=|ax-1|,图像只有 两个公共点. 【答案】 0<a<12
49-73+25×5 1 2×4102=-197+2=19.
(2)原式= 5-2-1- 5-22
=( 5-2)-1-( 5-2)=-1.
3
3
(3)先对条件等式变形,求出 x2+x-2及 x2+x-2 的值.
1
1
由 x2+x-2=3,两边平方,得 x+x-1=7.
再平方得 x2+x-2=47.
1
1
例3 求函数y=33+2x-x2的值域及单调区间. 【解析】 原函数化为 y=(13)x2-2x-3,函数的定义域 为 R, 设 u=x2-2x-3=(x-1)2-4≥-4, ∴0<y≤(13)-4=81, 即函数的值域为{y|0<y≤81}.
∵x∈(-∞,1]时,u 为减函数, x∈[1,+∞)时,u 为增函数. 又∵y=(13)u 为减函数. ∴y=(13)x2-2x-3 的单调递减区间为[1,+∞),单调递 增区间为(-∞,1]. 【答案】 值域为{y|0<y≤81},单调递减区间为[1,+ ∞),单调递增区间为(-∞,1]
3
4
3
(3)1.15,0.65,0.65从小到大的顺序为________.
4
3
3
答案 (1)3 (2) 5,7 (3)0.65<0.65<1.15
13-指数运算及指数函数(2)
题型一:比较大小1.函数①y =a x ,②y =b x ,③y =c x ,④y =d x 在同一坐标系内的图像如图所示,则a ,b ,c ,d 的大小顺序是()A.b <a <d <cB.a <b <d <cC.b <a <c <dD.b <c <a <d2.(多选)已知函数m (x )=2x ,h (x )=3x ,且m (a )=h (b ),则下列式子可能成立的是()A.a <0,b >0B.a <b <0C.a =bD.0<b <a3.设y 1=40.9,y 2=80.48,y 3=12−1.5,比较大小()A.y 3>y 1>y 2B.y 2>y 1>y 3C.y 1>y 3>y 2D.y 1>y 2>y 34.(多选)列各式比较大小,正确的是()A.1.72.5>1.73B.1223>2-43C.1.70.3>0.93.1D.23 34>3423O xy①②③④1第 13 讲:指数运算及指数函数(2)5.已知a=0.30.4,b=0.40.4,c=0.3-0.3,则()A.a<c<bB.b<a<cC.b<c<aD.a<b<c6.设a=35 25,b=25 35,c=25 25,则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>a>bD.b>c>a7.(2016•新课标Ⅲ)已知a=243,b=425,c=2513,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b8.(2023•广州二模)已知a=323,b=234,c=413,则()A.c<a<bB.b<c<aC.b<a<cD.c<b<a题型二:指数型函数9.若a>0且a≠1,函数y=|a x-2|与y=3a的图象有两个交点,则实数a的取值范围是.10.函数f (x )=12|x |+1的值域是()A.(1,2]B.[1,2]C.(1,+∞)D.[1,+∞)11.已知函数f (x )=e|x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是.12.已知a >0且a ≠1,函数f (x )=(a -2)x +2a -6,x ≤0a x ,x >0,满足对任意实数x 1,x 2(x 1≠x 2),都有(x 1-x 2)[f (x 1)-f (x 2)]>0成立,则实数a 的取值范围为.13.若函数f (x )=3(2a -1)x +3在R 上是减函数,则实数a 的取值范围是()A.-∞,12B.12,+∞ C.12,1∪(1,+∞)D.12,1 14.函数y =3-3+4x -x 2的单调递增区间是()A.(-∞,2]B.[2,+∞)C.[1,2]D.[1,3]15.函数y =2-x 2+x +2的单调增区间是()A.-∞,12B.(-∞,-1]C.-1,12D.[-1,2]16.已知函数y =13x 2+2x +5,求其单调区间及值域.17.已知函数f (x )=4x +(k +1)•2x +1(x ∈R )的图象与x 轴无公共点,求实数k 的取值范围是.18.如果函数y =a 2x +2a x -1(a >0,且a ≠1)在[-1,1]上的最大值是14,求a 的值.强化巩固1.设a=0.60.3,b=0.30.6,c=0.30.3,则a,b,c的大小关系为()A.b<a<cB.a<c<bC.b<c<aD.c<b<a2.求函数y=12 −x2+2x+3的单调区间和值域.3.函数f x =a x a>0,x∈R与f1 的大小关系是.的值域是区间0,1,则f-2。
指数函数题型训练
指数函数题型训练1、“同底不同指”型(1)2151-⎪⎭⎫ ⎝⎛ 3251⎪⎭⎫ ⎝⎛ (2) 2.51.7 31.7 (3)9 323 (4) 2.13 1.413⎛⎫ ⎪⎝⎭ (5)0.814⎛⎫ ⎪⎝⎭ 1.812⎛⎫ ⎪⎝⎭2、“不同底不同指”型(1)0.31.7 3.10.9 (2) 2.51.7 30.7 (3)0.10.8- 0.29-3.综合类:已知232()3a =,132()3b =,232()5c =则a 、b 、c 的大小关系为题型二 过定点问题1、函数323x y -=+恒过定点2、函数()150,1x y a a a +=->≠图像必过定点,这个定点是3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标是题型三 解指数函数不等式1、22122≤⎪⎭⎫ ⎝⎛-x2、 821()33x x --<3、0.225x <4、221(2)(2)x x a a a a -++>++题型四 求指数函数相关的定义域1、y =2、y =3、936x x y =-- 4、132x y -=题型五 求指数函数相关的值域1、2x y -=2.22)21(x x y -= 3、133+=x x y4、设02x ≤≤ ,求函数124325x x y -=-⋅+值域5、求1423x x y +=-+,(,1]x ∈-∞的值域。
题型六 奇偶性问题 若函数a x f x +-=121)(为奇函数,则实数a 的值是题型七 单调性问题1、函数3222--=x x y 的单调区间。
2、求函数2222x x y -++=单调区间。
3、求函数23213x x y -+⎛⎫= ⎪⎝⎭的单调区间。
