纤维素酶的生产及分离纯化
分解纤维素微生物的分离与纯化实验操作与注意事项
分解纤维素微生物的分离与纯化实验操作与注意事项一、引言纤维素是一种重要的天然生物质,广泛存在于植被、农业废弃物和生活垃圾中。
分解纤维素的微生物对于生物能源转化、环境修复和生物材料制备具有重要意义。
本实验旨在介绍如何进行纤维素分解微生物的分离与纯化,以便更好地研究和利用这些微生物。
二、材料与设备1. 纤维素基质(例如木材粉末、花生壳碎屑等)2. 无菌培养基(适合目标微生物的培养基)3. 纤维素分解微生物样品4. 离心管、试管、平板培养基等常用实验室器材5. 灭菌器、微量移液器、孵化箱等实验设备三、实验步骤1. 样品处理a) 收集纤维素分解微生物样品,如土壤、水体或植物材料。
b) 将样品进行悬浮液处理,使用适当的稀释液(如生理盐水)或培养基进行悬浮液的制备。
c) 通过过滤或离心等操作,去除悬浮液中的大颗粒物质,得到较为均匀的样品。
2. 分离与纯化a) 取一定数量的样品悬液,分别均匀涂布在含有纤维素的固体培养基表面(例如含有纤维素的琼脂平板)。
b) 使用洁净的铁环或无菌塑料处理棒,在固体培养基表面进行菌落的划线、划圆或刺取等操作,以分离出单个微生物菌落。
c) 将分离得到的单个菌落转移到无菌富含纤维素的液体培养基中培养。
3. 筛选与纯化a) 从初步培养基中挑选出优良的单菌落,根据其特征进行初步筛选。
b) 针对初步筛选出的菌落,进行进一步鉴定和纯化,采用形态学、生理生化特性及分子生物学方法进行分析。
c) 辅助使用显微镜、PCR、基因测序等技术手段,确保所得微生物为纤维素分解菌。
四、注意事项1. 实验操作应在无菌环境下进行,避免外源污染。
2. 纤维素的质量和处理方式会影响微生物的分离,选择适当的纤维素基质、浓度和处理方法。
3. 注意培养基的配制和pH值的调节,确保适合目标微生物的生长需求。
4. 操作过程中要注意个人防护,避免对自身和他人造成伤害。
5. 实验后要及时清洗和消毒使用的设备和试剂,避免污染和交叉感染。
纤维素酶高产菌的分离纯化与产酶工艺优化
中 图分 类 号 : 9 — 3 Q 3 3
文献 标 识 码 : A
文章 编 号 :4 9 8 1 (0 2 0 — 60 0 0 3 — 14 2 1 )8 16 — 3
S r e i f Cel a e Pr d i S r i s n Optm ia i n o h Ce l l s c e n ng o l ul s o ucng t a n a d i z to f t e lu a e Pr du i g Co dii ns o c n n to
在 不 同 产 酶 条件 ( 包括 碳 源 、 源 、H、 度 、 酵 时 间 ) 羧 甲基 纤 维 素 ( MC 酶 活 和 滤 纸 酶 活 (P 的 氮 p 温 发 下 C ) F A) 测 定 , 现 其 最佳 产 酶 工 艺条 件 为麸 皮 作 碳 源 , 豆 粉 作 氮 源 ,H 6 . 3 发 黄 p . 在 0℃ 下培 养 9 。 5 2h
c r o n i o e o r e w s b a n o b a o r r s e t ey;a d t e b s fr ain c n i o s f r c l l s r d ci n a b n a d n t g n s u c a r n a d s y e n f u e p ci l r l v n h et o m t o dt n o el a e p o u t o i u o
第5 1卷第 8 期
21 0 2年 4月
湖 北 农 业 科 学
Hu e Ag c l r l c e c s bi i r u t a S in e u
V0 . 1 No8 I 5 . Ap . 2 1 r,0 2
纤维素酶的工艺流程
纤维素酶的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!纤维素酶的工艺流程一、准备工作阶段。
在进行纤维素酶的生产之前,需要做好充分的准备工作。
纤维素酶酶活测定可编辑全文
纤维素酶酶活测定纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。
反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。
酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。
二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。
1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。
纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。
用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。
2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。
混匀测OD540nm。
里氏木霉产纤维素酶分离纯化工艺研究
里氏木霉产纤维素酶分离纯化工艺研究发布时间:2021-11-11T06:46:02.936Z 来源:《中国科技人才》2021年第22期作者:侯龙龙谢军任晓辉白冠章[导读] 目前,世界各国都在积极研究利用非粮发酵手段生产生物燃料,用以解决日益严重的能源危机、气候问题以及粮食短缺问题。
义马煤业集团煤生化高科技工程有限公司河南省三门峡市 472300摘要:目前,世界各国都在积极研究利用非粮发酵手段生产生物燃料,用以解决日益严重的能源危机、气候问题以及粮食短缺问题。
木质纤维素作为地球上储量最丰富的多糖类物质,利用其生产燃料乙醇已成为各国研究的热点领域。
