大学物理同步训练第2版第一章质点运动学详解

合集下载

大学物理第1章质点运动学知识点复习及练习

大学物理第1章质点运动学知识点复习及练习

第1章 质点运动学(复习指南)一、基本要求掌握参考系、坐标系、质点、运动方程和轨迹方程的概念,合理选择运动参考系并建立直角坐标系,理解将运动对象视为质点的条件.掌握位矢、位移、速度、加速度的概念;能借助直角坐标系计算质点在平面内运动时的位移、平均速度、速度和加速度.会计算相关物理量的大小和方向.二、基本内容1.位置矢量(位矢)位置矢量表示质点任意时刻在空间的位置,用从坐标原点向质点所在点所引的一条有向线段,用r表示.r 的端点表示任意时刻质点的空间位置.r同时表示任意时刻质点离坐标原点的距离及质点位置相对坐标轴的方位.位矢是描述质点运动状态的物理量之一.对r应注意:(1(2(32.位移r∆的路程,.3.速度定义t r d d =v ,在直角坐标系xy o -中j y i x r+=ji j t y i t xy x d d d d v v v +=+=2222d d d d yx t y t x v v v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=v的方向:在直线运动中,0>v 表示沿坐标轴正向运动,0<v 表示沿坐标轴负向运动.在曲线运动中,v沿曲线上各点切线,指向质点前进的一方.对速度应注意:瞬时性,质点在运动中的任一时刻的速度是不同的;矢量性,速度为矢量,具有大小,方向,求解速度应同时求其大小和方向;相对性,运动是绝对的,但运动描述是相对的,所以必须明确参考系,坐标系,在确定的坐标系中求质点的速度;叠加性,因为运动是可叠加的,所以描述运动状态的速度也是可叠加的,要注意区别速度和速率.要注意t r d d 与t rd d ,t rd d 与t r d d 的区别.4a =a 与v 反1-118m .求在这解东m 48.17= 方向=8.98°(东偏北)m /s 35.0==∆∆=t rv ,方向与位移方向相同,均为东偏北8.98°.1-2、有一质点沿x 轴作直线运动,t 时刻的坐标为3225.4t t x -=(SI ).试求: (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内的路程.解:(1)1秒末位置坐标m 5.21=x ,2秒末位置m 22=x ,m /s 5.0/-=∆∆=t x v (2)269d /d t t t x -==v ,m /s 62629(2)2-=⨯-⨯=v(3)质点运动中间速度发生了方向变化,所以路程应累计相加令0692=-=t t v ,得5.1=t ,m 375.3)5.1(=x ,所以m 25.2)5.1()2()1()5.1(=-+-=∆x x x x s1-3、一质点沿x 轴运动,其加速度为t a 4=(SI ),已知0=t 时,质点位于m 10=x 处,初速度00=v .试求其位置和时间的关系式.v成正时的速度0=v v 证⎰vv(((C )变加速直线运动,加速度沿x 轴正方向. (D )变加速直线运动,加速度沿x 轴负方向.1-2、一质点作直线运动,某时刻的瞬时速度m /s 2=v ,瞬时加速度2m /s 2-=a ,则1秒钟后质点的速度(提示:注意加速度和速度的瞬时性)[ ](A )等于零. (B )等于2m/s . (C )等于2m/s . (D )不能确定.1-3、一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(提示:区分以下量的含义)(A )t r d d (B )t r d d (C )t r d d (D )22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ty t x[ ]1-4、下列说法哪一条正确?(A )描述质点运动所选定的参考系一定是不动的,运动的物体不能作为参考系. (B )质点模型只适用质量和体积都很小的研究对象. (C )物体在一段时间内如果位移为零,其路程也必然为零. (D )运动物体速率不变时,其速度可以变化.[ ]1-5一质点的位置矢量为j t i t r 323+=(SI ),该指点任意时刻的速度=v ________,任意时刻的加速度=a____________(提示:根据速度是位矢的一阶导数,加速度是位矢的二阶导数,答案要写单位)1-6、一质点沿x 方向运动,其加速度随时间变化关系为t a 23+=(SI ),如果初始时质点的速度0v 为m/s 5,则当t 为3s 时,质点的速度=v ___________.(提示:根据t a d =v 设定积分限积分)1-7、一质点沿直线运动,其运动学方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为_______,在t 由0到4s 的时间间隔内质点走过的路程为______.(提示:注意该运动速度方向改变的时间点,路程与位移的区别)1-8、一质点沿x 轴作直线运动,它的运动学方程为32653t t t x -++=(SI )则(1)质点在0=t 时刻的速度=0v ___________;(2)加速度为零时,该质点的速度=v _________. (提示:利用速度是位矢的一阶导数,加速度是位矢的二阶导数)1-9、已知质点的运动学方程为j t i t r)32(42++=(SI ),则该质点的轨迹方程为:__________________.(提示:轨迹方程关键是消去时间参数)1-10、一质点在xy o -平面内运动.运动学方程分量式为t x 2=和2219t y -=(SI ),则在第2秒内质点的平均速度大小=v ________,2秒末的瞬时速度大小=2v ______________.(提示:先计算平均速度矢量,再计算大小,而瞬时速度是位矢的一阶导数)。

