线性代数重要结论大全.

合集下载

线代常用的一些结论

线代常用的一些结论

A1 2 设 A
A2
o
, 则有 A A A A . 1 2 s As
o
若 Ai 0i 1,2,, s , 则 A 0, 并有
A11 1 A
A2
1
o

o
. 1 As
(1) | AT | | A | ;
( 2) | A | | A | ;
n
( 3) | AB || A | | B | ;
注意 1) | A B || A | | B |
2) AB BA , 但有 | AB || BA | .
伴随矩阵
AA A A A E .

A1 0 0 0 A2 0 (3) 0 0 A s
0 A1 B1 0 A2 B2 0 0
B1 0 0 B2 0 0
0 0 . As Bs
T
1 1
T 1
A .
1 T
*
A 5 若A可逆 ,则有 A A .(注:
A
n-1
) .
六、解矩阵方程
矩阵方程
AX B XA B
AXB C

X A1 B X BA1 X A1 C B1
七、方阵多项式
设 记
( x ) a0 a1 x am x m ,
a11 kai 1 a n1 a12 a1n a11 a12 a1n a i 2 a in a n 2 a nn
an 2 ann
a n1
kai 2 kain k a i 1

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式一行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:用于化简行列式1行列互换转置,行列式的值不变2两行列互换,行列式变号3提公因式:行列式的某一行列的所有元素都乘以同一数k,等于用数k乘此行列式4拆列分配:行列式中如果某一行列的元素都是两组数之和,那么这个行列式就等于两个行列式之和;5一行列乘k加到另一行列,行列式的值不变;6两行成比例,行列式的值为0;二重要行列式4、上下三角主对角线行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:A是m阶矩阵,B是n阶矩阵,则7、n阶n≥2范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:三按行列展开9、按行展开定理:1任一行列的各元素与其对应的代数余子式乘积之和等于行列式的值2行列式中某一行列各个元素与另一行列对应元素的代数余子式乘积之和等于0 四行列式公式10、行列式七大公式:1|kA|=k n|A|2|AB|=|A|·|B|3|A T|=|A|4|A-1|=|A|-15|A|=|A|n-16若A的特征值λ1、λ2、……λn,则7若A与B相似,则|A|=|B|五克莱姆法则11、克莱姆法则:1非齐次线性方程组的系数行列式不为0,那么方程为唯一解2如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为03若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0;2 矩阵一矩阵的运算1、矩阵乘法注意事项:1矩阵乘法要求前列后行一致;2矩阵乘法不满足交换律;因式分解的公式对矩阵不适用,但若B=E,O,A-1,A,fA时,可以用交换律3AB=O不能推出A=O或B=O;2、转置的性质5条1A+B T=A T+B T2kA T=kA T3AB T=B T A T4|A|T=|A|5A TT=A二矩阵的逆3、逆的定义:AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1注:A可逆的充要条件是|A|≠04、逆的性质:5条1kA-1=1/k·A-1 k≠02AB-1=B-1·A-13|A-1|=|A|-14A T-1=A-1T5A-1-1=A5、逆的求法:1A为抽象矩阵:由定义或性质求解2A为数字矩阵:A|E→初等行变换→E|A-1三矩阵的初等变换6、初等行列变换定义:1两行列互换;2一行列乘非零常数c3一行列乘k加到另一行列7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵;8、初等变换与初等矩阵的性质:1初等行列变换相当于左右乘相应的初等矩阵2初等矩阵均为可逆矩阵,且E ij-1=E ij i,j两行互换;E i-1c=E i1/c第i行列乘cE ij-1k=E ij-k第i行乘k加到j★四矩阵的秩9、秩的定义:非零子式的最高阶数注:1rA=0意味着所有元素为0,即A=O2rA n×n=n满秩←→ |A|≠0 ←→A可逆;rA<n←→|A|=0←→A不可逆;3rA=rr=1、2、…、n-1←→r阶子式非零且所有r+1子式均为0;10、秩的性质:7条1A为m×n阶矩阵,则rA≤minm,n2rA±B≤rA±B3rAB≤min{rA,rB}4rkA=rAk≠05rA=rACC是一个可逆矩阵6rA=rA T=rA T A=rAA T7设A是m×n阶矩阵,B是n×s矩阵,AB=O,则rA+rB≤n11、秩的求法:1A为抽象矩阵:由定义或性质求解;2A为数字矩阵:A→初等行变换→阶梯型每行第一个非零元素下面的元素均为0,则rA=非零行的行数五伴随矩阵12、伴随矩阵的性质:8条1AA=AA=|A|E → ★A=|A|A-12kA=k n-1A3AB=BA4|A|=|A|n-15A T=A T6A-1=A-1=A|A|-17A=|A| n-2·A★8rA=n rA=n;rA=1 rA=n-1;rA=0 rA<n-1六分块矩阵13、分块矩阵的乘法:要求前列后行分法相同;14、分块矩阵求逆:3 向量一向量的概念及运算1、向量的内积:α,β=αTβ=βTα2、长度定义:||α||=3、正交定义:α,β=αTβ=βTα=a1b1+a2b2+…+a n b n=04、正交矩阵的定义:A为n阶矩阵,AA T=E ←→ A-1=A T←→ A T A=E → |A|=±1二线性组合和线性表示5、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示1←→非齐次线性方程组α1,α2,…,αs x1,x2,…,x s