永磁同步电机控制课件
合集下载
高教社2024新能源汽车电工电子技术教学课件57认识永磁同步电机的控制系统
一、永磁同步电机控制系统的功能
(二)改变转向
Ao
改变通入定子三相绕组中的
A
三相交流电的相序就可改变旋转
磁场的旋转方向,从而改变电机
的转向,进而实现前进或后退。
Bo
GND
M
Bo
B
Ao
VCC
认识永磁同步电机的控制系统
一、永磁同步电机控制系统的功能
(三)改变电机运行状态
与其它电机一样,同步电机也
是可逆的,既可以作发电机进行能量
(一)空间矢量控制
磁场定向控制
将交流电机空间磁场矢量的方向,作
为坐标轴的基准方向,通过坐标变换,将电
机定子电流,正交分解为与磁场方向一致的
励磁电流分量和与磁场方向垂直的转矩电流
分量,然后就可以像直流电机一样对励磁电
流分量和转矩电流分量分别进行控制。
认识永磁同步电机的控制系统
二、永磁同步电机控制系统的控制策略
认识永磁同步电机的控制系统
目录
contents
一
永磁同步电机控制系统的功能
二
永磁同步电机系统的控制策略
三
永磁同步电机的优缺点
认识永磁同步电机的控制系统
一、永磁同步电机控制系统的功能
改变速度
改变转向
改变电机运行状态
永磁同步电机
认识永磁同步电机的控制系统
(一)电机速度的改变
一、永磁同步电机控制系统的功能
从而实现改变电机的转速,也就是我们通常所说的变频调速原理。
实际转子转速公式:
601
= 0 (1 − ) =
公式中: 表示旋转磁场转速;
0表示旋转磁场转速;
表示转差率。
认识永磁同步电机的控制系统
永磁同步电机的模型和方法课件
电流方程
电流方程描述了PMSM的定子 电流与转子位置之间的关系。
电流方程通常表示为:I = Iq×sin(θr) + Id×cos(θr),其中 I是电流矢量,Iq是定子电流矢 量,Id是直轴电流矢量,θr是转
子位置角。
该方程反映了随着转子位置的变 化,定子电流矢量的变化情况。
磁链方程
磁链方程通常表示为:Ψ = L0×I + L1×(θr),其中Ψ 是磁通链数,L0和L1是与电机结构有关的常数,θr 是转子位置角。
06 参考文献
参考文献
01
总结词
详细描述了PMSM的数学模型和等效电路模型,并给出了仿真结果和实
验结果。
02 03
详细描述
本文介绍了永磁同步电机的数学模型和等效电路模型,通过仿真和实验 验证了模型的准确性和有效性。该文还对PMSM的控制器设计进行了详 细讨论,为PMSM的控制提供了理论依据。
总结词
磁链方程描述了PMSM的磁通链数与转子位置角之间 的关系。
该方程反映了随着转子位置的变化,磁通链数的变化 情况。
转矩方程
转矩方程描述了PMSM的输出转矩与定子电流之间的关系。
转矩方程通常表示为:T = (P/2π)×(θr×Iq),其中T是输出转矩,P是电机极对数,θr是转 子位置角,Iq是定子电流矢量中的直交分量。
永磁同步电机的发展趋势和挑战
发展趋势
随着技术的不断发展,永磁同步电机将朝着更高效率、更高可靠性、更小体积和更低成本的方向发展 。同时,随着智能制造和物联网技术的快速发展,永磁同步电机的智能化和网络化也将成为未来的发 展趋势。
挑战
尽管永磁同步电机具有许多优点,但在高温、高湿、高海拔等恶劣环境下运行时,仍存在一些挑战。 例如,高温会导致永磁材料性能下降,高湿会使电机腐蚀生锈,高海拔会使电机功率下降等。因此, 提高永磁同步电机的环境适应性是当前面临的重要问题之一。
《永磁同步电动机》课件
面临的挑战与解决方案
成本问题
随着高性能永磁材料价格的上涨,永磁同步电动机的成本 也随之增加。解决方案包括采用替代性材料、优化设计等 降低成本。
控制精度问题
在某些高精度应用场景中,永磁同步电动机的控制精度仍 需提高。解决方案包括采用先进的控制算法和传感器技术 提高控制精度。
可靠性问题
在高温、高湿等恶劣环境下,永磁同步电动机的可靠性可 能会受到影响。解决方案包括加强散热设计、提高材料耐 久性等提高可靠性。
总结词
风力发电系统中应用永磁同步电动机,具有 高效、可靠、低噪音等优点。
详细描述
