生物反应动力学生物反应器的设计放大与缩小-化学反应工程
生物反应器的规模放大技术研究
![生物反应器的规模放大技术研究](https://img.taocdn.com/s3/m/965d8d4f3069a45177232f60ddccda38376be136.png)
生物反应器的规模放大技术研究在生物工程领域,生物反应器的规模放大是将实验室或小规模的生物技术过程转化为大规模工业生产的关键步骤。
这一过程并非简单地按比例增加反应器的尺寸,而是涉及到一系列复杂的技术问题和挑战。
生物反应器的规模放大旨在提高生产效率、降低成本,并保证产品质量的一致性和稳定性。
然而,从小规模到大规模的转变过程中,许多因素会发生显著变化,如传质、传热、混合效果等。
首先,传质是一个重要的考虑因素。
在小规模反应器中,物质的传递通常较为迅速和均匀,而在大规模反应器中,由于体积增大,物质的扩散距离增加,导致传质效率降低。
例如,氧气的供应对于细胞培养至关重要,如果传质不足,可能会限制细胞的生长和代谢,从而影响产物的产量和质量。
其次,传热也是一个关键问题。
大规模反应器中产生的热量更多,如果不能有效地散去热量,会导致局部温度过高,影响生物反应的正常进行,甚至可能导致细胞死亡或酶失活。
混合效果在规模放大中同样不容忽视。
良好的混合能够确保反应体系中各组分均匀分布,维持稳定的反应环境。
但随着反应器规模的增大,混合难度增加,容易出现浓度梯度和温度梯度,从而影响反应的均一性。
为了解决这些问题,研究人员采用了多种策略和技术。
在传质方面,改进通气方式是常见的方法之一。
例如,采用微泡曝气、膜曝气等技术,可以提高氧气的传质效率。
同时,优化搅拌桨的设计和转速,增强流体的流动和混合,有助于改善传质效果。
对于传热问题,设计高效的热交换系统是关键。
可以采用夹套式、盘管式或外置换热器等方式,增加传热面积,提高散热效率。
此外,选择合适的冷却介质和控制其流速也能对传热效果产生重要影响。
在混合方面,通过模拟和实验研究,优化搅拌桨的类型、数量、安装位置和角度等参数,以实现更好的混合效果。
此外,采用多桨组合、分段搅拌等方式也可以提高混合的均匀性。
除了上述物理因素,生物因素在规模放大中也需要考虑。
不同规模下,细胞或微生物的生长环境和代谢行为可能会发生变化。
生物反应及反应器原理(全)
![生物反应及反应器原理(全)](https://img.taocdn.com/s3/m/6e4b9636ad51f01dc381f118.png)
生物反应及反应器原理第一章序论1。
1 生物反应工程研究的目的1。
2 生物反应工程学科的形成生物反应工程的研究内容与方法⏹1。
3.1生物反应动力学⏹1。
3.2 生物反应器⏹1。
3.3 生物反应过程的放大与缩小第二章酶促反应动力学⏹2。
1 酶促反应动力学的特点⏹ 2.1.1 酶的基本概念⏹ 2.1.1。
1 酶的分类、组成、结构特点和作用机制⏹一、酶的分类⏹(1)氧化还原酶⏹(2)转移酶⏹(3)水解酶⏹(4)异构酶⏹(5)裂合酶⏹(6)连接酶(合成酶)⏹二、酶的组成⏹酶是蛋白质,因此有四级结构,其中一级结构二级结构三级结构四级结构酶蛋白有三种组成:单体酶寡聚酶多酶复合体全酶=蛋白质部分(酶蛋白)+非蛋白部分三、酶的作用机制⏹(1)锁钥模型(2)诱导契合模型2.1.1。
2 酶作为催化剂的共性➢一、催化能力➢二、专一性➢三、调节性⏹酶浓度的调节⏹激素调节⏹共价修饰调节⏹限制性蛋白水解作用与酶活力调控⏹抑制剂调节⏹反馈调节⏹金属离子和其它小分子化合物的调节2.1.2 酶的稳定性及应用特点⏹2。