但由于木质纤维素结构致密复杂,大多数微生物并不能将其作为直接碳源来生产乙醇,只有将其水解成可发酵单糖类物质后,才能被微生物利用。
酶解法由于其反应条件温和、效率高、能耗低、选择性强以及环保效果好等优点,被广泛应用于纤维素水解过程中。
但由于纤维素酶的酶组分多体系,底物结构较为复杂,加大了从发酵液中分离提取较高纯度的纤维素酶的难度,目前文献报道的纤维素酶提取工艺大多是为了获得纯纤维素酶组分并进行酶学性质的研究,其工艺很难在工业中进行应用。
关键词:纤维素酶;分离提取工艺;盐析;膜分离;色谱层析前言:在传统的酶粗提方法中,盐析法过程温和,不会使酶分子发生变性,硫酸铵由于其具有较强的盐析能力、较高的水溶性以及较低的温度系数,因此在蛋白质及酶的盐析过程中常被使用。
陈红漫等在芽孢杆菌-葡萄糖苷酶的分离纯化及特性的研究中采用硫酸铵分级沉淀法对粗酶液分离纯化,结果显示在硫酸铵饱和度区间为20%-60%时,经硫酸铵沉淀后,酶纯化倍数为1.42,回收率为11.41 %。
但盐析过程适合小规模酶的分离提取过程,而当生产规模较大时,由于需要大量的无机盐,会对后续环保处理带来较大压力;而膜分离过程不需要添加化学试剂,而且整个过程温和,不会造成酶分子的变性失活,当然,膜分离过程也存在投资成本偏高,膜易堵塞等问题。
纤维素酶的生产工艺及分离提纯
纤维素酶的生产工艺及分离提纯:朱帅帅学号:4 四院三连通信工程摘要:纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶。
由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国外业人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。
是可以将纤维素分解成寡糖或单糖的蛋白质。
关键词:发酵法;盐析法;凝胶过滤;离子交换层析;电泳Abstract:Cellulase is an important enzyme products, a plex enzyme, mainly by the exo-β-glucanase, endo-β-glucanase and β-glucosidase and other ponents, there are very high energy Xylanase. Because cellulase has great market potential in the fields of feed, alcohol, textile and food, it has been regarded as the fourth largest industrial enzyme after saccharifying enzyme, amylase and protease, even in China it is entirely possible to bee the largest enzyme species, so the enzyme enzyme industry is a new growth point. Is a protein that can depose cellulose into oligosaccharides or monosaccharides.Keywords:Fermentation, Salting out, Gel filtration, Ion exchange chromatography, Electrophoresis.一、纤维素酶的概述纤维素酶是一种对纤维素大分子的水解具有特殊催化作用的活性蛋白质,它是一组酶的总称,不是单成分酶,而是由多个酶起协同作用的多酶体系。
提取和纯化植物中的纤维素
提取和纯化植物中的纤维素纤维素是一种广泛存在于植物细胞壁中的多糖化合物,具有坚硬的结构和生物降解性。
它在许多行业中被广泛应用,例如纸浆和纸张、纺织品、食品等。
然而,植物中的纤维素通常与其他有机物质混合存在,因此需要进行提取和纯化才能得到高纯度的纤维素。
本文将介绍几种常见的提取和纯化植物中纤维素的方法。
一、化学法提取纤维素1. 酸碱法酸碱法是一种常用的提取纤维素的方法。
首先,将植物材料浸泡在稀酸溶液中,使纤维素与其他成分分离。
然后,通过中和反应,将酸性环境转变为碱性环境,进一步促使纤维素的溶解和分离。
最后,通过过滤和漂洗等步骤,可得到纤维素的沉淀。
2. 氧化法氧化法是另一种常见的纤维素提取方法。
通过使用氧化剂,如过氧化氢或高锰酸钾,将植物材料中的非纤维素成分氧化分解,从而分离纤维素。
然后,通过过滤和洗涤等步骤,可以获得纯净的纤维素。
二、生物法提取纤维素1. 酶解法酶解法是一种利用纤维素酶将纤维素分解成可溶性产物的方法。
纤维素酶能够水解纤维素的β-1,4-糖苷键,将其分解成纤维素二聚体、纤维素寡糖和葡萄糖等可溶性产物。
通过酶解后,可以将纤维素成分与其他杂质分离,得到纯净的纤维素。
2. 发酵法发酵法是一种利用微生物将纤维素分解的方法。
在发酵过程中,微生物会分泌相关酶,水解纤维素成分,从而分离纤维素。
通过控制发酵条件和选用适当的微生物菌株,可以实现高效的纤维素提取和纯化。
三、纤维素的纯化在提取纤维素后,还需要对其进行纯化处理,以去除杂质和其他有机物。
以下是常见的纤维素纯化方法:1. 溶剂提取溶剂提取是通过合适的有机溶剂将纤维素从杂质中分离的方法。
一般采用的溶剂有醇类、酮类和醚类等。
通过溶剂提取,可以去除掉一部分非纤维素成分,提高纤维素的纯度。
2. 离子液体处理离子液体是一种特殊的有机盐,具有良好的溶解能力和选择性。
通过将植物材料或纤维素溶解在适当的离子液体中,再通过沉淀或其他处理方式,可以实现纤维素的纯化。
纤维素酶产生菌的分离和筛选专业大实验