风力发电系统需要能够在风能不稳定的情况 下高效、可靠运行的电机,永磁同步电动机 能够满足这些要求。其高效、可靠、低噪音 的特性使得风力发电系统在能源利用效率和
可靠性方面具有显著优势。
THANKS
感谢观看
工作原理
永磁同步电动机通过控制器调节电机电流,使电机转子与定子磁场保持同步, 从而实现电机的运转。其工作原理基于磁场定向控制和矢量控制技术。
种类与特点
种类
永磁同步电动机根据结构可分为 表面贴装式、内置式和无铁心式 等类型。
特点
永磁同步电动机具有效率高、节 能效果好、运行稳定、维护方便 等优点,广泛应用于工业自动化 、新能源、电动汽车等领域。
05
CATALOGUE
永磁同步电动机的发展趋势与挑战
技术发展趋势
高效能化
随着技术的不断进步,永磁同步电动机的效率和性能不断提升, 能够满足更多高效率、高负载的应用需求。
智能化
随着物联网、传感器等技术的发展,永磁同步电动机的智能化水平 不断提高,可以实现远程监控、故障诊断等功能。
紧凑化
为了适应空间受限的应用场景,永磁同步电动机的尺寸和重量不断 减小,同时保持高性能。
《永磁同步电机》课件
《永磁同步电机》 PPT课件
contents
目录
• 永磁同步电机概述 • 永磁同步电机的设计与优化 • 永磁同步电机的控制技术 • 永磁同步电机的应用实例 • 永磁同步电机的挑战与展望
01
永磁同步电机概述
定义与工作原理
定义
永磁同步电机是一种利用永久磁体产 生磁场,通过控制器对电机电流的精 确控制实现电机转子和定子磁场同步 运行的电动机。
电动汽车驱动系统
01
电动汽车驱动系统是永磁同步电机的重要应用领域之
一。
02
永磁同步电机具有高效、可靠、低噪音等优点,能够
提高电动汽车的续航里程和性能。
03
在电动汽车驱动系统中,永磁同步电机可以作为主驱
电机,提供动力输出,实现车辆的加速和减速控制。
工业自动化设备
工业自动化设备是永磁同步电 机的另一个重要应用领域。
内运行。
噪声与振动分析
03
对电机运行过程中的噪声和振动进行测试和分析,以评估其运
行平稳性。
03
永磁同步电机的控制技 术
控制策略
PID控制
传统的控制方法,通过 比例、积分、微分三个
参数调整电机性能。
模糊控制
基于模糊逻辑的方法, 处理不确定性和非线性
问题。
神经网络控制
模仿人脑神经元网络, 处理复杂的模式和预测
02
永磁同步电机的设计与 优化
电机设计
磁路设计
根据电机性能要求,选择合适的磁路结构,如径 向、轴向或横向磁路。
绕组设计
根据电机尺寸和功率要求,设计绕组的匝数、线 径和绕组方式。
冷却系统设计
为确保电机长时间稳定运行,需设计有效的冷却 系统,如风冷或水冷。
contents
目录
• 永磁同步电机概述 • 永磁同步电机的设计与优化 • 永磁同步电机的控制技术 • 永磁同步电机的应用实例 • 永磁同步电机的挑战与展望
01
永磁同步电机概述
定义与工作原理
定义
永磁同步电机是一种利用永久磁体产 生磁场,通过控制器对电机电流的精 确控制实现电机转子和定子磁场同步 运行的电动机。
电动汽车驱动系统
01
电动汽车驱动系统是永磁同步电机的重要应用领域之
一。
02
永磁同步电机具有高效、可靠、低噪音等优点,能够
提高电动汽车的续航里程和性能。
03
在电动汽车驱动系统中,永磁同步电机可以作为主驱
电机,提供动力输出,实现车辆的加速和减速控制。
工业自动化设备
工业自动化设备是永磁同步电 机的另一个重要应用领域。
内运行。
噪声与振动分析
03
对电机运行过程中的噪声和振动进行测试和分析,以评估其运
行平稳性。
03
永磁同步电机的控制技 术
控制策略
PID控制
传统的控制方法,通过 比例、积分、微分三个
参数调整电机性能。
模糊控制
基于模糊逻辑的方法, 处理不确定性和非线性
问题。
神经网络控制
模仿人脑神经元网络, 处理复杂的模式和预测
02
永磁同步电机的设计与 优化
电机设计
磁路设计
根据电机性能要求,选择合适的磁路结构,如径 向、轴向或横向磁路。
绕组设计
根据电机尺寸和功率要求,设计绕组的匝数、线 径和绕组方式。
冷却系统设计
为确保电机长时间稳定运行,需设计有效的冷却 系统,如风冷或水冷。
永磁同步电机矢量控制ppt课件
18