T=β有解;★2←→rα1,α2,…,αs=rα1,α2,…,αs,β系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验6、线性表示的充分条件:了解即可若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示;7、线性表示的求法:大题第二步设α1,α2,…,αs线性无关,β可由其线性表示;α1,α2,…,αs|β→初等行变换→行最简形|系数行最简形:每行第一个非0的数为1,其余元素均为0三线性相关和线性无关8、线性相关注意事项:1α线性相关←→α=02α1,α2线性相关←→α1,α2成比例9、线性相关的充要条件:向量组α1,α2,…,αs线性相关1←→有个向量可由其余向量线性表示;2←→齐次方程α1,α2,…,αs x1,x2,…,x s T=0有非零解;★3←→rα1,α2,…,αs<s 即秩小于个数特别地,n个n维列向量α1,α2,…,αn线性相关1←→ rα1,α2,…,αn<n2←→|α1,α2,…,αn |=03←→α1,α2,…,αn不可逆10、线性相关的充分条件:1向量组含有零向量或成比例的向量必相关2部分相关,则整体相关3高维相关,则低维相关4以少表多,多必相关★推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组α1,α2,…,αs线性无关1←→任意向量均不能由其余向量线性表示;2←→齐次方程α1,α2,…,αs x1,x2,…,x s T=0只有零解3←→rα1,α2,…,αs=s特别地,n个n维向量α1,α2,…,αn线性无关←→rα1,α2,…,αn=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆12、线性无关的充分条件:1整体无关,部分无关2低维无关,高维无关3正交的非零向量组线性无关4不同特征值的特征向量无关13、线性相关、线性无关判定1定义法★2秩:若小于阶数,线性相关;若等于阶数,线性无关专业知识补充1在矩阵左边乘列满秩矩阵秩=列数,矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变;2若n维列向量α1,α2,α3线性无关,β1,β2,β3可以由其线性表示,即β1,β2,β3=α1,α2,α3C,则rβ1,β2,β3=rC,从而线性无关;←→rβ1,β2,β3=3 ←→ rC=3 ←→ |C|≠0四极大线性无关组与向量组的秩14、极大线性无关组不唯一15、向量组的秩:极大无关组中向量的个数成为向量组的秩对比:矩阵的秩:非零子式的最高阶数★注:向量组α1,α2,…,αs的秩与矩阵A=α1,α2,…,αs的秩相等★16、极大线性无关组的求法1α1,α2,…,αs为抽象的:定义法2α1,α2,…,αs为数字的:α1,α2,…,αs→初等行变换→阶梯型矩阵则每行第一个非零的数对应的列向量构成极大无关组五向量空间17、基就是极大线性无关组变换公式:若α1,α2,…,αn与β1,β2,…,βn是n维向量空间V的两组基,则基变换公式为β1,β2,…,βn=α1,α2,…,αn C n×n其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵;C=α1,α2,…,αn-1β1,β2,…,βn18、坐标变换公式:向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=x1,x2,…,x n T,y=y1,y2,…,y n T,,即γ=x1α1 + x2α2 + …+x nαn=y1β1 + y2β2 + …+y nβn,则坐标变换公式为x=Cy或y=C-1x;其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵;C=α1,α2,…,αn-1β1,β2,…,βn六Schmidt正交化19、Schmidt正交化设α1,α2,α3线性无关1正交化令β1=α12单位化4 线性方程组一方程组的表达形与解向量1、解的形式:1一般形式2矩阵形式:Ax=b;3向量形式:A=α1,α2,…,αn2、解的定义:若η=c1,c2,…,c n T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解向量二解的判定与性质3、齐次方程组:1只有零解←→rA=nn为A的列数或是未知数x的个数2有非零解←→rA<n4、非齐次方程组:1无解←→rA<rA|b←→rA=rA-12唯一解←→rA=rA|b=n3无穷多解←→rA=rA|b<n5、解的性质:1若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解2若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解3若η1,η2是Ax=b的解,则η1-η2是Ax=0的解推广1设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+k sηs为Ax=b的解当Σk i=1Ax=0的解当Σk i=02设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解;变式:①η1-η2,η3-η2,…,ηs-η2②η2-η1,η3-η2,…,ηs-ηs-1三基础解系6、基础解系定义:1ξ1,ξ2,…,ξs是Ax=0的解2ξ1,ξ2,…,ξs线性相关3Ax=0的所有解均可由其线性表示→基础解系即所有解的极大无关组注:基础解系不唯一;任意n-rA个线性无关的解均可作为基础解系;★7、重要结论:证明也很重要设A施m×n阶矩阵,B是n×s阶矩阵,AB=O1B的列向量均为方程Ax=0的解2rA+rB≤n第2章,秩8、总结:基础解系的求法1A为抽象的:由定义或性质凑n-rA个线性无关的解2A为数字的:A→初等行变换→阶梯型自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系四解的结构通解9、齐次线性方程组的通解所有解设rA=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+k n-rηn-r 其中k1,k2,…,k