《大学物理学》(第二版)吴王杰 01 01-5总结、理解与提高

《大学物理学》(第二版)吴王杰 01 01-5总结、理解与提高
10、距河岸(看成直线)500 m处有一静止的船, 船上的探照灯以转速为n=1r/min转动,当光束与 河岸边成60º时,光束沿河岸移动的速率是多大?
力学质点运动学习题课
PART 3 数学再深入:矢量与微分
数学在研究物理问题中具有重要作用,要学 会用数学语言来表达物理的概念和规律,矢量 和微积分的应用不仅是与高中物理的一个重要 区别,而且是深入理解物理概念所必需的。
答案:D
O
c ab
力学质点运动学习题课
6、有两列在平行轨道上行驶的火车,其位置与时间 的关系如图。下面选项中哪个是正确的?
A. 在t1时刻,两列火车具有相同的速度 B. 在t1时刻之前的某个时刻,两列火车具有相同 的速度 C. 在曲线上的某处,两列火车具有相同的加速度
x
答案:B
O
t1
t
力学质点运动学习题课
答案:B
力学质点运动学习题课
9、一质点沿半径为0.1m的圆周运动,其速率随 时间变化的关系为v=3+ 1 t 2,其中v的单位为米
2
每秒(m/s),t 的单位为秒(s),则t 时刻质点 的切向加速度为at =___________m/s2,角加速度
=___________rad/s2。
力学质点运动学习题课
加速度,下列表达式中,
(1) dv / d t = a , (2) dr/dt = v ,
(3) ds / d t = v , (4)
dv /
dt
at
A. 只有(1)、(4)是对的. B. 只有(2)、(4)是对的. C. 只有(2)是对的. D. 只有(3)是对的.
答案:D
力学质点运动学习题课
力学质点运动学习题课

大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章

大学物理第二版 许瑞珍 贾谊明 编著  课后答案 1-3章

第一章 质点的运动1-1 已知质点的运动方程为:,。

式中x 、y 的单位为m ,t 的单位为s。

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

23010t t x +-=22015t t y -=分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - k v 2,k 为常数。

大学物理(第二版)第一章习题答案

大学物理(第二版)第一章习题答案

第一章习题1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北走了18m 。

求:⑴ 位移和平均速度 ⑵ 路程和平均速率 解:由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。

⑴ 位移:OC30OA m = ,10AB m =,18BC m =由于是正西北方向,所以45ABD ADB ∠=∠=︒BD =(()(()222222cos 4518301021830102OC CD OD OD CD =+-︒=-+--⨯-⨯-⨯1324305.92=-≈ 17.5OC m ≈平均速度的大小为:()17.50.35m 50r v t ∆===∆ ⑵ 路程应为:58m s OA AB BC =++=平均速率为1.16m s 1.2有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。

解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3质点作直线运动,其运动方程为2126x t t =-,采用国际单位制,求:⑴ 4t s =时,质点的位置,速度和加速度⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置⑷ 作位移,速度以及加速度随着时间变化的曲线图。

解:⑴ 由运动方程2126x t t =-,可得速度,加速度的表达式分别为1212dx v t dt ==- 12dv a dt==- 所以当4t s =时,质点的位置,速度和加速度分别为48m x =-;36m s v =-;212m a =-⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4质点沿直线运动,速度()3222m v t t =++,如果当2s t =时,4m x =,求3st =时质点的位置,速度和加速度。

大学物理第二版 第1章 质点运动学PPT

大学物理第二版 第1章 质点运动学PPT

设质点作曲线运动: 从A至B点 z
即:t 时刻位于A点,位矢
rA
t
+t
时刻位于B点,位矢
rB
A
r
rA
rB
B
在t 时间内,位矢的增量 O
y
称为位移.
x
r rB rA AB
即A到B的有向线段
在直 角坐 标系 中 r rB rA
xB
xA
i
yB
yA j
zB
zA k
xi yj zk
1010 109
人类的寿命
10-5 10-6
108 107 106
地球公转周期(年) 10-7
月球周期(月)
10-8
10-9
105
10-10
地球自转周期(日) 10-11
中子的寿命
10-12 10-13
百米赛跑世界纪录 钟摆的周期
10-14 10-15 10-16
市电的周期
10-17
10-18
超快速摄影曝光时间 10-19
以下情况的实物均可以抽象为一个质点: ① 研究问题中物体的形状
和大小可以忽略不计 ② 物体上各点的运动情况
相同(平动) ③ 各点运动对总体运动影
响不大
第10页 共48页
1.2.2位矢 运动方程和轨迹方程
1. 位置矢量(矢径, 位矢) (position vector):
从坐标原点O出发, 指向质点所在位置P
角向
r
O
径向
• P(r,)
极轴
极坐标系
•P(r, , )
球坐标系
en
e P(n,) t
O
自然坐标系
第6页 共48页