a) 稳态矢量图
b) 相量图
图3-9 面装式PMSM矢量图和相量图
19
此时,可将式(3-17)直接转换为
U s Rs Is jωs Ls Is jωsΨ f Rs Is jωs Ls Is jωs Lm If Rs Is jωs Ls Is E0
fC
(3-4)
式中, fA 、 fB 和 fC 分别为永磁励磁磁场链过 ABC 绕组产生的磁链。
12
同电励磁三相隐极同步电动机一样,因电动机气隙均匀,故 ABC 绕组
的自感和互感都与转子位置无关,均为常值。于是有
LA LB LC Ls Lm1 式中, Ls 和 Lm1 分别为相绕组的漏电感和励磁电感。另有
3.1.1 转子结构及物理模型
永磁同步电动机是由电励磁三相同步电动机发展而来。它用永磁体代替了电 励磁系统,从而省去了励磁线圈、集电环和电刷,而定子与电励磁三相同步电动 机基本相同,故称为永磁同步电动机(Permanent Magnet Synchronous Motor, PMSM)。
用于矢量控制的 PMSM,要求其永磁励磁磁场波形是正弦的,这也是 PMSM 的一个基本特征。
B (Lsσ Lm ) iB fB
C
iC fC
(3-9)
同三相感应电动机一样,由三相绕组中的电流 iA 、iB 和 iC 构成了定子电流矢 量 is (如图 3-6b 所示)。
14
同理由三相绕组的全磁链可构成定子磁链矢量 ψs ,由 fA 、 fB 和 fC 可构成转子磁链矢量 ψf ,即有
图 3-6b 中,将永磁励磁磁场轴线定义为 d 轴,q 轴顺着旋转方向超 前 d 轴 90°电角度。 fs 和 is 分别是定子三相绕组产生的磁动势矢量和定 子电流矢量,产生 is ( fs ) 的等效单轴线圈位于 is ( fs ) 轴上,其有效匝数为 相绕组的 3 2 倍。于是,图 3-6b 便与图 1-17 具有了相同的形式,即面 装式 PMSM 和三相隐极同步电动机的物理模型是相同的。
永磁同步电动机教材PPT课件
1用可控整流调压逆变器调频的交直交变频器2用不可控整流器整流用斩波器调压再用逆变器调频的交直交变频器3用不可控整流器整流用pwm逆变器同时调压调频的交直交变频器4用pwm可控整流器整流用pwm逆变器同时调压调频的交直交变频器当二次电子数最少为一个时可代替初始电子的作用继续不断从阴极发出电子形成不依赖外界因素的初始电子从而产生自持放电
E 4.44 f W k Φ • 对一台电机,其1 结构参数确定,则1有 1 W1 m
E • 说明只要协调地控制 、 ,即可1 达到控制气隙磁通 的目的。但由于电机绝缘和供 Φ 电电源的限制,电机运m行频率在基频以下及基频以上调速时须采取不同的控制方式。
f1
E1 f1 Φm
第26页/共77页
1. 基频以下调速
• 在变频调速系统中,由变频器提供给电机的频率变 化的电压或电流激励均是非正弦的,除基波外,还 包含大量的谐波。分析表明,决定感应电机变频运 行特性的主要还是基波,谐波分量只起着使电机电 压或电流畸变、产生谐波损耗、恶化力能指标、引 起转矩脉动的作用。
第24页/共77页
变频调速的基本控制方式
• 若希望一台感应电机获得良好的运行性能、力能指标,必须保持其磁路工作点稳定不变,
• 永磁同步电动机与感应电动机相比,不需要无功励磁电流可以显著提高功率因数(可达 到1、甚至容性),减少了定子电流和定子电阻损耗,而且在稳定运行时没有转子电阻损 耗,进而可以因总损耗降低而减小风扇(小容量电机甚至可以去掉风扇)和相应的风摩损 耗,从而使其效率比同规格感应电动机可提高2—8个百分点。
第2页/共77页
即保持每极磁通量 额定不变。因为若 太强,电机磁路饱和,励磁电流、励磁损耗
及发热增大;若太弱,电机力能指标下降,电机出力不够,铁芯也未充分利用。换句话
E 4.44 f W k Φ • 对一台电机,其1 结构参数确定,则1有 1 W1 m
E • 说明只要协调地控制 、 ,即可1 达到控制气隙磁通 的目的。但由于电机绝缘和供 Φ 电电源的限制,电机运m行频率在基频以下及基频以上调速时须采取不同的控制方式。
f1
E1 f1 Φm
第26页/共77页
1. 基频以下调速