题型八 图象变换及应用问题1、为了得到函数935x y =⨯+的图象,能够把函数3x y =的图象().A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度2、画出函数121x y -=-图像,并求定义域与值域。
(完整word版)指数函数复习专题(含详细解析)
第讲指数函数时间:年月日刘老师学生签名:一、兴趣导入二、学前测试1.在区间上为增函数的是( B )A . B. C. D.2.函数是单调函数时,的取值范围( A )A. B . C . D.3.如果偶函数在具有最大值,那么该函数在有( A )A.最大值 B .最小值 C .没有最大值 D.没有最小值4.函数,是( B )A.偶函数 B .奇函数 C.不具有奇偶函数 D .与有关5.函数在和都是增函数,若,且那么( D )A. B. C. D .无法确定6.函数在区间是增函数,则的递增区间是( B )A. B. C. D.12三、方法培养☆专题1:指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。
例1指出下列函数那些是指数函数:(1)4x y =(2)x y 4=(3)4xy -= (4))4(-=xy (5)π=y x(6)x y 24=(7)xxy =(8))1,21(()12≠>=-a a y a x解析:利用指数函数的定义解决这类问题。
解:(1),(5),(8)为指数函数变式练习11函数2(33)x y a a a =-+⋅是指数函数,则有()A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:105432)(0625.0833416--+++π; 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0。
062 5)41+1-21=(25)2×21+(23)313⨯+(0。
5)414⨯+21=25+23+0。
5+21 =5;☆专题2:指数函数的图像与性质一般地,指数函数y=a x在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >1 0<a <1 图象3性质 ①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1 ④在R 上是减函数,当x <0时,y>1;当x >0时,0<y <1在同一坐标系中作出y=2x和y=(21)x 两个函数的图象,如图2—1-2-3。
指数函数典型例题总结
指数函数题型总结典型一:辨析指数函数例一、下列函数中,那些是指数函数?( )(1)y=4x (2) y=x4 (3) y=(−2)x (4) y=5x-1 (5) y=a x变式1、函数f(x)=(a2−3a+3)a x(a>0,a≠1)是指数函数,则f(−1)=________变式2、函数f(x)=(k+2)a x+2−b(a>0,a≠1),是指数函数,则k=__,b=___.典型二、图像过定点问题例2、函数y=a x−4+5(a>0,a≠1)的图像一定过_______.变式1、函数f(x)=a2x−3+1(a>0,a≠1)的图像一定过______.变式2、已知函数f(x)=4+a x+1(a>0,a≠1)的图像一定过点P,则点P的坐标是______.典型三、指数函数解析式问题例3、若指数函数的图像过A(2、4),则f(x)=___________.变式1,已知指数函数y=a x+(a−2)(a−3)的图像过(2,4),则a=________.典型四、指数函数的图像问题例4、已知y=a x+b(a>0,a≠1)的图像经过第二、三、四象限,则a的取值范围是________. b的取值范围是________.变式、已知y=a x+b+1(a>0,a≠1)的图像经过第一、三、四象限,则a 的取值范围是________. b的取值范围是________.典型五、利用函数的单调性比较大小,解不等式,求最值。
例6、试比较下列各组数的大小。
(1)、(56)−0.24和(56)−14 (2)(1π)−π和1 (3)0.8−2和(54)−14 (4)0.43,30.4,π0 例7、解不等式(1)(12)3x−1≤2 (2)a x 2−3x+1<a x+6(a >0,a ≠1)(3)求函数f (x )=√1−2x +√x+3的定义域。
例8、已知指数函数f (x )=a x (a >0,a ≠1),若f (x )在⌊−2,2⌋上的最大值为16,则a=_______.典型六、图像变换例9、画出下列函数图像,并说明是有y =2x 的图像怎么变换的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()xf c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意xxb c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321xx ≥≥,∴(3)(2)x x f f ≥;若0x <,则321xx<<,∴(3)(2)x xf f >. 综上可得(3)(2)xxf f ≥,即()()xxf c f b ≥.评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.2.求解有关指数不等式 例2 已知2321(25)(25)xx a a a a -++>++,则x 的取值范围是___________.分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)xy a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.3.求定义域及值域问题例3 求函数y =解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤.∴011t -<≤,即01y <≤.∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数221(01)xx y aa a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.