n-r为任意常数10、非齐次线性方程组的通解设rA=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+ k1η1+k2η2+…+k n-rηn-r 其中k1,k2,…,k n-r为任意常数五公共解与同解11、公共解定义:如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解12、非零公共解的充要条件:方程组Ax=0与Bx=0有非零公共解←→有非零解←→13、重要结论需要掌握证明1设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,rATA=rA2设A是m×n阶矩阵,rA=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,rAB=rB5 特征值与特征向量一矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量;2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式λ的n次多项式;|λE-A |=0称为矩阵A的特征方程λ的n次方程;注:特征方程可以写为|A-λE|=03、重要结论:1若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量2A的各行元素和为k,则1,1,…,1T为特征值为k的特征向量;3上下三角或主对角的矩阵的特征值为主对角线各元素;△4、总结:特征值与特征向量的求法1A为抽象的:由定义或性质凑2A为数字的:由特征方程法求解5、特征方程法:1解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根可有多重根,写作λ1=λ2=…=λs=实数,不能省略2解齐次方程λi E-A=0,得属于特征值λi的线性无关的特征向量,即其基础解系共n-rλi E-A个解6、性质:1不同特征值的特征向量线性无关2k重特征值最多k个线性无关的特征向量1≤n-rλi E-A≤k i3设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii4当rA=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=05设α是矩阵A属于特征值λ的特征向量,则A fAATA-1A P-1AP相似λfλλλ-1|A|λ-1λαα/ ααP-1α二相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B 8、相似矩阵的性质1若A与B相似,则fA与fB相似2若A与B相似,B与C相似,则A与C相似3相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹即主对角线元素之和推广4若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A与B也相似三矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化;注:Aαi=λiαiαi≠0,由于P可逆,故P的每一列均为矩阵A的特征值λi的特征向量10、相似对角化的充要条件1A有n个线性无关的特征向量2A的k重特征值有k个线性无关的特征向量11、相似对角化的充分条件:1A有n个不同的特征值不同特征值的特征向量线性无关2A为实对称矩阵12、重要结论:1若A可相似对角化,则rA为非零特征值的个数,n-rA为零特征值的个数2若A不可相似对角化,rA不一定为非零特征值的个数四实对称矩阵13、性质1特征值全为实数2不同特征值的特征向量正交3A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ4A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ6 二次型一二次型及其标准形1、二次型:1一般形式2矩阵形式常用2、标准形:如果二次型只含平方项,即fx1,x2,…,x n=d1x12+d2x22+…+d n x n2这样的二次型称为标准形对角线3、二次型化为标准形的方法:1配方法:通过可逆线性变换x=CyC可逆,将二次型化为标准形;其中,可逆线性变换及标准形通过先配方再换元得到;★2正交变换法:通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵注:正交矩阵Q不唯一,γi与λi对应即可;二惯性定理及规范形4、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形;5、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变;注:1由于正负惯性指数不变,所以规范形唯一;2p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=rA三合同矩阵6、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同△7、总结:n阶实对称矩阵A、B的关系1A、B相似B=P-1AP←→相同的特征值2A、B合同B=C T AC←→相同的正负惯性指数←→相同的正负特征值的个数3A、B等价B=PAQ←→rA=rB注:实对称矩阵相似必合同,合同必等价四正定二次型与正定矩阵8、正定的定义二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵;9、n元二次型x T Ax正定充要条件:1A的正惯性指数为n2A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E3A的特征值均大于04A的顺序主子式均大于0k阶顺序主子式为前k行前k列的行列式10、n元二次型x T Ax正定必要条件:1a ii>02|A|>011、总结:二次型x T Ax正定判定大题1A为数字:顺序主子式均大于02A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:1若A是正定矩阵,则kAk>0,A k,A T,A-1,A正定2若A、B均为正定矩阵,则A+B正定。