• 在变频调速系统中,由变频器提供给电机的频率变 化的电压或电流激励均是非正弦的,除基波外,还 包含大量的谐波。分析表明,决定感应电机变频运 行特性的主要还是基波,谐波分量只起着使电机电 压或电流畸变、产生谐波损耗、恶化力能指标、引 起转矩脉动的作用。
第24页/共77页
变频调速的基本控制方式
• 若希望一台感应电机获得良好的运行性能、力能指标,必须保持其磁路工作点稳定不变,
• 永磁同步电动机与感应电动机相比,不需要无功励磁电流可以显著提高功率因数(可达 到1、甚至容性),减少了定子电流和定子电阻损耗,而且在稳定运行时没有转子电阻损 耗,进而可以因总损耗降低而减小风扇(小容量电机甚至可以去掉风扇)和相应的风摩损 耗,从而使其效率比同规格感应电动机可提高2—8个百分点。
第2页/共77页
即保持每极磁通量 额定不变。因为若 太强,电机磁路饱和,励磁电流、励磁损耗
及发热增大;若太弱,电机力能指标下降,电机出力不够,铁芯也未充分利用。换句话
永磁同步电机控制技术PPT.
一搞卫生时要注意安全 2、了解常用头部受的急救知识。
如工作某方面有安全要求(譬如银行工作),需要尽早核实应聘者的背景信息。 1、如果乘船过程中遇到事故不幸溺水,应学会现场急救知识。 虽然客户跟你谈了,但是他对你没有好感。在汽车销售公司经常有这样的工作安排,就是男客户进来以后,销售经理会安排女销售人 员上去接待,其目的就是想在最短的时间里让客户对销售人员产生好感,尽快促成交易。 绕车介绍(下) 上述情况目前在我们国内并不常见,原因有两个: 三、课堂小结 出示投影片。("看一看"中的图) 注意力不集中
52
弱磁控制
• 电压与电流限制
id2s
iq2s
d 永磁体和交、直轴电流共同 44 激励时的磁力线分布
基于Ansoft的电机电感计算
Ld
Lmq
Lmd Lq
CT
Luvw
C
N PB
2
a
l
600kW电机电感随交轴电流变化图
45
电感变化对IPMSM控制的影响分析
永磁同步电机转矩闭环控制
Te* +
-
Te
Calculation
id iq
电感变化对输出转矩影响
Te (N m)
电磁转矩 励磁转矩
励磁转矩
磁阻转矩
设计转矩 设计转矩
1500N·m
Te p直f轴iq电流p Ld -9L9q.7i4d8iqA
实际转矩 交轴电流
164.785A
Te' p固定f iq电感p Ld 15L.3q8'miHdiq
实际电感 10.5655mH
额定电流
143.882A
铁心长度
225mm
查看各参数结果
如工作某方面有安全要求(譬如银行工作),需要尽早核实应聘者的背景信息。 1、如果乘船过程中遇到事故不幸溺水,应学会现场急救知识。 虽然客户跟你谈了,但是他对你没有好感。在汽车销售公司经常有这样的工作安排,就是男客户进来以后,销售经理会安排女销售人 员上去接待,其目的就是想在最短的时间里让客户对销售人员产生好感,尽快促成交易。 绕车介绍(下) 上述情况目前在我们国内并不常见,原因有两个: 三、课堂小结 出示投影片。("看一看"中的图) 注意力不集中
52
弱磁控制
• 电压与电流限制
id2s
iq2s
d 永磁体和交、直轴电流共同 44 激励时的磁力线分布
基于Ansoft的电机电感计算
Ld
Lmq
Lmd Lq
CT
Luvw
C
N PB
2
a
l
600kW电机电感随交轴电流变化图
45
电感变化对IPMSM控制的影响分析
永磁同步电机转矩闭环控制
Te* +
-
Te
Calculation
id iq
电感变化对输出转矩影响
Te (N m)
电磁转矩 励磁转矩
励磁转矩
磁阻转矩
设计转矩 设计转矩
1500N·m
Te p直f轴iq电流p Ld -9L9q.7i4d8iqA
实际转矩 交轴电流
164.785A
Te' p固定f iq电感p Ld 15L.3q8'miHdiq
实际电感 10.5655mH
额定电流
143.882A
铁心长度
225mm
查看各参数结果
永磁同步电机工作原理及控制策略-PPT课件
内容提要
PMSM和BLDC电机的特点 PMSM和BLDC电机的应用范围 PMSM和BLDC电机的结构 PMSM和BLDC电机的工作原理 PMSM和BLDC电机的控制策略