纤维素酶产生菌的分离和筛选方案目标:从自然界采用选择性分离的方法,获得纤维素酶的高产菌株。
意义:把含纤维的自然资源及纤维废料加以充分利用,转化成糖类作为食品工业和发酵工业的原料或制成优质饲料,具有深远的现实意义。
1.材料与方法1.1材料与仪器1.1.1原辅料土壤品来自南阳理工学院以下各处离地表3-8cm深处泥土装入塑料瓶中,带回实验室处理。
(1)新校区竹林腐叶下的土壤(2)校门口东边的松树林腐叶子下的土壤(3)青年公寓外小树林(4)2号教学楼后面花园的土壤1.1.2试剂羧甲基纤维素CMC、NaCl、MgS04·7H20、KH2P04、酵母浸粉、蛋白胨、蒸馏水、琼脂、Na2HP04、酵母膏、刚果红试剂。
1.1.3仪器小铁铲和无菌纸或袋(可省)、小烧杯、100ml量筒、滤纸、漏斗、棕色试剂瓶、1000ml三角烧瓶1个、500ml三角烧瓶1个、试管24个、高压蒸汽灭菌锅、培养皿24个、36支1mm无菌吸管、无菌玻璃涂棒12支、显微镜、无菌水。
1.2培养基及试剂的配制1.2.1培养基配制初筛培养基A:羧甲基纤维素CMC 20g、NaCl 5.0g、MgS04·7H20 0.2g、KH2P041.0g、酵母浸粉 5.0g、蛋白胨10g、蒸馏水1000mL、琼脂20g,pH自然,121℃湿热灭菌20min。
复筛培养基B:CMC 10g、Na2HP04 1.25g、KH2P040.75g、MgSO4·7H2O 0.1g、蛋白胨1.25g、酵母膏O.25g、蒸馏水500mL、琼脂10g,pH自然,121℃灭菌20min。
2.2.2试剂配制1%刚果红试剂:称取刚果红试剂1g于干净的小烧杯中,用量筒量取蒸馏水100ml使之溶解,过滤,贮于棕色试剂瓶中。
2.3方法2.3.1初筛的方法步骤(1)配初筛培养基A,灭菌,倒平板。
(2)用稀释涂平板的方法分离纤维素分解菌。
稀释涂布平板法步骤:A.倒平板将配好的琼脂培养基溶化,待冷至55—600C时,用右手持盛培养基的三角烧瓶,置火焰旁边,左手拿平皿并松动瓶盖,用手掌边缘和小指、无名指夹住拔出,瓶口在火焰上灭菌,然后左手将培养皿盖在火焰附近打开一缝,迅速倒入培养基约15ml,加盖后轻轻摇动培养皿,使培养基均匀分布,平置于桌面上,待冷凝后即成平板。
纤维素酶的生产工艺
纤维素酶的生产工艺纤维素酶是一类能够降解纤维素的酶,可以将纤维素聚合物高效地水解为低聚糖和纤维素寡聚体,具有广泛的应用前景,如生物能源、食品酿造、纺织品加工等领域。
纤维素酶的生产工艺主要分为传统液体培养法和固体表面培养法两种方式。
1. 传统液体培养法:传统液体培养法是指利用液体培养基培养酶菌生产。
该工艺的主要步骤如下:(1)菌种培养:通过对纤维素酶产生菌株的定向筛选和培养,得到高效纤维素酶产生菌株作为菌种。
(2)种子培养:将该菌株接种到适当的种子培养基中,进行预培养,使菌株扩大至一定数量。
(3)发酵过程:将预培养培养液转移到发酵罐中,并加入适宜的培养基,控制发酵条件,如温度、pH、氧气、搅拌速度等,进行酶的产生培养。
(4)酶的分离与提纯:通过酶的沉淀、过滤、分离、浓缩等工艺,将发酵液中的酶分离出来,并进行纯化和浓缩,得到纯净的纤维素酶制剂。
2. 固体表面培养法:固体表面培养法是指利用固体基质作为酶菌的培养基进行酶的生产。
该工艺通常采用固体床培养、滤膜固定化培养和生物反应器培养等方式。
以下以固体床培养为例进行说明:(1)底物预处理:将固体底物(如纤维素)进行预处理,如磨碎、脱色、糖化等,使其成为更易于菌株附着和生长的底物。
(2)菌种接种:将菌株接种到预处理后的固体底物表面,使其附着和生长。
(3)固体床培养:控制好培养条件,如温度、湿度、通气速度等,使菌株在固体底物表面繁殖和产酶。
(4)酶的回收:通过洗涤、离心或其他方法将固体底物与酶分离,得到纯净的酶制剂。
与传统液体培养法相比,固体表面培养法具有操作简单、反应过程稳定、培养基和酶制剂的产量较高等优点。
由于纤维素酶的产生需要与固体底物接触,因此固体表面培养法特别适用于利用废弃物纤维素进行纤维素酶生产的工艺。
总之,纤维素酶的生产工艺根据不同的应用需求和底物来源,选择合适的培养方法和操作条件,可通过传统液体培养法或固体表面培养法进行。
随着科技的发展和生物工程技术的进步,纤维素酶的生产工艺也在不断创新和改进,有望实现更高效、更经济的纤维素酶制备。
纤维素酶
纤维素酶班级:10生工一班学号:20100801132 姓名:张羽一.纤维素酶的简介:hengno-CA型系列中性纤维素酶(粉剂)纤维素酶(英文:cellulase)是酶的一种,在分解纤维素时起生物催化作用。
是可以将纤维素分解成多糖或单糖的蛋白质或RNA。
由多种水解酶组成的一个复杂酶系,自然界中很多真菌都能分泌纤维素酶。
习惯上,将纤维素酶分成三类:C1酶、Cx酶和β葡糖苷酶。
C1酶是对纤维素最初起作用的酶,破坏纤维素链的结晶结构。
Cx酶是作用于经C1酶活化的纤维素、分解β-1,4-糖苷键的纤维素酶。
β葡糖苷酶可以将纤维二糖、纤维三糖及其他低分子纤维糊精分解为葡萄糖。
纤维素酶种类繁多,来源很广。
不同来源的纤维素酶其结构和功能相差很大。
由于真菌纤维素酶产量高、活性大,故在畜牧业和饲料工业中应用的纤维素酶主要是真菌纤维素酶。
二.所用微生物菌种:木霉。
木霉属于半知菌门,丝孢目,木霉属,常见的木霉有绿色木霉、康宁木霉等。
木霉菌落开始时为白色,致密,圆形,向四周扩展,后从菌落中央产生绿色孢子,中央变成绿色。
菌落周围有白色菌丝的生长带。
最后整个菌落全部变成绿色。
绿色木霉菌丝白色,纤细,宽度为1.5~2.4微米。
产生分生孢子。
分生孢子梗垂直对称分歧,分生孢子单生或簇生,圆形,绿色。
绿色木霉菌落外观深绿或蓝绿色;康氏木霉菌落外观浅绿、黄绿或绿色。
木霉具有较强分解纤维素能力,绿色木霉通常能够产生高度活性的纤维素酶,对纤维素的分解能力很强。
在木质素、纤维素丰富的基质上生长快,传播蔓延迅速。