物理学教程上册答案 第二版

物理学教程上册答案 第二版

(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr
(C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds
(D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds
(2) 根据上述情况,则必有( )
(A) | v |= v ,| v |= v (C) | v |= v ,| v |≠ v
r0 2 j , r2 4i 2 j
图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置.
(3) 由位移表达式,得
Δr r2 r1 (x2 x0 )i ( y2 y0 ) j 4i 2 j
其中位移大小 Δr (Δx)2 (Δy)2 5.66 m
而径向增量 Δr Δ r r2 r0 x22 y22 x02 y02 2.47 m
不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况 而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一 不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).
1 -5 已知质点沿x 轴作直线运动,其运动方程为 x 2 6t 2 2t 3 ,式中x 的单位
0
0
0
v 6ti 4tj
又由 v
dr dt
及初始条件t=0
时,r0=(10
m)i,积分可得
r dr t vdt t (6ti 4tj)dt
r0
0
0
r (10 3t 2 )i 2t 2 j
由上述结果可得质点运动方程的分量式,即
直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

大学物理2第一章答案

大学物理2第一章答案

1-1 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts tΔΔΔΔ≠r ,即|v |≠v .但由于|d r |=d s ,故ts td d d d =r ,即|v |=v .由此可见,应选(C).1-2 分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1-3 分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D).1-4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hlt l l tx -==v,式中tl d d 表示绳长l随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).1-6 分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用t xd d 和22d d tx两式计算.解 (1) 质点在4.0 s 内位移的大小 m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为 s 2=p t (t =0不合题意)则 m 0.8Δ021=-=x x x ,m 40Δ242-=-=x x x 所以,质点在4.0 s 时间间隔内的路程为 m 48ΔΔ21=+=x x s(3) t =4.0 s 时 ,1s 0.4s m 48d d -=⋅-==t t x v ,2s0.422m.s 36d d -=-==t txa 1-7 分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2sm 20-⋅=--=A B A B AB t t a v v (匀加速直线运动),0=BC a (匀速直线运动)2sm 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有 2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1-8 分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为,2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得 j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 42=+==⎰⎰x x s s QP1-9 分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为 t tx x 6010d d +-==v , t ty y 4015d d -==v当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为120200s m 0.18-⋅=+=yx v v v设v o 与x 轴的夹角为α,则 23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2sm 60d d -⋅==ta x x v , 2sm 40d d -⋅-==ta y y v则加速度的大小为 222s m 1.72-⋅=+=yx a a a设a 与x 轴的夹角为β,则32tan -==xy a a β ,β=-33°41′(或326°19′)1-10 分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为 20121at t y +=v 20221g t t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h att -+=+v vs 705.02=+=ag h t(2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gtt y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t(2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1-11 分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t )和y ′=y ′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2=,则质点P 的参数方程为tT R x π2sin=',t T R y π2cos-='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=,R t T R y y y +-=+'=π2cos则质点P 的位矢方程为j i r ⎪⎭⎫⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t T T R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1-12 分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v当杆长等于影长时,即s =h ,则s 606034πarctan1⨯⨯===ωhs ωt即为下午3∶00 时.1-13 分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由ta d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2)将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x1-14 分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分.解 选取石子下落方向为y 轴正向,下落起点为坐标原点. (1) 由题意知 v v B A ta -==d d (1)用分离变量法把式(1)改写为t B A d d =-vv (2)将式(2)两边积分并考虑初始条件,有⎰⎰=-tt B A 0d d d 0v vv vv 得石子速度 )1(BteBA --=v由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bte BA ty --==v 并考虑初始条件有t eBA y tBtyd )1(d 0⎰⎰--=得石子运动方程)1(2-+=-BteBA tB A y1-15 分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==ttt t 0)d 46(d d j i a vv j i t t 46+=v又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt rr t t t t 0)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2 y =2t 2消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αxy k ,α=33°41′.轨迹如图所示.1-16 分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v=,ta ΔΔv =,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故 θΔcos 2Δ212221v v v v -+=v )Δcos 1(2θ-=v 而 vvθR s t ΔΔΔ==所以θR θta Δ)cos Δ1(2ΔΔ2v-==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得, Ra 219003.0v≈,Ra 229886.0v≈ Ra 239987.0v≈,Ra 24000.1v≈以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v.1-17 分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即tt te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v=求ρ.解 (1) 由参数方程 x =2.0t , y =19.0-2.0t 2 消去t 得质点的轨迹方程:y =19.0 -0.50x 2 (2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t tr v(3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=sm ty tx t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttte e e a 222s1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122sm 47.4-⋅=+=yx vv v 则m 17.112==na ρv1-18 分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o5.12arctan==xy θ(3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αxy arctanarctan==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n1-19 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP(即图中的r 矢量).解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgtαtβαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan =由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关. 讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1-20 分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1) h gty ==221 (2)由式(1)(2)可得 ghωR x 2222=由图(a)所示几何关系得雨滴落地处圆周的半径为 22221ωgh R Rx r +=+=(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v =为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1-21 分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程 θt x cos v =,221sin gt θt y -=v消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m ·s-1 及3.44 m ≥y ≥0 代入后,可解得 71.11°≥θ1 ≥69.92° 27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1-22 分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v其加速度的切向分量和法向分量分别为 b ts a t -==22d d , Rbt Ra n 202)(-==v v故加速度的大小为R)(402222bt b a aa a t tn-+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n20)(arctan arctan v(2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为 bs s s t 220v =-=因此质点运行的圈数为 bRRs n π4π22v ==1-23 分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322srad 2-⋅===Rttωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12srad 5.02-⋅='=t ω 2srad 0.24d d -⋅='==t tωα 2sm 0.1-⋅==R αa t 总加速度 n t t n R ωR αe e a a a 2+=+=()()2222sm 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 2032220====-⎰⎰tt t t ωθθ1-24 分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s2sm 30.2-=⋅==ωr a t n2s2sm 80.4d d -=⋅==tωra t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即()()422212243tr rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有 ()()422212243t r rt = t =0.55s1-25 分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o12sm 36.575tan -⋅==v v1-26 分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有 θθαcos sin arctan221v v v -=而要使hl αarctan≥,则hl θθ≥-cos sin 221v v v ⎪⎭⎫⎝⎛+≥θhθl sin cos 21v v1-27 分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为s 1005.1cos 3⨯='==αd d t v v(2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d ut u l1-28 分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O ′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O ′中的点(x ′,y ′).由于观察者O ′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O ′x ′y ′分别为观察者O 和观察者O ′所在的坐标系,且使Ox 和O ′x ′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得x ′=x - v t =v t - v t =0 y ′=y =1/2 gt 2加速度 g ty a a y ='='=22d d由此可见,动点相对于系O ′是在y 方向作匀变速直线运动.动点在两坐标系中加速度相同,这也正是伽利略变换的必然结果.。