PMSM电机的FOC控制策略
PMSM和BLDC电机的特点
优点
(1)功率密度大; (2)功率因数高(气隙磁场主要或全部由转 子磁场提供); (3)效率高(不需要励磁,绕组损耗小); (4)结构紧凑、体积小、重量轻,维护简 单; (5)内埋式交直轴电抗不同,产生结构转 矩,弱磁性能好,表面贴装式弱磁性 能较差。
1 1 1 i N3 2 2 i 3 3 N2 0 2 2
i A iB iC
PMSM电机的FOC控制策略
N3 考虑变换前后总功率不变,可得匝数比应为 N2 1 1 i A 1 i 2 2 可得 2 iB i 3 3 3 0 iC 2 2 1 1 1 2 2 2 坐标系变换矩阵: C3/ 2 3 3 3 0 2 2
U1
H1 H2 H3
译 码 电 路
VF1
VF3
VF5
A B
C
VF4
VF6
VF2
全控桥两两通电电路原理图
PMSM和BLDC电机的工作原理
将三只霍尔集成电路 按相位差120度安装, 产生波形如图所示。
a)
H1
0
t
H20
H3 0
2
3
4
t t
VF1、VF2
导通时合成转矩
Tac
Ta Tc a) Tbc
PMSM和BLDC电机的特点 PMSM和BLDC电机的应用范围 PMSM和BLDC电机的结构 PMSM和BLDC电机的工作原理 PMSM和BLDC电机的控制策略
PMSM电机的FOC控制策略
PMSM和BLDC电机的特点
优点
(1)功率密度大; (2)功率因数高(气隙磁场主要或全部由转 子磁场提供); (3)效率高(不需要励磁,绕组损耗小); (4)结构紧凑、体积小、重量轻,维护简 单; (5)内埋式交直轴电抗不同,产生结构转 矩,弱磁性能好,表面贴装式弱磁性 能较差。
1 1 1 i N3 2 2 i 3 3 N2 0 2 2
i A iB iC
PMSM电机的FOC控制策略
N3 考虑变换前后总功率不变,可得匝数比应为 N2 1 1 i A 1 i 2 2 可得 2 iB i 3 3 3 0 iC 2 2 1 1 1 2 2 2 坐标系变换矩阵: C3/ 2 3 3 3 0 2 2
U1
H1 H2 H3
译 码 电 路
VF1
VF3
VF5
A B
C
VF4
VF6
VF2
全控桥两两通电电路原理图
PMSM和BLDC电机的工作原理
将三只霍尔集成电路 按相位差120度安装, 产生波形如图所示。
a)
H1
0
t
H20
H3 0
2
3
4
t t
VF1、VF2
导通时合成转矩
Tac
Ta Tc a) Tbc
第7章三相永磁同步伺服电动机的控制ppt课件
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第7章
第二节 三相永磁同步伺服电动机的
控制策略
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
以保持相电流幅值的不变。
在上面介绍的两种控制方式中,id=0的控制方式是最
常用的方式,下面主要介绍这种控制方式。
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
第二节
三相永磁同步伺服电动机的控制策略
2.用软件实现空间电压矢量脉冲宽度调制(SVPWM) 用软件实现空间电压矢量脉宽调制的方法也是一种通
常使用的方法,这种方法的优越性在于其控制精度比 较高。 首先确定要求输出的电压空间矢量的幅值和方向角, 才能进行SVPWM运算。在三相永磁交流伺服电动机控 制系统中,可以通过闭环的实时计算来获得电压空间
经 营 者 提 供 商品或 者服务 有欺诈 行为的 ,应当 按照消 费者的 要求增 加赔偿 其受到 的损失 ,增加 赔偿的 金额为 消费者 购买商 品的价 款或接 受服务 的费用
第二节
三相永磁同步伺服电动机的控制策略
1.控制id=0以实现最大转矩输出:
目前大多数的交流伺服电动机用于进给驱动,电动机 工作于其额定转速以下,属于恒转矩调速方式。在 这类应用场合,追求的是在一定的定子电流幅值下能 够输出最大的转矩,因此最佳的控制方式是使定子电