棉籽壳。
木屑、段木都是其良好的营养物。
培养基配方(保藏、活化、种子扩大、发酵生产)纤维素酶菌种易退化,退化后其产酶力明显降低,其原因可能有三个方面:①经诱变筛选的菌种发生回复突变。
②自然负突变。
③菌种长时间低温斜面保藏,会在分生孢子上长出次生菌丝,而次生菌丝所形成的分生孢子生命力弱,这可能是菌种退化的主要原因。
为了避免纤维素酶菌种退化,可采用砂土管保藏菌种。
纤维素酶的生产工艺
纤维素酶的生产工艺纤维素酶是一种能够分解纤维素的酶类,具有重要的工业应用价值。
纤维素酶的生产工艺包括菌种选育、发酵及提取纯化等关键步骤,下面将详细介绍纤维素酶的生产工艺。
首先,菌种选育是纤维素酶生产的第一步。
通过筛选和优化培养基,选择出高纤维素酶产量的菌株。
常用的纤维素酶产生菌株有波形菌、木霉菌和酿酒酵母等。
菌种选育的关键是选用适合产酶的菌株,并通过优化培养条件提高其产酶能力。
其次,发酵是纤维素酶生产的核心环节。
在发酵过程中,需要使用适当的培养基和优化的培养条件来促进菌株产酶。
一般来说,纤维素酶的发酵培养基由碳源、氮源、矿盐和调节因子等组成。
常用的碳源有纤维素、纤维素水解物和木质素等。
氮源可以选用蛋白质类物质,如小麦麸、大豆粉等。
矿盐和调节因子的添加能够提供微量元素和调节酵素活性。
发酵过程中,温度、pH值、氧气供应和搅拌速度等因素对纤维素酶产率和品质都有一定的影响。
一般来说,合适的发酵温度可以提高纤维素酶活性,一般控制在30-37摄氏度之间。
pH值的调节能够影响酵素的稳定性和活性,一般来说,纤维素酶的产酶pH值为4.5-6.0。
氧气供应和搅拌速度的调节能够改善酵素产量和分布均匀性。
最后,提取纯化是纤维素酶生产的最后一步。
通过离心、超滤和柱层析等技术,将发酵液中的纤维素酶分离纯化。
离心可以去除菌体和固体颗粒等杂质,超滤可以去除大分子物质和溶液中的杂质。
柱层析则是根据酶的特性和亲和性选择性吸附和洗脱,以获得高纯度的酶制剂。
综上所述,纤维素酶的生产工艺包括菌种选育、发酵及提取纯化三个关键步骤。
这些工艺的优化和提高可以提高纤维素酶的产量和品质,进一步推动纤维素酶的工业应用。
纤维素酶在生物质转化、饲料添加剂和纺织等领域具有广阔的市场前景。
产纤维素酶细菌菌株的分离鉴定及产酶条件优化
产纤维素酶细菌菌株的分离鉴定及产酶条件优化毛丽春;修立辉;胡刚【摘要】该实验分离鉴定了高产纤维素酶细菌菌株并探究其产酶条件.采用3种培养基进行分离筛选.经菌落形态观察、16S rRNA基因序列分析菌株在系统分类地位.通过单因素试验确定最适产酶条件.结果表明,从西岭山原始森林保护区土壤中筛选到1株高产纤维素酶细菌菌株,鉴定为伯克霍尔德氏菌(Burkholderia cepacia).其最适产酶条件:碳源为麦麸,最佳氮源为酵母粉,接种量为2%(V/V),初始pH值为7,产酶时间为48 h.在此条件下,酶活最高可达2.76 U/mL.酶学特性研究显示,在pH5.0、温度60 ℃条件下CMCase酶活力最高.%In order to isolate and identify the high-yield cellulase-producing bacteria and explore their enzyme-producing conditions, the strains were separated and screened by 3 kinds of culture media. The system classification status of strain was analyzed by the colony morphology observation and 16S rRNA gene sequence. The optimum enzyme-producing conditions were determined by single factor experiments. The results showed that the bacteria with high-yield cellulase was screened from the soil of the original forest reserve in Xiling mountain and identified as Burkholderia cepacia.The optimum enzyme-producing conditions of the strain were wheat bran as carbon source, yeast extract powder as nitrogen source, inoculum 2%(V/V), initial pH 7 and enzyme-producing time 48 h. Under the conditions, the maximum cellulase activity was 2.76 U/ml. The research of enzymatic characteristics showed CMCase activity was the highest under the conditions of pH 5.0 and temper ature 60 ℃.【期刊名称】《中国酿造》【年(卷),期】2018(037)004【总页数】5页(P83-87)【关键词】纤维素;纤维素酶;分离;菌株;鉴定【作者】毛丽春;修立辉;胡刚【作者单位】广西师范学院环境与生命科学学院,广西南宁 530001;广西师范学院环境与生命科学学院,广西南宁 530001;广西师范学院环境与生命科学学院,广西南宁 530001【正文语种】中文【中图分类】Q93-331人类对于能源的需求不断增加,化石能源作为人类最主要的消耗能源具有一次性、有限性等特点,其的燃烧对环境造成严重污染。