1.2.1 酶的稳定性⏹2。
1.2.2 酶的应用特点2.1。
3 酶和细胞的固定化技术⏹2。
1。
3。
1 固定化技术的基本概念⏹ 2.1。
3。
2 固定化酶的特性⏹ 2.1.3。
3 固定化细胞的特性⏹2。
1.3。
4 酶和细胞的固定化技术2.1.4 酶促反应的特征2。
2 均相酶促反应动力学2.2.1 酶促反应动力学基础影响酶促反应的主要因素有:(1)浓度因素:酶浓度、底物浓度(2)外部因素(主要是环境因素):温度、压力、溶液的介电常数、离子强度、pH值(3)内部因素(结构因素):底物、效应物浓度、酶的结构⏹酶促反应动力学模型的建立➢ 当酶促反应速率与底物浓度无关,此时为零级反应当反应速率与底物浓度的一次方成正比时, 为一级反应⏹ 也就是酶催化作用下,A B 的过程 ⏹此时反应式为:式中:K1-一级反应速率常数a0-底物A 的初始浓度 b - t 时间产物C 的浓度➢ 当底物A 与底物B 产生产物C 时,即:A +B C 时,为二级反应—②式中:K2-二级反应速率常数a0-底物A 的初始浓度 b0-底物B 的初始浓度 C -t 时间底物C 的浓度 如果把②式积分可得:➢ 当:A B C 时,即连锁的酶促反应过程可用如下方程式表示:-—③——④——⑤式中:a -A 的浓度b -B 的浓度c -C 的浓度K1-第一步反应速率常数 A B K2-第二步反应速率常数 B C当 a + b + c=a0时,即:A 的初始浓度为a0,B 和C 的初浓度为0,得出:当反应达t 时间后,A 、B 、C 的最终浓度。
生物制药技术中的生物反应器扩大生产与工程规模转化方法解析
![生物制药技术中的生物反应器扩大生产与工程规模转化方法解析](https://img.taocdn.com/s3/m/d8f87f3fa36925c52cc58bd63186bceb19e8eddb.png)
生物制药技术中的生物反应器扩大生产与工程规模转化方法解析随着科技的发展和人类对健康的关注日益增加,生物制药技术在医药领域扮演着越来越重要的角色。
生物反应器作为生物制药工艺中的核心设备之一,起着扩大生产规模和提高生产效率的关键作用。
本文将对生物制药技术中的生物反应器扩大生产与工程规模转化方法进行解析,包括生物反应器的设计原则、工程规模的转化方法以及质量控制的重要性。
生物反应器设计是生物制药工艺中的重要环节,其设计原则对于实现高效扩大生产具有决定性的影响。
首先,反应器的物料流动性和混合性是设计时需要考虑的关键因素。
良好的物料流动性和混合性可以保证底物和生物催化剂的充分接触,提高反应效率。
其次,反应器的控温性和可控性也是至关重要的。
在生物制药过程中,保持合适的温度可以提高底物转化率和产物纯度,并延长菌种的寿命。
此外,反应器的废气处理、消泡装置等附属设备也需要在设计中充分考虑。
在生物反应器设计完成后,如何实现工程规模的转化也是一个关键的问题。
首先,需要对生物反应器的放大比例进行合理的确定。
放大比例的确定需要综合考虑反应器的各项参数,包括体积、速率、温度等。
其次,根据放大比例进行反应器的扩建。
在扩建过程中,需要遵循良好的工程规范,保证设备的安装质量和操作安全。
还需要对扩建后的反应器进行完善的调试和试验,确保其操作性能和产品质量符合预期。
生物反应器的扩大生产和工程规模转化并不是一帆风顺的,需面临许多技术和管理上的挑战。
其中一个重要挑战是控制质量的稳定性。
生物制药过程涉及复杂的生化反应和微生物培养,对环境条件和原材料的要求非常高。
因此,进行质量控制是确保扩大生产和工程规模转化顺利进行的关键步骤。