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.永磁同步电机的结构
永磁同步电机主要由转子和定子两部分组成,其中定子由对称三相绕组和
电枢铁芯组成,转子主要由转轴、永磁体及导磁轭铁构成。
根据永磁体在转子上的位置不同,永磁同步电机的转子结构可分为表面式 、内插式、内埋式。
表面式
内插式
内埋式
永磁同步电机转子磁路结构不同,则电动机的运行性能、控制方法、制造 工艺和适用场合也不同。
3.永磁同步电机的工作原理
当定子三相绕组通上交流电流后,就产生一个旋转磁场,该旋转磁场将以
同步转速 nr 旋转。由于磁极同性相斥,异性相吸,该旋转磁场将与转子的永
磁磁极互相吸引,并带着转子一起旋转,因此转子也将以同步转速 nr 旋转。 转子的转速是由定子电流的频率决定的其关系为
nr 60 f Pn
电机绕组内通过电流来产生磁场,例如普通的电励磁直流电机和同步电机。此
类电机即需要有专门的绕组和相应的装置,又需要不断供给能量以维持电流流 动。另外一种就是由永磁体来产生磁场。由于永磁材料所固有的特性,它经过 预先磁化后,不再需要外加能量就能在其周围空间建立磁场。这种电机即可简 化电机结构,又可节约能量。
生变化。而PI控制器属于线性控制器的一种,它的鲁棒性不够强,适应负载能 力差,抗干扰能力差,控制性能不够稳定,很容易受很多因素影响。
2.滑模变结构控制
滑模变结构的控制是不连续的,常规的控制是连续的,这是变结构控制与
常规控制的根本区别。变结构的系统结构随时间变化而产生一个类似开关的变 化特性,在这种控制特性的作用下,系统轨迹会沿着事先设定的状态轨迹作高
2.发展现状
永磁同步电机驱动系统发展离不开电力电子技术、微处理器技术、检测技 术和电机控制技术的支撑。 电力电子功率器件已经经历四个发展阶段:第一阶段是20世纪五六十年代 以晶闸管为代表,主要应用于低频、高频变流领域;第二阶段是20世纪七八十 年代以GTO、GTR和功率MOSFET为代表,推动了变流器高频化发展;第三阶段是 20世纪后期以IGBT为代表,由于其优越性能使其成为电力电子应用领域的主导 功率器件;目前电力电子正处于第四阶段,即以PIC、HVIC等功率集成电路为 代表的集成化发展阶段。
二十世纪七十年代初,德国学者提出了交流电机的矢量控制理论。其主要 思想是参考直流电机控制中励磁电流和转矩电流完全解耦分别控制的形式,基 于磁场等效原则,通过矢量变换将交流电机数学模型重构为一台他励直流电动 机,在同步旋转的参考坐标内将交流电机定子交变电流变换为两个直流量,即 励磁分量和转矩分量,且两者在空间上相互垂直,从而实现解耦控制以获得与
频率、小幅值的来回运动,这就是滑动模态运动(SMC)。SMC可以进行人为预
先设定且与控制对象参数及扰动无关,所以SMC能快速响应、对参数变化不灵 敏、抗干扰能力强,处于滑动模态运动的系统鲁棒性很强。 然而,滑模变结构控制存在严重不足,即滑模系统抖振问题。滑模抖振的 存在易于诱发系统未建模特性,影响系统性能,制约着滑模控制技术在实际工 程中的应用。
永磁同步电机控制技术
郑鹏飞
一、PMSM的简单介绍及现状
二、PMSM的结构与工作原理 三、PMSM的控制策略
目 录
四、PMSM控制系统的控制算法
一、PMSM的简单介绍及现状
1.永磁同步电机概念
永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效 率高结构简单,是很好的节能电机。永磁电机的主要类型有:无刷直流电机( BLDCM),永磁同步电机(PMSM)。前者采用方波电流驱动,后者采用三相正 弦波电流驱动。 电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为了在电机 内建立进行机电能量转换所必需的气隙磁场,一般有两种方法实现。一种是在
微处理器发展直接制约着电机控制算法的实际应用。在近年来,美国多所
公司都推出了面向电机控制的专用高速数字信号处理器(DSP),促进了电机 PWM控制和电流控制发展,大大提高了数据处理能力。但是对于高响应、复杂