【数学】2012考研数学线性代数必记的重要结论和公式

【数学】2012考研数学线性代数必记的重要结论和公式

【关键字】数学1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积; 的特征值全不为0; 是正定矩阵;的行(列)向量组是的一组基; 是中某两组基的过渡矩阵; 2. 对于阶矩阵: 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均、可逆:若,则: Ⅰ、; Ⅱ、;②、;(主对角分块) ③、;(副对角分块) ④、;(拉普拉斯) ⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤; ②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n m mn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面; 6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论) 1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

注2:交换i,j两列,记为ri↔ri(ci↔cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。

线性代数公式定理总结

线性代数公式定理总结

线性代数公式定理总结线性代数是一门研究向量空间及其线性映射与线性变换的数学学科,涉及了许多重要的公式和定理。

本文将对线性代数中的关键公式和定理进行总结,以帮助读者更深入地理解线性代数的基本概念和原理。

一、向量的基本性质和运算公式1. 向量空间的定义:向量空间是一个基于域上的向量集合,在满足一定性质(如封闭性、加法交换律等)的条件下进行线性组合和标量乘法运算。

2. 向量的加法和数乘:对于向量a和b,有加法公式a+b=b+a和数乘公式c(a+b) = ca + cb。

3. 零向量的性质:对于任意向量a,有a + 0 = a,其中0为零向量。

4. 向量的负向量:对于向量a,存在一个向量-b使得a + (-b) = 0。

5. 向量的数量积:向量a和b的数量积(内积)表示为a·b =||a|| ||b|| cosθ,其中||a||和||b||分别为向量a和b的模长,θ为a和b之间的夹角。

6. 内积的性质:内积满足加法性、齐次性、对称性和正定性等性质,如对于向量a,b和c,有a·(b + c) = a·b + a·c。

二、线性方程组和矩阵运算公式1. 线性方程组的标准形式:线性方程组可以表示为AX = B的形式,其中A为系数矩阵,X为未知变量向量,B为常数向量。

2. 线性方程组的解的存在性和唯一性:线性方程组的解存在并且唯一当且仅当系数矩阵A的秩等于常数向量B的秩。

3. 矩阵的乘法和转置:对于矩阵A和B,有乘法公式AB ≠ BA,矩阵转置的性质(A^T)^T = A和(AB)^T = B^T A^T。

4. 逆矩阵的性质:对于方阵A,若存在逆矩阵A^{-1}使得AA^{-1} = A^{-1}A = I,其中I为单位矩阵,则称A为可逆矩阵。

5. 逆矩阵的求解:对于方阵A,若A可逆,则可以使用伴随矩阵求解逆矩阵A^{-1} = (1/ det(A)) adj(A)。

6. 矩阵的行列式和性质:矩阵的行列式表示为det(A),满足交换行列式的值不变、对角矩阵的行列式等于对角线元素的乘积等性质。

线性代数定理总结

线性代数定理总结

线性代数定理总结
线性代数是一种数学分支,它利用向量空间的思想和矩阵来解决特定的
方面的问题,主要应用于分析和模拟工程中的运筹学和控制系统类的计算机
模型和设计,因此它可以被用来解决计算机科学类的实际问题。

线性代数定
理是一个强大的数学理论,它提供了许多有用和关键的算法。

以下是线性代
数定理总结:
一、矩阵乘法定理。

矩阵乘法定理是一个关于矩阵之间的相乘的重要定理,它允许矩阵之间进行组合以形成新矩阵,也被称为矩阵的乘法上的定理。

二、线性方程组的解定理。

这个定理指明将一系列的线性方程组合成一
个可用的形式,并且可以使用矩阵乘法来解决,求出线性方程组的解。

三、特征值和特征向量定理。

它可以提供矩阵的特征向量和特征值,这
些向量和值可以用来分析数据和表示矩阵之间的关系。

四、正交投影定理。

这一定理可以用来把一个向量投射到另一个向量上,形成两个向量之间的正交投影。

五、二次型定理。

它用来研究二次函数的特征,其中斜率、交点和表示
函数的最高或最低值都是二次型定理提供的重要内容。

六、变换和表达定理。

它用来研究复合变换,其中形如平移、旋转和缩
放的变换都可以用可以利用表达和变换的定理来描述和还原图形的表示。

以上是线性代数定理总结,很多重要的算法可以从这些定理中得出,它
们在计算机科学、数据分析、科学发现等方面都有着广泛的应用。

综上所述,线性代数定理无疑是一个强大的工具,它将为计算机科学带来更多的发现。

线性代数超强的总结

线性代数超强的总结

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; tr(E )=n n 1e ,2e ,⋅⋅,⋅n e④;⑤任意一个维向量都可以用线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式. √设,,m n n s A B ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 为量向列的12,,,s r r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关. m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++,从而A的特征值为:11122n n A a b a b a b λ==+++tr , 230n λλλ====.√ 若A 的全部特征值12,,,n λλλ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,n A AAλλλ.√ 1122,.m m Ak kAa b aA bEAA AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:AB√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成1112的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B -- 若,A B 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:AΛ (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:更多学习资源欢迎关注微信公众号:大学资源库;知乎:大学资源;QQ空间:835159973[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , CD ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. √ 若AB ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:AB√ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x xx d y =∑标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵11110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同.13√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x >.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0; ③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(iλ大于0).√ 成为正定矩阵的必要条件:0ii a > ; 0A >.14。