其中包括建立科学的质量标准和检测方法,提高产品的一致性和可追溯性。
同时,通过严格的生产过程控制和质量管理体系,及时进行异常监测和处理,以确保产品质量的稳定性和安全性。
除了质量控制,生物反应器的扩大生产和工程规模转化还需要考虑可持续发展的因素。
生物工程设备第五章 生物反应器的放大与控制
![生物工程设备第五章 生物反应器的放大与控制](https://img.taocdn.com/s3/m/8c1dff6eeffdc8d376eeaeaad1f34693daef10c2.png)
又因为
D ug (VVM ) pL
所以
(VVM )2 ( D1 )23 ( pL2 )
(VVM )1 D2
pL1
QG ug Di2,VL: Di3
第二篇 生物反应设备
第五章 生物反应器的放大与控制
生物反应器的放大过程
1)利用实验室规模的反应器进行种子筛选和 工艺试验;
2)在中间规模的反应器中试验(中试),确 定最佳的操作条件;
3)在大型生产设备中投入生产。
放大的重要性
为生物技术产品从实验室到工业生产的关键。
对一个生物反应过程,在不同大小反应器中进行 生物反应虽相同,但三传有明显差别,从而导致 不同反应器中生物反应速率有差别。
放大倍数实际上就是反应器体积的增加倍数
H1 H2 常数 D1 D2
V2 V1
D2 D1
3
m
所以
H2
1
m3
和
D2
1
m3
H1
D1
H1,H2-模型反应器和放大反应器的高度,m;D1,D2-模型反应 器和放大反应器的内径,m;V1,V2-模型反应器和放大反应器 的体积,m3;
(二)以单位体积液体中搅拌功 率相同放大
ug
60Q0 (273 t) 9.8 104
4
Di 2
273
pL
27465.6(VVM )(273 t)VL Di2 pL
Q0
ug pL Di2 27465.6 (273 t)VL
VVM
ug pL Di2
27465.6 (273 t)VL
(四)以空气线速度相同的原则 进行放大
u g1 u g2
欲使整个生物反应器处于最优条件下进行操作, 必须使反应器中每个细胞都处于最优环境之下, 达到整体优化。
生物工程设备_第六章生物反应器的比拟放大
![生物工程设备_第六章生物反应器的比拟放大](https://img.taocdn.com/s3/m/2bf66d6f5acfa1c7aa00cccd.png)
通风发酵罐的放大设计
机械搅拌通风发酵罐的经验放大 • 以体积溶氧系数kLa(或kd)相等为基准的放大法 高好氧发酵通常应用等kLa的原则进行反应器放大 通气搅拌发酵罐的主要参数及计算公式:
(1)不通气的搅拌功率P0=NPρN3Di5
(2)通气搅拌功率Pg=2.25×10-3( P0 NDi3/Q0.08)0.39
Di2 L 350/ 60(0.125 ) 1020 Re 4.13104 3 2.2510
2
故发酵系统属充分湍流,功率系数NP=6.0。故两组叶轮的不通气时搅拌功率为:
350 5 p0 2 N P 3 L Di5 2 6 (KW) 1020 0.125 74.1(W) 0.0741 60
放大问题 否 是
衡算方程知否
否 是 否 分析解有否 否 是 是
参数都知道
因次分析
计算机求解
求解衡算方程
确定模式
有关参数研究 初拟放大规则
小型装置研究
进一步研究
确定最终放大原则
模式分析
• 1)该系统由哪些机理控制? • 2)起关键作用的是何控制? 反应控制 传质控制 混合控制 …… • 3)反应器规模改变时,此机理作何变化?