调节技术实现仍然是困难的。同时,CPLD/FPGA等技术发展为实现PWM控制提供
了新的方法。
二、PMSM的结构与工作原理
式中
nr
f
——同步转速(r/min); ——定子电流的固定频率; ——永磁同步电机的极对数。
Pn
三、PMSM的控制策略
电力电子技术和微处理器技术的发展为永磁同步电机先进控制方法 的应用提供了坚实的物质基础,使永磁同步电机实际控制技术达到了 新的高度。目前矢量控制和直接转矩控制是实现高动态性能永磁同步 电动控制的两种主要控制策略。 1.矢量控制
同步电机控制系统中的应用有待深入研究
四、PMSM控制系统的控制算法
1.PI控制
PI控制是经典的控制策略,方法简单,既能提高系统静态精度,又能提高
系统稳定性和改善系统动态品质。 永磁同步电机是具有强耦合的非线性对象,很难用精确地数学模型描述,
并且电机运行过程中,往往会存在各种不可预见的干扰,同时电机参数也会发
பைடு நூலகம்
2.永磁同步电机特点
相对于感应电机,永磁同步电机具有很多优点:
(1)永磁同步电机能够提供较高的功率密度比,与相同功率的感应带年纪
相比体积小,重量轻; (2)永磁同步电机具有较小的转动惯量,易于应用于对电机驱动系统要求 较高的动态响应领域; (3)永磁同步电机无滑环和电刷,使其鲁棒性增强、可靠性得到提高,更 易应用于高速、超高速场合; (4)永磁同步电机转子磁场和定子磁场同步,且转子磁场是有永磁体构成 ,无直接电能消耗,电机效率相对感应电机明显提高。 由此可知:永磁同步电机相对于感应电机具有高功率密度、高效率、高可 靠性及结构简单、体积小、重量轻等优点。
直流电机一样的动态调速性能。
2.直接转矩控制
直接转矩控制是德国学者在1985年首次提出的。与矢量控制不同,它通过 矢量分析的分析方法,在定子坐标系下直接实现磁链计算与电动机转矩控制, 采用定子磁场定向技术,利用离散的两点式调节产生PWM波信号驱动逆变器的
开关以获得高性能的永磁同步电机控制。
由于其直接实现了电子磁链空间矢量和转矩控制,使控制系统得以简化, 提高了快速响应能力,但也有明显不足,即磁链和转矩脉动问题,故它在永磁
永磁同步电机主要由转子和定子两部分组成,其中定子由对称三相绕组和
电枢铁芯组成,转子主要由转轴、永磁体及导磁轭铁构成。
根据永磁体在转子上的位置不同,永磁同步电机的转子结构可分为表面式 、内插式、内埋式。
表面式
内插式
内埋式
永磁同步电机转子磁路结构不同,则电动机的运行性能、控制方法、制造 工艺和适用场合也不同。
3.永磁同步电机的工作原理
当定子三相绕组通上交流电流后,就产生一个旋转磁场,该旋转磁场将以
同步转速 nr 旋转。由于磁极同性相斥,异性相吸,该旋转磁场将与转子的永
磁磁极互相吸引,并带着转子一起旋转,因此转子也将以同步转速 nr 旋转。 转子的转速是由定子电流的频率决定的其关系为
nr 60 f Pn
电机绕组内通过电流来产生磁场,例如普通的电励磁直流电机和同步电机。此
类电机即需要有专门的绕组和相应的装置,又需要不断供给能量以维持电流流 动。另外一种就是由永磁体来产生磁场。由于永磁材料所固有的特性,它经过 预先磁化后,不再需要外加能量就能在其周围空间建立磁场。这种电机即可简 化电机结构,又可节约能量。
生变化。而PI控制器属于线性控制器的一种,它的鲁棒性不够强,适应负载能 力差,抗干扰能力差,控制性能不够稳定,很容易受很多因素影响。
2.滑模变结构控制
滑模变结构的控制是不连续的,常规的控制是连续的,这是变结构控制与
常规控制的根本区别。变结构的系统结构随时间变化而产生一个类似开关的变 化特性,在这种控制特性的作用下,系统轨迹会沿着事先设定的状态轨迹作高
2.发展现状
永磁同步电机驱动系统发展离不开电力电子技术、微处理器技术、检测技 术和电机控制技术的支撑。 电力电子功率器件已经经历四个发展阶段:第一阶段是20世纪五六十年代 以晶闸管为代表,主要应用于低频、高频变流领域;第二阶段是20世纪七八十 年代以GTO、GTR和功率MOSFET为代表,推动了变流器高频化发展;第三阶段是 20世纪后期以IGBT为代表,由于其优越性能使其成为电力电子应用领域的主导 功率器件;目前电力电子正处于第四阶段,即以PIC、HVIC等功率集成电路为 代表的集成化发展阶段。