纤维素酶的分离纯化及其应用研究
纤维素酶的分离纯化及其应用研究第一章绪论纤维素酶是一类能够降解植物纤维素的酶,广泛存在于许多生物体中,如真菌、细菌和昆虫等。
在生物质能源利用、动物饲料加工和纸浆、纺织、食品等工业中,纤维素酶都有重要的应用。
然而,由于纤维素基质的复杂性和纤维素酶的多样性,纤维素酶的分离纯化和应用研究一直是一个研究热点和难点。
本文通过对纤维素酶的分离纯化方法和应用领域的综述,探讨了纤维素酶的分离纯化及其应用研究的现状和存在的问题,为纤维素酶的进一步研究提供参考。
第二章纤维素酶的分离纯化方法纤维素酶的分离纯化方法主要包括超滤法、离子交换、凝胶过滤、逆流层析、亲和层析、等电聚焦和高效液相色谱等。
2.1 超滤法超滤法是一种静态的分离方法,可用于去除低分子量的杂质和离子,是纤维素酶的常规预处理方法。
超滤法在分离纯化中的运用主要是将蛋白质和营养物质剥离出来,使得目标产物的含量和纯度提高。
但是,超滤法在大规模产生目标诱导产物时,也会产生诸如集膜、渗漏、破损和引起阻塞等操作问题。
2.2 离子交换离子交换是一种静态的分离方法,可用于去除离子和低分子量杂质。
离子交换树脂是一种稳定的、高度功能化的糖蛋白,它可以根据不同的性质选择性地吸附、脱附和提取离子或分子。
但是,离子交换也存在一些问题,如对产物活性的影响、树脂使用寿命的影响等。
2.3 凝胶过滤凝胶过滤是一种动态的分离方法,可用于分离和分析分子量超过10 kDa的蛋白质和多肽。
凝胶过滤所采用的是大分子量筛选剂,可把分子量大的物质排除在外,具有分离纯化效果较好的特点。
但是,凝胶过滤也有一定的限制,如分子量分析范围有限、处理速度较慢等。
2.4 逆流层析逆流层析是一种对大分子生物分离纯化非常有效的动态分离方法,具有高效和优良活性的特点。
它能够通过反向溶剂流动而分离目标群,从而精细控制和分离纯化生物学分子。
逆流层析在纤维素酶分离纯化中的应用可以有效地提高分离纯化的效率和产率。
2.5 亲和层析亲和层析是一种静态分离技术,通过配合分子、抗体和亲和剂吸附和脱附产物,得到产物的高纯度和高产率。
纤维素酶酶活测定
纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。
反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。
酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。
二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。
1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na 0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。
纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。
用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。
2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。
混匀测OD540nm。
空白对照用酶活的酶液作对照。
纤维素酶的分离纯化
罗志强
孟豪轩
陈孟南的来源
2
3 4 5
纤维素酶的分离提纯技术 纤维素酶的应用 纤维素酶的问题与展望
概念
纤维素是地球上最丰富的可再生性碳源物质 ,其降解是自然界碳素循环的中心环节,有效利 用纤维素可有效解决能源危机,可以用于生产大 量化工原料,如乙醇,丁醇等,采用纤维素酶进 行水解是保证无污染地将这些纤维素物质转化成 简单糖的关键。 纤维素酶的组分复杂,主要有内切葡聚糖酶,外 切葡聚糖酶,β-葡萄糖苷酶3种。给纤维素酶的分 离纯化带来了一定的困难。
3.纤维素酶的应用领域应进一步拓宽。
(一)分子量:45000-76000; 最适pH:pH4-5;最适温度: 40-60℃ 。 (二)纤维素酶各组分大多为糖 纤维素酶的分子结构 蛋白。 (三)纤维素酶是诱导酶,诱导 物为纤维二糖。
纤维素酶
昆虫
真菌
软体动物
纤维素酶
原生动物
放线菌 细菌 目前研究较多的是霉菌,其中酶活力较强的菌 种为木霉、曲霉、根霉和青霉,特别是里斯木霉、 绿色木霉、康氏木霉等较为典型,是目前公认的较 好的纤维素酶生产菌。
通常采用的中性盐有
硫酸铵、硫酸钠、硫酸
钾、硫酸镁、氯化钠和磷
酸钠等。
纤维素酶的分离纯化多采用硫酸铵分级沉淀法,因 为硫酸铵具有溶解度大,对温度变化不敏感,分级 效果好等特点。
陈红漫等在芽孢杆菌β-葡萄糖苷酶的分离纯化及特 性的研究中采用硫酸铵分级沉淀法对粗酶液分离纯 化,结果显示在硫酸铵饱和度区间为20%~60% 时,经硫酸铵沉淀后,酶纯化倍数为 1.42,回收 率为 11.41%。
纤维素酶在造纸、草药提取等方面均有很 大应用潜力。用纤维素酶适当处理纸浆,能增加 微细纤维生成量和提高保水度,有可能促进某些 纸张抗张力提高。
耐热碱性纤维素酶分离纯化及酶学特性研究
摘 要: 通过 离子交换和凝胶过滤两步层析法,从耐碱 芽孢杆菌Ⅲ一 3的培养液中分 离到相对分子质量 约为 8 D 9k 、比活力 高达 40 U m 2 / g的碱 性纤 维素酶 Ⅲ一一 .质谱分析 显示:Ⅲ一一 3A 3A酶 蛋 白与 芽孢 杆 菌 K M6 、K M ¥ 3 S- 4 S 一 7等产生的 A 2 5家族碱性纤维素酶具有一定的同源性.酶学性质研究结果表 明:Ⅲ_ A的 3 一
酶意义重大.本课题组通过前期研究 ,从 内蒙古碱
的 N :O 分开 灭菌 ) aC ( .