大学物理第二版答案

大学物理第二版答案

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m/s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l hl l t s v +-=-==负号表示船在水面上向岸靠近.船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m /s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h += 电梯下降的距离为习题1-9图 习题1-10图2021at t v h +=' 又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t 而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''== 欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a 即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222min 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm )(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos max min =-f F θ y 向:0sin min =--Mg F N θ 还有 N f s max μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为习题2-1图θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→min F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m /s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

大学物理上册 第一章习题答案详解

大学物理上册 第一章习题答案详解

� ⎛1 ⎞� r = (3t + 5)i + ⎜ t 2 + 3t − 4 ⎟ j (m) ⎝2 ⎠
(2) 第一秒内位移
� � � ∆r1 = ( x1 − x 0 )i + ( y1 − y 0 ) j �⎡ 1 ⎤� = 3(1 − 0)i ⎢ (1 − 0) 2 + 3(1 − 10)⎥ j ⎣2 ⎦ � � = 3i + 3.5 j (m)
负号表示 a 的方向指向岸边,因而船向岸边加速运动.
1-8 在 生 物 物 理 实 验 中 用 来 分 离 不 同 种 类 分 子 的 超 级 离 心 机 的 转 速 是 6 × 10 4 r ⋅ min −1 ,在这种离心机的转子内,离轴 l0cm 远的一个大分子的向心加速 度是重力加速度的几倍?
解: 物体 A 下降的加速度(如图所示)为
2h 2 × 0.4 = = 0.2m/s 2 2 2 t 2 此加速度也等于轮缘上一点在 t ′ = 3s 时的切向加速度,即
a=
′ at = 0.2(m/s 2 )
在 t ′ = 3s 时的法向加速度为
an =
′ v ′ 2 (a t t ) 2 (0.2 × 3) 2 = = = 0.36(m/s 2 ) R R 1.0
ds l dl s 2 + h2 = =− v0 dt s l 2 − h 2 dt
习题 1-7 图
负号表示船在水面上向岸靠近. 船的加速度为
a=
⎡d ⎛ dv l = −⎢ ⎜ ⎜ 2 2 dt ⎢ ⎣ dl ⎝ l − h
2 ⎞ ⎤ dl h 2v ⎟v 0 ⎥ = − 30 ⎟ s ⎠ ⎥ ⎦ dt
将 t=3s 代入证
1 x3 = 41 (m) 4

大学物理学第二版 唐南 课后习题详解

大学物理学第二版 唐南 课后习题详解

法向加速度
a n R 2 18(
2 2 t ) 2(3 2t ) 2 3
1.24、一圆运动指点的轨迹半径 R=0.25m,质点的角加速度α=3t2,若 t=0 时质点角速度为零, 求 t=2s 时刻质点的切向加速度、 法向加速度及 t=0 到 t=2s 过程走过的路程。 解:由线速度公式 = 求得线速度,带入公式和时间 t=2 可解得分别为:
2
1.23、 一质点作圆周运动, 圆半径 R=18m, 若质点角位置θ=θ = 4 + 求质点在任意 t 时刻的角速度、角加速度、切向加速度和法向加速度。 解:质点的角速度 角加速度 切向加速度