二十世纪七十年代初,德国学者提出了交流电机的矢量控制理论。其主要 思想是参考直流电机控制中励磁电流和转矩电流完全解耦分别控制的形式,基 于磁场等效原则,通过矢量变换将交流电机数学模型重构为一台他励直流电动 机,在同步旋转的参考坐标内将交流电机定子交变电流变换为两个直流量,即 励磁分量和转矩分量,且两者在空间上相互垂直,从而实现解耦控制以获得与
频率、小幅值的来回运动,这就是滑动模态运动(SMC)。SMC可以进行人为预
先设定且与控制对象参数及扰动无关,所以SMC能快速响应、对参数变化不灵 敏、抗干扰能力强,处于滑动模态运动的系统鲁棒性很强。 然而,滑模变结构控制存在严重不足,即滑模系统抖振问题。滑模抖振的 存在易于诱发系统未建模特性,影响系统性能,制约着滑模控制技术在实际工 程中的应用。
永磁同步电机控制技术
郑鹏飞
一、PMSM的简单介绍及现状
二、PMSM的结构与工作原理 三、PMSM的控制策略
目 录
四、PMSM控制系统的控制算法
一、PMSM的简单介绍及现状
1.永磁同步电机概念
永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效 率高结构简单,是很好的节能电机。永磁电机的主要类型有:无刷直流电机( BLDCM),永磁同步电机(PMSM)。前者采用方波电流驱动,后者采用三相正 弦波电流驱动。 电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为了在电机 内建立进行机电能量转换所必需的气隙磁场,一般有两种方法实现。一种是在
微处理器发展直接制约着电机控制算法的实际应用。在近年来,美国多所
公司都推出了面向电机控制的专用高速数字信号处理器(DSP),促进了电机 PWM控制和电流控制发展,大大提高了数据处理能力。但是对于高响应、复杂
调节技术实现仍然是困难的。同时,CPLD/FPGA等技术发展为实现PWM控制提供
了新的方法。
二、PMSM的结构与工作原理
式中
nr
f
——同步转速(r/min); ——定子电流的固定频率; ——永磁同步电机的极对数。
Pn
三、PMSM的控制策略
电力电子技术和微处理器技术的发展为永磁同步电机先进控制方法 的应用提供了坚实的物质基础,使永磁同步电机实际控制技术达到了 新的高度。目前矢量控制和直接转矩控制是实现高动态性能永磁同步 电动控制的两种主要控制策略。 1.矢量控制
同步电机控制系统中的应用有待深入研究
四、PMSM控制系统的控制算法
1.PI控制
PI控制是经典的控制策略,方法简单,既能提高系统静态精度,又能提高
系统稳定性和改善系统动态品质。 永磁同步电机是具有强耦合的非线性对象,很难用精确地数学模型描述,
并且电机运行过程中,往往会存在各种不可预见的干扰,同时电机参数也会发
பைடு நூலகம்
2.永磁同步电机特点
相对于感应电机,永磁同步电机具有很多优点:
(1)永磁同步电机能够提供较高的功率密度比,与相同功率的感应带年纪
相比体积小,重量轻; (2)永磁同步电机具有较小的转动惯量,易于应用于对电机驱动系统要求 较高的动态响应领域; (3)永磁同步电机无滑环和电刷,使其鲁棒性增强、可靠性得到提高,更 易应用于高速、超高速场合; (4)永磁同步电机转子磁场和定子磁场同步,且转子磁场是有永磁体构成 ,无直接电能消耗,电机效率相对感应电机明显提高。 由此可知:永磁同步电机相对于感应电机具有高功率密度、高效率、高可 靠性及结构简单、体积小、重量轻等优点。
直流电机一样的动态调速性能。
2.直接转矩控制
直接转矩控制是德国学者在1985年首次提出的。与矢量控制不同,它通过 矢量分析的分析方法,在定子坐标系下直接实现磁链计算与电动机转矩控制, 采用定子磁场定向技术,利用离散的两点式调节产生PWM波信号驱动逆变器的
开关以获得高性能的永磁同步电机控制。
由于其直接实现了电子磁链空间矢量和转矩控制,使控制系统得以简化, 提高了快速响应能力,但也有明显不足,即磁链和转矩脉动问题,故它在永磁