收稿 日期 :20 — 1 1 0 6 1 —4;修回 日期 :20 —2 0 070—8 基金项 目:深圳市科技计 划资助项 目 (0 35 ;深圳大学科研启动基金资 助项 目 (0 7 4 202 ) 20 1 ) 作者简介 :陈伟钊 ( 93 ) 1 8 一 ,男 ( 族) 汉 ,广东省惠来 县人 ,深圳大学硕士研究生.Em i w7 7 1n cm — a :c z @2 c.o l 5 通讯作者 :邢 苗 ( 94 ) 15 一 ,男 ( 汉族 ) ,华南农业大学教授 、博士生导师. — a :x g i @sa.d .n或 x g i @S . e. n E m i i ma cu eu c l n o i ma Z dn c n o H
Apr .20 7 0
文章编号 : 002 1 (0 7 0 -22 0 10 - 8 20 )20 1-5 6
耐热碱 性 纤 维 素 酶分 离纯 化 及 酶 学 特性 研 究
陈伟钊 ,刘森林 ,邢 苗 ’
(. 1 深圳大学生命科学学院 ,深圳 5 86 ;2 10 0 .华南农业大学 ,广州 5 04 ) 16 2
( 最适 p H值为 6~ ) 8 和碱性纤维素酶 ( 最适 p H值
多糖酶解实验报告
一、实验目的1. 了解多糖酶解的基本原理和实验方法。
2. 掌握多糖酶解产物的分离纯化技术。
3. 分析酶解产物的结构和性质。
二、实验原理多糖酶解是指利用酶催化多糖分解成低分子量单糖或低聚糖的过程。
本实验采用纤维素酶对纤维素进行酶解,通过控制酶解条件,得到不同分子量的纤维素酶解产物。
三、实验材料与仪器1. 实验材料:- 纤维素粉- 纤维素酶- 水浴锅- pH计- 分光光度计- 离心机- 超滤膜- 酶解反应管- 玻璃棒- 移液器2. 实验试剂:- 0.1mol/L NaOH溶液- 0.1mol/L HCl溶液- 1mol/L硫酸溶液- 1mol/L Na2CO3溶液- 0.1mol/L K2Cr2O7溶液- 3,5-二硝基水杨酸(DNS)四、实验步骤1. 纤维素酶解:- 称取0.1g纤维素粉,加入10mL 0.1mol/L NaOH溶液,搅拌溶解。
- 调节pH至4.8,加入适量纤维素酶,在50℃下酶解2小时。
- 酶解结束后,用1mol/L HCl溶液调节pH至7.0,终止反应。
2. 纤维素酶解产物的分离纯化:- 将酶解液在4000r/min下离心10分钟,取上清液。
- 将上清液通过0.22μm微孔滤膜过滤,得到酶解产物。
3. 酶解产物浓度测定:- 将酶解产物进行适当稀释,用DNS法测定其浓度。
4. 酶解产物分子量测定:- 将酶解产物进行适当稀释,用凝胶渗透色谱法(GPC)测定其分子量分布。
5. 酶解产物结构分析:- 对酶解产物进行红外光谱(IR)和核磁共振波谱(NMR)分析,确定其结构。
五、实验结果与分析1. 酶解产物浓度:根据DNS法测定,酶解产物浓度为0.1mg/mL。
2. 酶解产物分子量分布:根据GPC测定,酶解产物的分子量分布在5000~20000Da之间。
3. 酶解产物结构分析:- IR分析:在3400cm^-1处出现O-H伸缩振动峰,表明酶解产物中含有羟基。
- NMR分析:在δ4.5处出现C-O-C峰,表明酶解产物中含有C-O-C键。
纤维素酶产生菌的筛选、分离
纤维素酶产生菌的筛选、分离一、实验原理由于刚果红可以跟大分子多糖牢固结合,产生红色复合物,而纤维素是大分子多糖,因此跟刚果红可以牢固地结合;纤维素酶产生酶可以分泌的纤维素酶,可以使平板中的纤维素降解成小分子糖,那么刚果红就无法与小分子糖结合,就被洗脱下来,呈现透明圈,由此来判别是否有纤维素产生菌,并对其筛选,纯化,分离,保存。
二、仪器与试剂1、仪器:烧杯、称量纸、药勺、锥形瓶、玻璃棒、电光分析天平、酒精灯、培养皿、恒温箱、高压蒸汽灭菌锅、1ml和10ml移液管、吸耳球、试管、ph试纸或PH计、纱布、棉花、绳子、标签、涂布棒、摇床培养箱、报纸。
2、试剂:无菌水、0.9%生理盐水、氢氧化钠溶液、盐酸溶液、CMC-Na筛选培养基:(CMC-Na 0.5g、蛋白胨0.5g、磷酸二氢钾0.1g 、七水硫酸镁0.05g、酵母粉0.05g、琼脂1.5g、水100ml、PH调节为7.0),滤纸条培养基:(滤纸条 0.5g、蛋白胨0.5g、磷酸二氢钾0.1g 、七水硫酸镁0.05g、酵母粉0.05g、琼脂1.5g、水100ml、PH调节为7.0)CMC-Na刚果红鉴定培养基:(CMC-Na2.0g/l 、硫酸铵2 g/l 、七水硫酸镁0.5、磷酸氢二钾1 g/l、氯化钠0.5 g/l、刚果红0.2 g/l、琼脂0.2 g、PH7.0)。
三、实验步骤1、土样的采集为获得纤维素酶产生菌,土样的采集要在富含纤维素的环境中进行,这是因为在纤维素含量丰富的环境中,通常会聚集较多的分解纤维素的微生物,应采集学校树木下用于堆肥的树叶腐烂泥样及表层泥土为样品,因此样品含纤维素酶产生菌,取样时,由于细菌绝大多数分布在距地表约3~8cm的土壤层,要先除去表层土,再用瓶子对土壤进行采样,土壤保存时间不宜超过12小时。
2、培养基的配制、分装灭菌及其他材料的准备CMC-Na分离培养基和滤纸条培养基的配制:根据培养基配方,准确称取各组分于烧杯中,加入适量蒸馏水,并对其加热、搅拌、溶解,最后加蒸馏水至100ml刻度线,调节ph至7.0;分装、制作斜面培养基:将制备好的两种培养基分装到试管中(1/5),每种培养基装两个试管,加上棉花塞,包扎,灭菌,摆斜面;贴上标签(组别,姓名,培养基名称);将剩余的培养基分别装到两个三角瓶中,包扎,灭菌:3、土壤菌悬液的配制、移取及培养称取5g土壤样品,按无菌操作,将样品放入装有45ml无菌生理盐水的烧杯中,振荡10min左右,制成的土壤菌悬液;并将菌悬液用无菌移液管各移取5ml至CMC-Na和滤纸条培养基中,于28度摇床培养一周。
一种纤维素酶的制备方法
一种纤维素酶的制备方法纤维素酶是一种专门分解植物纤维素的酶类,广泛应用于纸浆和纺织工业中。