2 d t 3 dt
3

d 2 dt 3
a t R 12
微信公众号 高校课后习题
1.28、一轮船相对于岸以匀速率 v0 向东行驶,船甲板上一辆玩具小汽车从 t=0 开始相对于船由静止出发,向东偏北 30°方向作匀加速运动,加速度大小为 a’。 设立对地静止的 Oxy 坐标系和对船静止的 O’x’y’坐标系, x 和 x’轴向东, y 和 y’ 轴向北,且 t=0 时 O 和 O’均在汽车的出发点,求小汽车对两个坐标系的运动方 程。 解:小车对 O系的加速度分量,
d k dt
微信公众号 高校课后习题
分离变量 积分
d

d
kdt
t
0


kdt 有 ln
0
kt 0
即 0 e kt 角速度 角加速度
k k 0 e kt (或

d k 2 0 e kt dt d k 0 e kt ) dt
x Hx0 H h dx0 v0 为人的速度,即 dt

大学物理学(第二版) 第01章 运动学

大学物理学(第二版) 第01章  运动学

P2 (x2 , y2 , z2 )
注意 r r 位矢长度的变化
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s
p1
'
s r
p2
刻质点的位置,是个状态量. (2)位移与路程
r(t1) r(t2)
(2)选取不同的参考系或在同一参考系上建立不同的坐标系时,
它的方向和数值一般是不同的,故具有相对性.
(3)在质点运动过程中位矢是随时间而改变的,故还具有瞬时性.
2.运动方程
运动方程:质点在运动时,其位置矢量的大小和方向均随时间
发生变化,对于任一时刻t,都有一个完全确定的位置矢量与之
对应,也就是说,位置矢量是时间t的函数,即 r r(t)
2.路程 质点所经过的实际运动轨迹的长度为质点所经历的路
程,记作△S .
位移的物理意义
A)确切反映物体在空间中位置的 变化,与路径无关,只决定于质
y P1 rs P2
点的始末位置.
B)反映了运动的矢量性和叠加性.
r
xi
yj
zk
r x2 y2 z2
z
r(t1)
r
r(t2 )
O
x P1(x1, y1, z1)
P1P2 两点间的路程s是不唯一的,可 O
z 以是 s 或 s ,而位移 r 是唯一的.
x
一般情况下,位移与路程并不相等:只有当质点作单方向的
直线运动时,路程与位移的大小才是相等的;此外,在 t 0的
第1章 质点运动学
本章内容
1.1 质点 参考系 坐标系 时空 1.2 描述质点运动的物理量 1.3 加速度为恒矢量时的质点运动 1.4 曲线运动 1.5 运动描述的相对性 伽利略坐标变换

大学物理第一章 质点运动学 习题解(详细、完整)

大学物理第一章 质点运动学 习题解(详细、完整)

第一章 质点运动学1–1 描写质点运动状态的物理量是 。

解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。

1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。

解:匀速率;直线;匀速直线;匀速圆周。

1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。

解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。

解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。

1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。

解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理习题册及解答(第二版)第一章 质点的运动

大学物理习题册及解答(第二版)第一章 质点的运动
(3) 由2秒末的加速度 秒末的加速度
2 t =2
= −16m/s
2
dv a= =10 −18t dt
t =2
= −26m/s
2.一质点在 一质点在Oxy平面上运动,运动方程为 平面上运动, 一质点在 平面上运动 运动方程为x=3t, y=3t2-5(SI), 求(1)质 质 点运动的轨道方程,并画出轨道曲线 并画出轨道曲线;(2)t1=0s和 t2=120s时质点的 点运动的轨道方程 并画出轨道曲线 和 时质点的 的速度、加速度。 的速度、加速度。 解:(1)从运动方程中消去时间就得到轨道方程 从运动方程中消去时间就得到轨道方程
s = v2t
h = H 2,
1 ∴ H' = H 2
Qd s d h
2
2 H2
= −4 H < 0
所以上条件为S极大的条件
5.河水自西向东流动,速度为10km/h.一轮船在水中航行,船 相对于河水的航向为北偏西300,相对于水的航速为20km/h.此 时风向为正西,风速为10km/h.试求在船上观察到的烟囱冒出 的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)
dθ 则其切向加速度为 a = Rα = R = 0.1m/ s dt
2 t 2
π 1 θ = + t (SI) 4 2
2
2
6 在一个转动的齿轮上,一个齿尖P沿半径为R的圆周运动,其路 程S随时间的变化规律为 S = v 0 t + 1 2 bt 2 ,其中v0和b都是正的常 量.则t时刻齿尖P的速度大小为v0 + bt,加速度大小为 .
v1 = 2 gh
h
v v2
因为完全弹性碰撞,小 S 2 1 球弹射的速度大小为: v2的方向是沿水平方向,故小球与斜面碰撞后作平抛运动,弹出 的水平距离为:

大学物理(北邮)第二版上参考答案

大学物理(北邮)第二版上参考答案

大学物理(北邮)第二版上参考答案习题解答第一章质点运动学1-1 (1) 质点t时刻位矢为:r (3t 5)i 12t2 3t 4j(m)(2) 第一秒V rt 14(12 i 20 j) 3 i 5 j(m s 1)(4) 速度Vdrt 3 i ( t 3) j(m s 1d)∴V 14 3i (4 3)j 3i 7j(m s)(5) 前4秒平均加速度a Vt V4 V4 0 7 34j j(m s 2)(6) 加速度a dVj(m s 2a dt)4 j(m s 2)1-2 v dxdt t3 3t2 2x dx vdt c 1434t t2t c当t=2时x=4代入求证c=-12 即x 14t4 t3 2t 12 v t3 3t2 2a dvdt 3t2 6t将t=3s代入证1x 41134(m)v3 56(m s 1)a3 45(m s 2)(1) 由运动方程 x 4t2消去t得轨迹方程y 32tx (y 3)2 0(2) 1秒时间坐标和位矢方向为x1 4my1 5m[4,5]m:tg yx 1.25, 51.3(3) 第1秒基本上未超过25g.1.80s(1)设第一块石头扔出后t秒未被第二块击中,则h v10t 2gt2代入已知数得2 1-3111 15t 9.8t2 2解此方程,可得二解为t1 1.84s,第一块石头上升到顶点所用的时间为 t1 1.22stm v10/g 15/9.8 1.53s由于t1 tm,这对应于第一块石头回落时与第二块相碰;又由于t1 tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于 h v20(t1 t1)所以1g(t1 t1)2 2hv20 11g(t1 t1)211 9.8 (1.84 1)2t1 t11.84 117.2m/s 同理.v20 h 11 g(t1 t1)211 9.8 (1.22 1)21.22 1t1 t151.1(m/s)(2) 由于 t2 1.3s t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为v20 h 11g(t1 t2)211 9.8 (1.84 1.3)2t1 t21.84 1.323.0(m/s)1-7 以l表示从船到定滑轮的绳长,则v0 d l/dt.由图可知s l2 h2于是得船的速度为习题1-7图3dsv dt负号表示船在水面上向岸靠近.船的加速度为dls2 h2 v0 22dtsl h ld dvla 22dt dl l h2 dlh2v0 v0 3 s dt负号表示a的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为2r4 2n2r4 2(6 104)2 0.15 4 102gg60 9.81-9 物体A下降的加速度(如图所示)为2h2 0.4 0.2m/s2 22t2此加速度也等于轮缘上一点在t 3s时的切向加速度,即aat 0.2(m/s2)在t 3s时的法向加速度为v 2(att)2(0.2 3)2an 0.36(m/s2) RR1.02习题1-9图习题1-10图1-10 a 1.2m/s,t0 0.5s,h0 1.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为v0 at0 1.2 0.5 0.6(m/s)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为h v0t电梯下降的距离为12gt 241h v0t a t2 2又h0 h h由此得1(g a)t2 2t而小球相对地面下落的距离为2h0 g a2 1.5 0.59s 9.8 1.2h v0t 12gt 21 9.8 0.592 2 0.6 0.592.06m1-11 v风地 v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是画出速度矢量合成图(a)又v风地 v风人同一矢量.可知(a)图必是底角为45 的等腰直角三角形,所以,风向应为西北风,风速为v风地 v0人地45 2v0人地4.23(m s 1)1-12 (1) t 习题1-11图2L2 vLL2vL (2) t t1 t2 2v u v u v u222L u 1 v vLL (3) t t1 t2 ,如图所示风速u由东向西,由速度v v22合成可得飞机对地速度v u v,则V v u. 1习题1-12图5t 2L2L 22v v u2L u v v 2 证毕1-13 (1)设船相对岸的速度为V (如图所示),由速度合成得V u VV的大小由图1.7示可得V V cos u cos 即V cos V u cos 3 2而V sin usin 2船达到B点所需时间t 3 2习题1-13图in1 1 2OBD D 1000(s) VVscos sin AB两点之距S Dctg D将式(1)、(2)代入可得S D(3 3) 1268(m)D1 103(2) 由t Vsin usin船到对岸所需最短时间由极值条件决定dt1 1 c os 0 2d u sins 0,即co /2故船头应与岸垂直,航时最短.将 值代入(3)式得最短航时为tmin(3) 设OB l,则1 1031 103 0.5 103s 500(s) usin /22DV DDu2 V2 2uVcos l sin Vsin usin欲使l最短,应满足极值条件.6dlD u2 V2 2uVcosa d u c osasinu Vsin2asin2a u2 V2 2uVcos 02u2 V2简化后可得cosa u Vcos 1 0即cos2a 136cos 1 0 解此方程得cos 23cos 123 48.2故船头与岸成48.2 ,则航距最短.将 值代入(4)式得最小航程为100022 32 2 2 3 2lv2 2uvcos 3min D u2u c os22 22 31.5 103m 1.5(km)AB两点最短距离为S l22minmin D .5 1 1.12(km)第二章质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x向:Fmincos f max 0y向:N F minsin M g 0还有fmax sN 习题2-1图解以上三式可得要推动木箱所需力F的最小值为Fmin sMgcosssin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为7Fmin kMg cos ksin(2)在上面Fmin的表示式中,如果cos ssin 0,则Fmin ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是cos ssin 0由此得 的最小值为arctan2-2 (1)对小球,由牛顿第二定律x向:Tcos N sin may向:Tsin N cos m g 0联立解此二式,可得1 sT m(acos g sin ) 0.5 (2 cos30 9.8sin30 ) 3.32(N)N m(gcos a sin ) 0.5 (9.8 cos30 2sin30 ) 3.74(N)由牛顿第三定律,小球对斜面的压力N N 3.74(N)(2)小球刚要脱离斜面时N=0,则上面牛顿第二定律方程为Tcos ma,由此二式可解得Tsin mg 习题2-2图a g/tan 9.8/tan30 17.0m/s22-3 要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
运动。
它的总加速度的大小为 答案: 6 10/5 分析:
m/s2。
s R 0.5 0.2t 3 , v ds / dt 0.6t 2 v(1) 0.6 m/s
at dv / dt 1.2t at (1) 1.2 m/s2, an (1) v(1) 2 / R 3.6 m/s2 6 2 a at2 an 1.22 3.62 10 m/s2 5
dr R sin ti R sin tj dt 2 2 v v R sin t R cos t R ,故 at dv / dt 0 v
x R cos t , y R sin t ,消去时间 t 可得 x 2 y 2 R 2 ,故质点的运动轨迹

