高中数学函数的专项练习题(含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数的专项练习题(含答案)

高中数学函数的专项练习题(含答案)

一、选择题:本大题共12小题,每小题5分,共60分.

1.函数的定义域是()

A.[1,+)

B.45,+

C.45,1

D.45,1

解析:要使函数有意义,只要

得01,即45

答案:D

2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大

小关系是()

A.a

C.c

解析:∵a=20.321=2,且a=20.320=1,1

∵x1,c=logx(x2+0.3)logxx2=2.cb.

答案:B

3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()

A.-1

B.0

C.1

D.不确定

解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-

x+x2+1)=ln1x+x2+1=-

f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).

a=1-b,即a+b=1.

答案:C

4.已知函数f(x)=-log2x(x0),1-x2(x0),则不等式f(x)0的解集为()

A.{x|0

C.{x|-1-1}

解析:当x0时,由-log2x0,得log2x0,即0

当x0时,由1-x20,得-1

答案:C

5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()

A.f(x)=-x|x|

B.f(x)=x3

C.f(x)=sinx

D.f(x)=lnxx

解析:为奇函数的是A、B、C,排除D.A、B、C中在定义域内为减函数的只有A.

答案:A

6.函数f(x)=12x与函数g(x)=在区间(-,0)上的单调性为()

A.都是增函数

B.都是减函数

C.f(x)是增函数,g(x)是减函数

D.f(x)是减函数,g(x)是增函数

解析:f(x)=12x在x(-,0)上为减函数,g(x)=在(-,0)上为增函数.

答案:D

7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()

A.a

C.b

解析:a=lnx,b=2lnx=lnx2,c=ln3x.

∵x(e-1,1),xx2.故ab,排除A、B.

∵e-1

lnx

答案:C

8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6),则a、b、c的`大小关系是()

A.c

C.c

解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-

0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)

答案:A

9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该

公司在这两地共销售15辆车,则能获得的最大利润为()

A.45.606万元

B.45.6万元

C.46.8万元

D.46.806万元

解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润

L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,

当x=3.0620.15=10.2时,L最大.

但由于x取整数,当x=10时,能获得最大利润,

最大利润L=-0.15102+3.0610+30=45.6(万元).

答案:B

10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),

f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()

A.5

B.4

C.3

D.2

解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,

f(4)=f(1)=f(-2)=0,

在(0,6)内x=1,2,4,5是方程f(x)=0的根.

答案:B

11.函数f(x)=x+log2x的零点所在区间为()

A.[0,18]

B.[18,14]

C.[14,12]

D.[12,1]

解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.

答案:C

12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,

f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()

A.-19

B.-13

C.19

D.-1

解析:f(x+2)=3f(x),

当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.

所以当x[-4,-2]时,x+4[0,2],

所以当x+4=1时,f(x)有最小值,

即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.

答案:A

第Ⅱ卷(非选择共90分)

二、填空题:本大题共4个小题,每小题5分,共20分.

13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.

解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).

答案:[1,+)

14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________.

解析:设f(x)=x,则有42=3,解得2=3,=log23,

答案:13

15.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________.

解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.

即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,

故实数k的取值范围是12,23.

答案:12,23

16.设函数f(x)=2x(-20),g(x)-log5(x+5+x2)(0

若f(x)为奇函数,则当0

相关文档
最新文档