线性代数必须熟记的结论

线性代数必须熟记的结论

1、行列式1. 行列式共有个元素,展开后有项,可分解为行列式; n 2n !n 2n2. 代数余子式的性质:①、ij A 和的大小无关;ij a ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A ++=−=−M4. 设行列式n D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D −=−; 将D 顺时针或逆时针旋转90,所得行列式为o2D ,则(1)22(1)n n D D −=−;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n −× −;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n −× −;⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m n CA OA AB B OB C==−⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk k k E A S λλλn k −=−=+−∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =−; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是阶可逆矩阵:n ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组有非零解; 0Ax =⇔n b R ∀∈,总有唯一解; Ax b =⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;线性代数必须熟记的结论⇔A 的行(列)向量组是的一组基; n R ⇔A 是中某两组基的过渡矩阵;n R 2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立; 3.1**111**()()()()()()T T T T A A A A A A −−−−===1***11()()()T T TAB B A AB B A AB B A −−−===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠O,则: Ⅰ、12s A A A A =L ;Ⅱ、; 111121s A A A A −−−−⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠O②、111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟;(主对角分块) ③、111O A O B B O A O −−−⎛⎞⎛⎞=⎜⎜⎟⎝⎠⎝⎠⎟1⎟;(副对角分块) ④、;(拉普拉斯) 1111A C A A CB O B OB −−−−−⎛⎞−⎛⎞=⎜⎜⎟⎝⎠⎝⎠⑤、11111A O A O C B B CAB −−−−−⎛⎞⎛⎞=⎜⎜⎟−⎝⎠⎝⎠⎟;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m 矩阵n ×A ,总可经过初等变换化为标准形,其标准形是唯一确定的:;r m nE OF O O ×⎛⎞=⎜⎟⎝⎠等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则(,)(,)rA E E X A 可逆,且1X A −=;②、对矩阵做初等行变化,当(,)A B A 变为E 时,B 就变成1A B −,即:;1(,)(,)cA B E A B − ∼ ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且; 1x A b −=4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j −=,例如:;1111111−⎛⎞⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠④、倍乘某行或某列,符号(())E i k ,且11(())((E i k E i k −=,例如:1111(011k k k −⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠); ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k −=−,如:;11111(11k k k −−⎛⎞⎛⎞⎜⎟⎜⎟=≠⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠0))5. 矩阵秩的基本性质:①、0(;)min(,m n r A m n ×≤≤②、;()()T r A r A =③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则;(可逆矩阵不影响矩阵的秩) ()()()()r A r PA r AQ r PAQ ===⑤、max ;(※) ((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※) ()()()r A B r A r B +≤+⑦、;(※)()min((),()r AB r A r B ≤)⑧、如果A 是矩阵,m n ×B 是矩阵,且n s ×0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为阶方阵,则;n ()()()r AB r A r B n ≥+−6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)×行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎞⎜⎜⎜⎟⎝⎠⎟⎟m 二项展开式:01111110()nnnn m n mmn n n nm m n nnnnnnm a b C a C a b C a b Ca b C b Ca b −−−−=+=++++++=∑L L −;注:Ⅰ、(展开后有项;)n a b +1n +Ⅱ、0(1)(1)!1123!()!−−+==−LL L m n n n n n n m n C C m m n m ==n C −=1Ⅲ、组合的性质:;111102−−+−===+=∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()nr A n r A r A n r A n = ⎧⎪==⎨⎪−<−⎩;②、伴随矩阵的特征值:*1*(,AAAX X A A A A X X λλλ− == ⇒ =);③、*1A A A −=、1*n A A−=8. 关于A 矩阵秩的描述:①、,()r A n =A 中有阶子式不为0,n 1n +阶子式全部为0;(两句话)②、,()r A n <A 中有阶子式全部为0; n ③、,()r A n ≥A 中有阶子式不为0;n 9. 线性方程组:,其中Ax b =A 为矩阵,则:m n ×①、m 与方程的个数相同,即方程组Ax b =有个方程;m ②、n 与方程组得未知数个数相同,方程组Ax b =为元方程; n 10. 线性方程组的求解:Ax b =①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由个未知数个方程的方程组构成n 元线性方程:n m ①、;11112211211222221122n n n n m m nm n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L LLLLLLLLLLL L n②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⇔=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L M M O M M M L (向量方程,A 为m n ×矩阵,个方程,个未知数)m n ③、()1212n n x x a a a x β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M (全部按列分块,其中);12n b b b β⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠M ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(为未知数的个数或维数)n 4、向量组的线性相关性1.个维列向量所组成的向量组m n A :12,,,m αααL 构成n m ×矩阵12(,,,)m A =L ααα;m 个维行向量所组成的向量组n B :12,,,T T TmβββL 构成m n ×矩阵12T T T m B βββ⎛⎞⎜⎟⎜=⎜⎟⎜⎟⎜⎟⎝⎠M ⎟; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)0Ax ⇔=②、向量的线性表出是否有解;(线性方程组) Ax b ⇔=③、向量组的相互线性表示 是否有解;(矩阵方程)AX B ⇔=3. 矩阵与m n A ×l n B ×行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ;(()(T r A A r A =)101P 例15) 5.维向量线性相关的几何意义:n ①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααL α线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s ααL α线性无关,则121,,,s ααα−L 必线性无关;(向量的个数加加减减,二者为对偶) 若维向量组r A 的每个向量上添上个分量,构成n 维向量组n r −B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为)能由向量组r B (个数为)线性表示,且s A 线性无关,则r (二版s ≤74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; (()(,)r A r A B ⇔=85P 定理2)向量组A 能由向量组B 等价(()()(,)r A r B r A B ⇔ ==85P 定理2推论) 8. 方阵A 可逆存在有限个初等矩阵,使⇔12,,,l P P P L 12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵与m n A ×l n B ×:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则与0Ax =0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若,则:m s s n m n A B C ×××=①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是的解,考试中可以直接作为定理使用,而无需证明; 0ABx =①、 只有零解0ABx =0Bx ⇒ =只有零解;②、0Bx = 有非零解一定存在非零解;0ABx ⇒ =12. 设向量组12:,,,n r r B b b b ×L 可由向量组线性表示为:(12:,,,n s s A a a a ×L 110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中为,且K s r ×A 线性无关,则B 组线性无关()r K r ⇔=;(B 与的列向量组具有相同线性相关性) K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q 注:当时,为方阵,可当作定理使用;r s =K 13. ①、对矩阵,存在, m n A ×n m Q ×m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵,存在, m n A ×n m P ×n PA E =()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααL α线性相关⇔存在一组不全为0的数,使得12,,,s k k k L 11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设的矩阵m n ×A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:;()r S n r =−16. 若*η为的一个解,Ax b =12,,,n r ξξξ−L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ−L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵或T A A E ⇔=1T A A −=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即;1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ②、若A 为正交矩阵,则也为正交阵,且1T A A −=1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L 1b a =1;122211[,][,]b a b a b b b =−1LLL12112112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b −1−−−=−−−− L ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、可逆; Q ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ,其中可逆;⇔=T C AC B⇔与有相同的正、负惯性指数; T x Ax T x Bx ③、A 与B 相似 1−⇔=P AP B ; 5. 相似一定合同、合同未必相似;若为正交矩阵,则C T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. 元二次型为正定:n T x Ax A ⇔的正惯性指数为;n A ⇔与E 合同,即存在可逆矩阵,使C T C AC E =; A ⇔的所有特征值均为正数;的各阶顺序主子式均大于0; A ⇔0,0ii a A ⇒>>;(必要条件)。