纤维素酶的制备方法多种多样,下面我将介绍一种常用的酶的制备方法。
纤维素酶的制备方法一般分为两个主要步骤:菌种培养和酶的提取。
1.菌种培养:首先,选择一种能够产生纤维素酶的菌株。
这可以通过文献检索或从已经存在的菌株库中筛选。
通常,属于真菌和细菌的一些物种被发现具有高效的纤维素酶产生能力。
然后,将菌株转移到适合其生长的培养基中。
常见的培养基包括固体培养基和液体培养基。
固体培养基由琼脂或明胶作为凝胶形成剂,能够支持菌株的生长。
而液体培养基则需要添加合适的碳源、氮源和矿物质等,来提供菌株所需的营养物质。
接下来,将菌株培养在适当的温度和pH条件下。
温度和pH值是微生物生长的两个主要因素,可以通过试验确定最佳的培养条件。
通常,温度在30-37摄氏度之间,pH值保持在4-7之间是较为常见的培养条件。
培养过程中,应定期检测菌株的生长情况。
可以通过观察培养液的浑浊度和粘度变化,以及菌落的形态和生长速率等指标来评估。
一般来说,菌株的生长速度较快,对培养基的颜色和气味没有明显的负面影响,可以认为是良好的培养结果。
2.酶的提取:当菌株培养到合适的生长期后,可以开始进行酶的提取。
一般包括以下步骤:首先,将培养液和菌株分离开。
这可以通过离心来实现。
将远离菌株的清液收集,并去除其中的杂质。
接下来,利用适当的方法将纤维素酶从培养液中提取出来。
常用的方法有四种:悬浮沉降、溶解沉淀、凝胶过滤和离子交换等。
根据所采用的方法和设备的不同,在提取过程中可能会使用温度、pH调节剂、盐溶液、有机溶剂等。
最后,对提取的纤维素酶进行纯化。
为了得到高纯度的酶,可以使用各种方法,如电泳、柱层析、透析等。
这些方法可根据酶的性质和要求进行选择。
需要说明的是,制备纤维素酶的具体方法会根据不同的菌株和应用领域的要求而有所不同。
因此,在实际操作过程中,应根据实际情况进行调整和优化。
镰刀菌发酵培养液中纤维素酶的分离纯化
取 。其 中研究 最多 的 是木 霉 属 ( rc o ema 和 曲 霉 T i dr ) h
属 ( p r ils , 们 都 能 产 生 大 量 的纤 维 素 酶 , As eg l ) 它 u 尤
亿 学 与 生 物 互 狸 21, 17 o1 00V . 2 o2 N
Ch mity & Bi e gie r g e sr o n n ei n
镰 刀 茵 发 酵 培 养 液 中 纤 维 素 酶 的 分 离 纯 化
郑 金 花 。 建 平 郁
( 州大 学生化 营养研 究所 , 州 贵 阳 5 0 2 ) 贵 贵 5 0 5
G2 0 乙醇 , 酸 , 烯 酰胺 , 5, 磷 丙 甲叉 双 丙烯 酰 胺 , i, Tr s
S , 硫 酸铵 , 甲基 己二 胺 ( ME , 氨 酸 , DS 过 四 TE D) 甘 甘 油 , 酚 蓝 ,一 基 乙 醇 , 醇 , 醋 酸 , 有 试 剂 均 为 溴 2巯 甲 冰 所 分 析纯 。 透 析 袋 ( D 3 ) S p a e 一O 、 A — e h — M 4 ; e h d xG 1 0 DE E S p a d x A 5 , h r c ; D — AGE低 分 子 量 标 准 蛋 白 e 一0 P ama i S SP a
摘 要 : 用 镰 刀 茵 菌 株 液 体 培 养 产 纤维 素 酶 。将 菌 株 在 3 " 1 0r 选 00、2 ・mi_ 摇 床 培 养 1 8h 50 ri 离心 n1 0 ,0 0r。 n a
2 n 取 上 清 O mi , S p a e l 0凝胶 过 滤 层 析 和 D AE S p a e 5 离子 交换 层 析 进 行 纤 维 素 E — e h d xA一0 酶 的 分 离 纯化 , 用 S - AG 并 DS P E进 行 纯 度检 验 。 结 果 表 明 , 离 纯化 后 的 纤 维 素 酶 酶 活 为 3 . 5 U ・mL , 活 力提 高 分 5 2 比 到 1 . 6倍 。为 进 一 步 研 究 纤维 素 酶 的组 分 、 构 奠 定 了基 础 。 95 结 关 键 词 : 维 素 酶 ; 离 纯化 ; 析 ; DSP GE 纤 分 层 S -A 中 图分 类 号 : 5 Q 5 文献标识码 : A 文章 编 号 : 6 2 5 2 ( 0 0 1 — 0 6 — 0 1 7 — 4 52 1 )2 0 5 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)电泳:电泳是带电颗粒在电场作用下,向着与其电荷相反的电极移动的现象。当把一个带净电荷的颗粒放入电场时,就会受到电场力的作用,带电颗粒在电场中向一定方向泳动,速度与电场强度和带电颗粒的净电荷量成正比,与颗粒半径和黏度成反比。当颗粒是两性电介质性质的蛋白质分子时,它在一定pH溶液中电荷量是独特的。由于不同的蛋白质等电点和分子量是不同的,因此经泳动后就形成了泳动度不同的区带。利用此性质,可以将混合液中不同的蛋白质区分开,同时也可以对其纯度进行测定。现在电泳法已成为开展生物化学和分子生物学研究的必不可少的常规工具。
其生产工艺过程是将玉米秸秆粉碎至20目以下,进行灭菌处理后,送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70 h,控制温度低于60℃,将净化后的无菌空气从釜底通入,进行物料的气流搅拌,发酵完的物料经压滤机压滤、超滤浓缩、喷雾干燥,制得纤维素酶产品。其流程为:
空气→过滤
↓
原料→发酵罐→浸泡→粗滤→超滤提取→成品
物质被起始缓冲液洗涤出来,形成了第一个层析峰;然后适当地改变起始缓冲液的pH或增加离子强度等方法,把物质S从固相载体上解离下来,并形成第二个层析峰,可以将有效成分与杂质较好地分离开来。使用亲和层析法,不论加入何种样品液,由于柱体积小、上样量大、洗脱流速快等原因,都只能得到一个层析峰,所以分辨率高。本法广泛应用于分离纯化蛋白质、核酸、激素等物质。