d 2x d 2 y d 2z d 2r dv dv 2 2 (5) (1) (2) ( 3) (4) dt dt dt 2 dt dt dt 2
(A)只有(1)正确 (C)只有(4) (6)正确 答案:B 分析:由加速度的定义 (B)只有(1) (5)正确
v2 R
d 2s dt 2
2
同步训练答案
第一章 质点力学
许照锦
(5)正确。 8. (☆)以初速 v0 将一物体斜向上抛,抛物角为 ,忽略空气阻力,则物体飞行轨道最高 点处的曲率半径是 (A) v0 sin / g 答案:C 分析:物体到达最高点时的速度为 v0 cos (竖直方向上的速度降为 0) ,此时物体的总加速 度为 g,方向竖直向下,即此时物体的法向加速度为 an g 。由法向加速度公式可得
2 3

(A) 0 t 1s 内,质点沿 x 轴负向作加速运动 (B) 1 t 2 s 内,质点沿 x 轴正向作减速运动 (C) t 2 s 时,质点沿 x 轴负向作减速运动 (D)质点一直沿 x 轴正向作加速运动 答案:B
1
同步训练答案
第一章 质点力学
许照锦
分析:
v
dx 6t 3t 2 3t 2 t ,故 0 t 2 时, v 0 ; t 2 时, v 0 。 dt dv a 6 6t 6(1 t ) ,故 0 t 1时, a 0 ; t 1 时, a 0 。 dt
(A)只有(1) (4)正确 (C)只有(2) (3)正确 答案:B 分析:由速度的定义
(B)只有(2) (3) (4) (5)正确 (D)全部正确
dr dx dy dz v i j k dt dt dt dt
及矢量大小的计算可知(2) (4) (5)正确。由 ds dr 可知(3)正确。 (1)表示的是质 点到参考点距离的改变率(径向速度) ,故不正确,例如圆周运动的物体径向速度恒为零。 4. 一质点沿 x 轴作直线运动,运动学方程为 x 5 3t t (SI) ,则其运动情况是
故质点作变速运动。答案 B 正确。 6. 一作直线运动的物体的运动规律是 x t 40t ,从时刻 t1 到 t 2 间的平均速度是
3
(A) t 2 t1t 2 t1 40
2 2


(C) 2t 2 t1 40
2
(B) 3t1 40
2
(D) t 2 t1 40
2
均速度的大小为 答案: 26 m/s; 分析:
, t 3 s 时的速度大小为