分析:令xt a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令xt a =,则0t >,函数221xx y aa =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤, ∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x⨯-⨯-=,令3(0)xt t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x=,∴2x =,经检验原方程的解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935x y =⨯+的图象,可以把函数3xy =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度 D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935xy =⨯+转化为235x t +=+,再利用图象的平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935xy =⨯+的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等. 习题1、比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与 ;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而,这与已知矛盾.(5)应有.因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故.从而,这与已知矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.2曲线 分别是指数函数,和的图象,则与1的大小关系是 ( ).(分析:首先可以根据指数函数单调性,确定,在轴右侧令,对应的函数值由小到大依次为,故应选.小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值3 求下列函数的定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x 的定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x 的值域为{y |y>0且y ≠1}.(2)y =4x+2x+1+1的定义域为R.∵2x>0,∴y =4x+2x+1+1=(2x )2+2·2x+1=(2x+1)2>1. ∴y =4x+2x+1+1的值域为{y |y>1}.4 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
5、设,求函数的最大值和最小值.分析:注意到,设 ,则原来的函数成为 ,利用闭区间上二次函数的值域的求法,可求得函数的最值. 解:设,由知,,函数成为 , ,对称轴 ,故函数最小值为,因端点较 距对称轴 远,故函数的最大值为 .6(9分)已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值..解:)1(122>-+=a a a y x x , 换元为)1(122a t at t y <<-+=,对称轴为1-=t .当1>a,a t =,即x =1时取最大值,略解得 a =3 (a = -5舍去)7.已知函数 (且) (1)求的最小值; (2)若,求的取值范围..解:(1) , 当 即时, 有最小值为(2) ,解得当 时,;当时,.8(10分)(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无解有一解有两解解: (1)常数m =1(2)当k <0时,直线y =k 与函数|13|-=x y 的图象无交点,即方程无解;当k =0或k ≥1时, 直线y =k 与函数|13|-=xy 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x y 的图象有两个不同交点,所以方程有两解。
9.若函数 是奇函数,求 的值. .解:为奇函数,,即 ,则 ,10. 已知+9≤0,求函数y=(41)x-1-4·(21)x +2的最大值和最小值 解:由已知得(3x)2-10·3x+9≤0 得(3x-9)(3x-1)≤0 ∴1≤3x≤9 故0≤x ≤2而y=(41)x-1-4·(21)x+2= 4·(21)2x-4·(21)x+2 令t=(21)x(141≤≤t )则y=f (t )=4t 2-4t+2=4(t-21)2+1当t=21即x=1时,y min=1当t=1即x=0时,y max =2 11.已知 ,求函数 的值域. 解:由得 ,即,解之得,于是,即,故所求函数的值域为12. (9分)求函数2222++-=x x y 的定义域,值域和单调区间定义域为R 值域(0,8〕。
(3)在(-∞, 1〕上是增函数 在〔1,+∞)上是减函数。
13 求函数y =23231+-⎪⎭⎫⎝⎛x x 的单调区间.分析 这是复合函数求单调区间的问题可设y =u⎪⎭⎫ ⎝⎛31,u =x 2-3x+2,其中y =u⎪⎭⎫⎝⎛31为减函数∴u =x 2-3x+2的减区间就是原函数的增区间(即减减→增) u =x 2-3x+2的增区间就是原函数的减区间(即减、增→减)解:设y =u⎪⎭⎫⎝⎛31,u =x 2-3x+2,y 关于u 递减,当x ∈(-∞,23)时,u 为减函数, ∴y 关于x 为增函数;当x ∈[23,+∞)时,u 为增函数,y 关于x 为减函数.14 已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性. 解:(1)易得f(x)的定义域为{x |x ∈R }.设y =11+-x x a a ,解得a x=-11-+y y ①∵a x>0当且仅当-11-+y y >0时,方程①有解.解-11-+y y >0得-1<y<1.∴f(x)的值域为{y |-1<y <1}.(2)∵f(-x)=11+---x x a a =xxa a +-11=-f(x)且定义域为R ,∴f(x)是奇函数.(3)f(x)=12)1(+-+x x a a =1-12+xa . 1°当a>1时,∵a x+1为增函数,且a x+1>0.∴12+x a 为减函数,从而f(x)=1-12+x a =11+-x x a a 为增函数.2°当0<a<1时,类似地可得f(x)=11+-x x a a 为减函数.15、已知函数f (x )=a -122+x(a ∈R ), (1) 求证:对任何a ∈R ,f (x )为增函数. (2) 若f (x )为奇函数时,求a 的值。