怎样讨论含参函数的单调性
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何解决与函数单调性相关的参数问题
陈今碧函数是高考必考的内容之一,也是众多知识的交汇点之一。在解答题里面,经常
看见有关讨论含参数函数的单调性或者求含参数函数的最值的问题。学生们常感到不知道怎么讨论,即分类讨论的标准不明确。本文根据作者的教学经验,归纳出了比较系统和实用的方案供读者参考,不当之处敬请读者指正。
1.讨论含参函数的单调性:
综上…
x(-))()(1,+) x’y+0-0++ y’y’
2.求含参函数的值域(最值):
依以下顺序讨论:1°先讨论单调性(整个有意义的区间),
2°再讨论极值点与定义域的关系.
例6.求值域:
x-1(-1,a)a(a,1)1 y’-0+
y↘↗(1-a)e
综上所述:……
总结:含参函数求值域,最核心的是讨论其单调性,讨论的顺序为:
1)先讨论y’=0在定义域内是否有解;2)再讨论有几解;3)再讨论解的大小;4)最后比较极值与区间端点值(有时是极限值)的大小,进而求出函数的值域.