27 m/s
v
v
r (4) r (1) 6i 18 j 3i 3 j i 5 j , v 12 52 26 m/s 4 1 3
dr i 2tj v (3) i 6 j , v 12 6
(D)只有(1) (3) (4) (5)正确
a
dv d 2 r d 2 x d2y d 2z d 2s v2 2 2 i 2 j 2 k 2 et en dt dt dt dt dt dt R
及矢量大小的计算公式可得(1) (5)正确, (4)错误。 (2)表示切向加速度,故错误; (3) 表示质点与参考点距离的两次导数,同选择题第 3 题可知是错误的。因此只有表达式(1)
2 m/s
运动。在前问的条件
分析:略。 (题目修订—“质点运行一周”改为“质点从 t=0s 时刻开始运动,运动一周” ) 9. 质点在平面上运动,若 dr / dt 0 , dr / dt 0 ,则质点作 下,若 dv / dt 0 , dv / dt 0 ,则质点作 答案:圆周; 匀速率圆周 分析: dr / dt 0 表示质点到参考点的距离保持不变, dr / dt 0 表示质点的速度不为零, 故质点作圆周运动。 dv / dt 0 表示质点的速率不变,dv / dt 0 表示质点的加速度不为零, 故质点作匀速率圆周运动。 10. (★)质点沿半径为 0.10m 的圆周运动,其角坐标 可表示为 5 2t 。当 t=1s 时,
11. 在 xy 平面内有一运动质点,其运动学方程为 r R cos ti R sin tj (SI) ,其中 R 和
为大于零的常数,则 t 时刻其速度 v
4
;其切向加速度的大小为
;该
同步训练答案
第一章 质点力学
许照锦
质点运动轨迹是

答案: R sin ti R sin tj ; 0; 半径为 R 的圆 分析:
5. 已知质点的运动学方程为 r 4t 2 3 i 6tj (SI) ,则该质点的轨道方程为
3



同步训练答案
第一章 质点力学
许照锦
答案: x y / 9 3
2
分析:由题可得参量方程 x 4t 3 , y 6t ,消去时间 t,可得
2
x 4 y / 6 3 y 2 / 9 3
dx 0 dt
(B)
dx 0 dt
(C)
d (x 2 ) 0 dt
(D)
d (x 2 ) 0 dt
dx 1 d ( x 2 ) 可知 C 选项正确。 dt 2 dt
2. 质点以 v(t ) 沿 x 轴运动, dv / dt 是非零常数。当 t 0 时, v 0 ;当 t 0 时, vdv / dt (A)小于 0 答案:C
v dx / dt 6t 3t 2 0 t * 2 s
路程 s x(3) x(2) x(2) x(1) 5 9 9 7 6 m 4. 质点的运动方程为 r (t 2)i (t 2) j (SI) ,则在 t 1 s 到 t 4 s 的时间间隔内,平
2 2



作 (A)匀速直线运动 (C)抛物线运动 答案:B
2 分析:由位置矢量表达式可得质点的参数方程 x 3t 2 , y 6t ,消去时间可得质点的
2
(B)变速直线运动 (D)一般曲线运动
运动轨迹为 y 2x 2 ,为直线,即质点作直线运动。由定义可得质点的加速度
2 d r a 2 6i 12 j 0 dt
2 cos 2 v 2 v0 an g
2 (B) v0 / g 2 2 (C) v0 cos / g
2 (D) v0 sin 2 / 2 g
an
二、填空题
v2


1. (☆)一小球沿斜面向上运动,其运动方程为 x 8 16t 2t (SI) ,则小球运动到最远
2
点的时刻为 答案:4
v dx / dt 3 12t 6t 2
v(0) 3 m/s
2 3
a dv / dt 12 12t 0 t * 1 , v(1) 3 12 6 9 m/s
3. (★)一质点沿直线运动,其运动学方程为 x 5 3t t (SI) ,则在 t 由 1s 至 3s 的时 间间隔内, 质点的位移大小为 答案:2m; 6m 分析:位移 x x(3) x(1) 5 27 27 5 3 1 2 m,大小为 2m; ; 在 t 由 1s 至 3s 的时间间隔内, 质点走过的路程为 。
2

x
9
dx t 2 4 dt
t 3
1 1 x 9 t 3 4t x t 3 4t 12 3 3 3
t
7. 一物体在某瞬间以初速度 v0 从某点开始运动,在 t 时间内,经一长度为 s 的曲线路径后 又回到出发点,此时速度为 v0 ,则在这段时间内,物体的平均速率是 度大小是 。 答案: s / t ; 2v0 / t 分析: v ;平均加速
速度的正负表示质点运动的方向;加速度与速度同向为加速运动,反向为减速运动。故
0 t 1时质点沿正向作加速运动; 1 t 2 时质点沿正向作减速运动; t 2 时质点沿负
向作加速运动。即答案 B 正确。 5. 一质点在平面上运动,已知质点位置矢量的表示式为 r (3t 2)i 6t j ,则该质点
2
6. (不做要求)一质点沿 x 轴运动,其速度与时间的关系为 v t 4 ,式中 v 的单位为
2
m/s, t 的单位为 s。 当 t=3s 时, 质点位于 x=9m 处, 则质点的位置与时间的关系为 答案: x t / 3 4t 12
3

分析:由定义 v dx / dt t 4 可得
已批准
同步训练答案 第一章 质点力学
已审阅
许照锦
第一章 质点运动学
一、选择题 1. 一质点沿 x 轴运动,运动方程 x x(t ) ,当满足下列哪个条件时,质点向坐标原点 O 运 动? (A) 答案:C 分析:由题可知,当 x 0 时, v dx / dt 0 ; x 0 时, v dx / dt 0 。故 AB 选项错 误。由 0 x
相关文档
最新文档