(完整版)线性代数重要知识点及典型例题答案

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

线性代数须熟记的结论

线性代数须熟记的结论
02
线性变换的矩阵表示具有一些重要性质,如相似变换的性质 性变换的矩阵表示,可以方便地计算线性变换在不同 基下的表示。
线性变换的核与象
线性变换的核是指被映射到零向量的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{0}$的 向量$mathbf{x}$构成的子空间。
基底的性质
一个向量空间中,基底是由 不共线的向量组成的,且这 些向量能线性表示该空间中
的任意向量。
基底的判定
一个向量组是某向量空间的 基底当且仅当该向量组线性 无关。
矩阵的秩与行列式
矩阵的秩的定义
矩阵的秩是其行(或列)向量组的秩, 即该行(或列)向量组中线性无关向 量的个数。
矩阵的秩的性质
矩阵的秩是其行(或列)向量组的秩, 且矩阵的秩等于其行秩和列秩。
线性变换的象是指被映射到某个向量$mathbf{b}$的所有向量构成的子空间,即满足$T(mathbf{x}) = mathbf{b}$的向量$mathbf{x}$构成的子空间。
核与象是线性变换的重要概念,它们在解决线性代数问题中具有广泛应用,如解线性方程组、求矩阵的 逆等。
05 二次型与矩阵的平方根
特征向量
对于给定的矩阵A和特征值λ,如果存 在一个非零向量x,使得Ax=λx成立, 则称x为矩阵A对应于λ的特征向量。
特征多项式与特征值的性质
特征多项式
对于给定的矩阵A,存在一个多项式f(λ),使得f(λ)=|λE-A|,其中E为单位矩阵,f(λ)称为矩阵A的特征多项式。
特征值的性质
特征值是特征多项式的根,即f(λ)=0的解。特征值具有复数、重数和代数重数等性质。
二次型的定义与标准型
二次型是实数域上的二次齐次多项式 函数,可以表示为$f(x) = Ax^2 + 2Bxy + Cy^2$的形式。