2,液体发酵法
液体发酵生产时,将原料送入发酵罐内发酵,同时接入纤维素酶菌种。发酵过程中,需要从发酵罐底部通入无菌空气对物料进行气流搅拌,发酵完后的物料经过处理可得到纤维素酶产品。液体发酵法生产纤维素酶,原料利用率高,生产条件易控制、产量高、劳动强度小、产品质量稳定,但动力消耗大,设备要求高。液体深层发酵的方法具有培养条件容易控制,不易染菌,生产效率高等特点。因此,目前此方法是大规模生产的可行方法。
(1)盐析法:盐析法就是在溶液中加入中性盐使各种蛋白质依次分别沉淀的方法。其原理是根据蛋白质在溶液中由于表面带电的氨基酸残基与溶剂分子(H20)相互作用,所以能保持溶解状态,当加入盐离子时,蛋白质分子周围所带电荷增加,促进了与溶剂分子的相互作用,使溶解度增加,此现象称为盐溶,在盐浓度较低时以这种情形为主;但当盐浓度继续增加达到一限量,大量盐离子使水浓度相对降低,蛋白质的水化作用减弱,相互凝聚而沉淀下来,称为盐析。选择一定浓度范围的盐(如0~25%饱和度硫酸铵)使杂质蛋白沉淀而有效成分呈盐溶状态,经离心分离得到上清液后,再选择一定浓度范围的盐溶液使有效成分等物质呈盐析状态而另一部分杂质呈盐溶状态,用离心法收集的沉淀物即为初步纯化的有效成分物质。此法是蛋白质进行分级沉淀时常用操作步骤,常选用的盐是硫酸铵。
(4)离子交换层析:离子交换层析是根据物质所带电荷的差别进行分离纯化的方法。离子交换剂以纤维素、葡聚糖凝胶等不溶性物质为母体,通过酯化、醚化或氧化等化学反应,引入阳性或阴性离子的特殊制剂,可与带相反电荷的化学物质进行交换吸附。对于呈两性离子的蛋白质、酶类、多肽等物质与离子交换剂的结合力,取决于它们的物理化学性质和特定pH条件下呈现的离子状态。当pH低于等电点(pI)时,被阳离子交换剂吸附;反之被阴离子交换剂吸附。对于呈胶体状态的大分子物质一般使用选择性好的弱酸性离子交换剂。离子交换层析法是常用的层析方法之一,广泛应用于多种生化物质的分析、制备、纯化等。
(5)高效液相色谱(HPLC);又称为高速或高压液相色谱,其分离或纯化各种化合物的原理基本上与普通的液相层析相似。但高效液相色谱具有灵敏、快速、分辨率高及重复性好等特点,不仅适用于很多不易挥发,难热分解物质(如蛋白质、氨基酸及其衍生物、核酸、激素、单糖、寡糖等)的定性和定量分析,而且也适用于上述物质的制备和分离。特别是近十年来出现了几种与HPLC相近的快速蛋白液相色谱(FPLC),低压液相色谱(LPLC)和中压液相色谱(MPLC),其中FPLC能在惰性环境下,以极快的速度通过成百上千次层析把复杂的混合物分开,如果连续进样,短时间内能制备出大量的欲纯化物质。
(2)凝胶过滤:凝胶过滤又叫分子筛层析,是利用分子筛效应分离纯化生物大分子和测定其分子量及样品脱盐的一种色谱方法。凝胶过滤层析所用的基质是具有立体网状结构、筛孔直径一致的球状颗粒。这种物质可以完全或部分排阻某些大分子物质,而不能排阻某些小分子化合物。当样品进入色谱柱时,由于被分离物质的分子质量不同。较大的分予不能通过孔道进入凝胶颗粒的微孔内部,与流动相一起先流出色谱柱;分子质量小的物质可通过部分孔道,更小的分子可通过任意孔道进入珠体内部。这样小分子向下流动的速度必然比大分子慢,结果是分子质量大的物质先从柱中流出,分子质量小的则后从柱中流出而达到分离的目的。凝胶过滤具有设备简单、操作方便、重复性好及样品回收率高等特点,所以该方法除了常用于分离纯化蛋白质,核酸、多糖、激素、氨基酸和抗生素等物质外,还可测定蛋白质的分子量、样品浓缩和脱盐等方面。
纤维素酶
纤维素酶编号:EC3.2.1.4。它是酶的一种,在分解纤维素时起生物催化作用,是可以将纤维素分解成多糖或单糖的蛋白质或RNA。纤维素酶广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木酶属、曲霉属和青霉属。
纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。
↑
种子→摇瓶(床)
纤维素酶的分离纯化
纤维素酶的组分大多为糖蛋白,工业上用于生产纤维素酶的粗酶制剂常采用硫酸铵沉淀法、酒精沉淀法、丹宁沉淀法和离心喷雾干燥等方法。但在纤维素酶分析研究上主要采用一系列蛋白质分离纯化技术,如分级沉淀、色谱法、电泳法等。目前,对粗酶的提取大多采用硫酸桉分级沉淀法;对酶活力的测定国际上一般采用Horikoshi方法;对蛋白质的测定按考马斯亮蓝(Bradford)法;还原糖的测定采用3,5一二硝基水杨酸(DNS)法。以下介绍一些常用的纯化方法:
(3)亲和层析:亲和层析的原理与抗原一抗体、酶一底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力,在亲和层析中是特异的配体才能和一定的生命大分子之间具有亲和力。将具有识别能力的载体L以共价键的方式固化到含有活性基团的基质M上,制成亲和吸附剂M-L,又称为固相载体。当把固相载体装入小层析柱后,将欲分离的样品液通过该柱。此时样品中对配体有亲和力的物质S可借静电引力、范德华力等作用吸附到固相载体上,无亲和力的
纤维素酶的生产方法:
1,固体发法
固体发酵法以玉米、稻草等植物秸秆为主要原料生产纤维素酶。该法投资少,工艺简单,产品价格低廉。然而固体发酵法存在着根本上的缺陷——不可能像液体发酵那样随着规模的扩大,大幅度降低成本。以秸秆为原料的固体发酵法生产的纤维素酶很难提取和精制。目前生产厂家只能采用直接干燥、粉碎来得到固体酶制剂,或用水浸泡后压滤得到液体酶制剂,产品外观粗糙,质量不稳定,杂质含量高;劳动强度大、生产效率低;易污染杂菌。国内外对木霉纤维素酶的研究较多,但木霉一方面毒性嫌疑大,使之应用受到限制;另一方面普遍存在着β-葡萄糖昔酶活力偏低的缺陷,致使纤维二糖积累,影响了酶解效率。