线性代数《向量》重要结论与公式及常见题型

线性代数《向量》重要结论与公式及常见题型

◆定理1 向量组α1, α2,…, αn线性相关(⽆关)的充要条件是向量组中⾄少有⼀个(任⼀)向量可由(均不能)其余s-1个向量线性表出.◆定理2 向量组αj=(α1j, α2j,…, αnj)(j=1,2,…,s)线性相关(⽆关)的充要条件是齐次线性⽅程组有⾮零解(唯⼀零解).◆定理3 向量组α1, α2,…, αn线性⽆关,向量组α1, α2,…, αn,β线性相关,则β可由α1,α2,…,αn线性表出,且表法唯⼀.◆定理4 向量组(I)β1,β2,…,βn中的每⼀个向量均可由向量组(II)α1, α2,…, αm线性表出,且n>m,则向量组(I)β1,β2,…,βn线性相关(以少表多,则多相关);反之,若(I)中每⼀个向量均可由(II)表出,且(I)线性⽆关,则s≤t.◆向量组等价两向量组等价,且记作(I)≅ (II).如果(I) α1, α2,…, αn和(II)β1,β2,…,βn可以互相线性表出,则成两向量组等价◆三秩相等r(A)=A的⾏秩(A的⾏向量组的值)=A的列秩(A的列向量组的值)◆初等变换不改变矩阵的秩设P1,Q1为初等矩阵,P,Q为可逆矩阵,则(1) r(A)=r(P1A)=r(AQ1)=r(P1AQ1)=r(PA)=r(AQ)=r(PAQ);(2) PAQ=B⇔A≅B⇔r(A)= r(B);(3) 若A经过初等⾏变换得到B,则A的⾏向量组与B的⾏向量组是等价向量组;(4) 若A经过初等⾏变换得到B,则A和B的任何相应的部分列向量组具有相同的线性相关性.◆有关等式与不等式设A是m×n矩阵,B是满⾜有关矩阵运算要求的矩阵,则◆施密特正交化公式如果向量αTβ=0,则称向量α,β为正交向量.设α1,α2,…,αn为线性⽆关组,则其对应的正交向量组可按如下公式求:得到β1,β2,…,βn为正交向量组,将该向量组单位化,则得到⼀组标准正交向量组.◆过渡矩阵设α=(α1,α2,…,αn)与β=(β1,β2,…,βn)是R n的两组基,如果有β=AαT,则A称为过渡矩阵. 过渡矩阵是可逆矩阵.◆正交矩阵设A是n阶⽅阵,满⾜AA T=E或A T A=E,则称A为正交矩阵. A是正交矩阵,A T=A-1⇔A的⾏(列)向量组是标准正交向量组.◆正交变换设A是正交矩阵,则称y=Ax为正交变换,正交变换保持向量的内积不变,即保持向量的长度和两向量的夹⾓不变.(1) 有关向量的概念及其性质的命题解题⽅法:解题⽅法●向量的线性组合,向量组的线性相关与线性⽆关,极⼤线性⽆关组,向量空间的基,⼀定记熟.●重要定理,如增加向量不改变相关,增加分量不改变⽆关,等价向量组等秩,被表出的⽆关组的秩不超过表出组向量个数。

线性代数相关定理结论总结材料(上)

线性代数相关定理结论总结材料(上)
2.向量组的任意两个极大线性无关组等价;
3.
4.等价的线性无关向量组所含向量个数相等。
5.向量组任意两个极大线性无关组的向量个数相等。

1.
2.
3.等价的向量组有相同的秩。
4.矩阵的秩:
(1)行秩等于列秩;
(2)初等变换不改变矩阵的秩;
(3)
(4)任一非零矩阵的秩等于它的不为零的的子式的最高阶数,即:
其中每一个向量都不能由其他向量表示出来
有非零解
只有零解
性质:
1.部分组线性相关→整个向量组线性相关;
整个向量组线性无关→部分组相性无关。
2.
3.向量组线性无关→延伸组(每个向量都添加m个分量)线性无关;
向量组线性相关→缩短组(每个向量都减少m个分量)线性相关。
4.
等价性
性质:反身性、对称性、传递性
1.向量组与它的极大线性无关组等价;
(5)
线性方程组的解
1.线性方程组有解判定
即:
若 ,则一定有非零解。
2.线性方程组解的构造
若 ,则有 个线性无关的基本解组
通解:基本解组的线性组合,即
非齐次线性方程组
若其特解为 ,导出组 的解集为 ,则解为
3.基和维数
基:
其为 的一个基。
性质:(1)V的任意两个基所含向量个数(维数: )相等;
(2)n元齐次线性方程的解空间W满足
克莱姆法则
n元方程组
则:
拉普拉斯定理:
n阶行列式A中,取定k行(列),则这k行(列)元素形成的所有k阶子式与他们自己的代数与子式的乘积之和等于A。
eg:五阶
线性空间
若V满足:
(1)
(2)
(3)

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结1线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的20__年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。

下面,就将线代中重点内容和典型题型做了总结,希望对20__考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《20__年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。

考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

考研线代必须熟结论

考研线代必须熟结论

考研线代必须熟结论————————————————————————————————作者:————————————————————————————————日期:2考研线代必须熟记结论1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数总结

线性代数总结

线性代数总结第一章行列式1、 二阶行列式和三阶行列式计算方法① 二阶行列式主对角线两数乘机减去次对角线两数乘机② 三阶行列式 a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21-a33-a11a23a32(主对角线为“ + ”次对角线为“-”)注意:对角线法则只适用于二、三阶行列式2、 n 阶行列式的计算①、主对角行列式:主对角元素的乘积;结论1 m=n ,若D M 0 结论2 m=n ,若方程组无解或有两个以上的解 非齐次线性方程组:b1,b2,,,,不全为0。

齐次线性方程组: b1=b2=,, =b n=0。

X1=X2=, =Xn=0,称为齐次线性方程组的零解;②、畐y 对角行列式:畐W 角元素的乘积 ③、上、下三角行列式( 门 =1 k I ) n(n 工X (_1)F ;:主对角元素的乘积;④、 |r I 和丄:副对角元素的乘积 x (^) n (n_D23、(性质性质性质 性质 性质探)行列式的性质 1行列式与它的转置行列式相等 D=DT 。

2行列式中交换任意两行或两列,行列式改变符号。

3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。

行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。

4把行列式的某一列(行)的各个元素乘以同一数然后加到另一列(行)对应的元素 上去,行列式不变。

若行列式的某一列(行)的元素都是两数之和, 例如第i 列的元素都是两数之和,则 D 等于两个行列式之和。

推论 推论 推论如果行列式有两行(列)完全相同,则此行列式等于零。

行列式D 当中有一行(列)元素全为零,则 行列式D 中有两行(列)对应元素成比例,则D=0。

D=0。

4、(探)行列式按行(列)展开①代数余子式和余子式的关系:M ij = (/)宀為 Aj =(-仃恤② 范德蒙行列式:大指标减小指标的连乘积;③ 克拉默法则a11X1+a12X2+ ,, +a1nXn=b1+a2nXn=b2 an 1X1+a n2X2+ ,, +annXn=bn7 方程组有唯一解 X1=D1\D, ,, , Xn=Dn\D7 D=0XI、X2、,,、Xn不全为0,称为齐次线性方程组的非零解。

线性代数的重要结论(考研)

线性代数的重要结论(考研)

线性代数中的有关重要结论一、n 阶方阵A 可逆的充要条件 10A ¹。

2 存在方阵 B ,使得AB E =或BA E =。

3 A 可表示成若干个初等矩阵的乘积。

4 A 特征值全不为零。

5 A 可经过初等变换变为E ,或等价于E 。

6 A 的行(列)向量组线性无关。

7 A 的行(列)向量组的秩n =。

或()r A n =。

或*()r A n =。

8 A 的行(列)向量组线性为向量空间n R 的一组基。

9 齐次线性方程组0Ax =只有零解。

10 非齐次线性方程组Ax b =有惟一解。

11T AA 正定。

二、初等行变换的作用 1 将矩阵化成阶梯形:①求矩阵的秩,向量组的秩;②判断向量组的线性相关性,求向量组的极大无关组; ③判定线性方程组是否无解、有唯一解、有无穷多解; ④求齐次线性方程组基础解系中解向量的个数。

2 将矩阵化成行最简形: ①求逆矩阵;②解线性方程组,解矩阵方程; ③求齐次线性方程组的基础解系;④将向量组中的向量用其极大无关组线性表示。

3 初等行变换的性质:①不改变矩阵(向量组)的秩;②不改变线性方程组的解,行向量组等价; ③不改变列向量组的线性相关性。

④对m n ´的矩阵,初等行变换相当于左乘一个m 阶初等矩阵。

三、有关秩的结论 1 },min{)(0n m A r n m ≤≤⨯。

2 ()()()()T T T r A r A r A A r AA ===。

3()()(0)r kA r A k = 。

4 若~A B ,则()()r A r B =,或存在可逆阵,P Q ,使得PAQ B =,则()()r A r B =。

5 ()min{(),()}r AB r A r B ≤;或向量组A 可由向量组B 线性表示,则()()r A r B ≤。

6()(,)(,)r A B r A B B r A B ±≤±=,min{(),()}(,)()()r A r B r A B r A r B ≤≤+。

线性代数必记结论

线性代数必记结论

线性代数必考的知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ); ④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性 1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关; 5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数必考知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r rr r r r r b a b a b a b a b b b b b b b b b ----=----; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

相关文档
最新文档