二 生物反应器放大方法
• 生物反应器的传递现象与控制受: 对流和扩散控制 • 对流传递过程的时间常数为: tf=L/v
• 式中 度,m/s L-反应器特征尺寸,m v----反应溶液对流运动速
• 反应器放大前后传递时间常数tf与反应转化常数tc(tc是基质浓度与反应 速度的比值)之比值维持不变,则放大前后反应器的性能可维持不变 • 对剪切敏感易受伤的细胞,放大过程还必须检测生物细胞对剪切作用的 影响
第七章 生物反应器及其工程放大7
![第七章 生物反应器及其工程放大7](https://img.taocdn.com/s3/m/0577e8e9aef8941ea76e0584.png)
7.6.2 通风发酵罐的放大 7-7生物反应器的比拟放大
例题:有一5m3 生物反应器,罐径为 1.4m,装液量4m3 ,液深2.7m,采用六弯叶涡 轮搅拌器,叶径为0.45m,搅拌转速 N=190r/min ,通风比 1:0.2 ,发酵液密度为 1040kg/m3 ,发酵液粘度为1.06×10-3Pa· s,现 需放大至 50m3 罐进行生产,试求大罐尺寸和 主要工艺条件。
PG 有Moo-Young提出的计算的kLa方程式 k a 0.025 L V L 可知,大小罐的气体空塔速度也相等。
0.4
w s 0.5
思考题
通用式发酵罐放大时,放大比例一般为10,若放大前后以 下参数中的一个保持一定不变,其余参数将如何变化? (1)Pg/VL(单位体积功耗);(2)N(搅拌转速);(3)NDi(搅 拌浆顶端线速度);(4)Di2Nρ/μ(搅拌雷诺准数)。
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
生物反应器放大的目的及方法 生物反应器放大的目的 一种生物制品的生产在实验室的小的生物反应器中取得 了好的成绩,如何将这种效果在大型反应器中实现,这就是 生物反应器放大要解决的问题。
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大 7-7 生物反应器的比拟放大
计算流体力学法 任何流体的流动都服从动量、质量和能量守恒原理,这些 原理可由数学模型来表达。计算流体力学(Computational Fluid Dynamics-CFD)的方法就是用电子计算机和离散化的数值方法 对流体力学问题进行数值模拟和分析的一个流体力学新分支。 该方法具有与反应器规模及几何尺寸无关的潜在优点,并克服 了经验关联及流体结构模型所固有的缺点。但由于SBR中的流 动常具有三维性、随机性、非线性及边界条件的不确定性,使 得同时考虑气液固多相流动及其对生化反应的相互作用及实际 发酵物系的实验验证等存在很多困难。
反应工程名解及简答题
![反应工程名解及简答题](https://img.taocdn.com/s3/m/eb8a331102d8ce2f0066f5335a8102d276a26147.png)
反应⼯程名解及简答题第0章1. ⽣物技术产品的⽣产过程主要由哪四个部分组成?答:(1)原材料的预处理;(2)⽣物催化剂的制备;(3)⽣化反应器及其反应条件的选择和监控;(4)产物的分离纯化。
2. 什么是⽣化反应⼯程,⽣化反应⼯程的研究的主要内容是什么?以⽣化反应动⼒学为基础,运⽤传递过程原理及⼯程学原理与⽅法,进⾏⽣化反应过程的⼯程技术分析、开发以及⽣化反应器的设计、放⼤、操作控制等综合边缘学科。
主要内容:⽣物反应动⼒学和⽣物反应器的设计,优化和放⼤。
3. ⽣物反应过程的主要特点是什么?1.采⽤⽣物催化剂,反应过程在常温常压下进⾏,可⽤DNA重组及原⽣质体融合技术制备和改造2.采⽤可再⽣资源3.设备简单,能耗低4.专⼀性强,转化率⾼,制备酶成本⾼,发酵过程成本低,应⽤⼴,但反应机理复杂,较难控制,反应液杂质较多,给提取纯化带来困难。
4. 研究⽅法经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体⼒学研究法。
5. 在建⽴⽣物反应过程数学模型时,常按下述⼏个步骤进⾏:(1)反应过程的适当简化;(2)定量化研究;(3)过程分离原理;(4)数学模型的建⽴。
第1章1. 酶作为⽣物催化剂具有那些催化剂的共性和其独特的催化特性?谈谈酶反应专⼀性的机制。
催化共性:降低反应的活化能,加快⽣化反应的速率;反应前后状态不变.催化特性:⾼效的催化活性;⾼度的专⼀性;酶反应需要辅因⼦的参与;酶的催化活性可被调控;酶易变性与失活。
机制:锁钥学说;诱导契合学说2. 什么叫抑制剂?某些物质,它们并不引起酶蛋⽩变性,但能与酶分⼦上的某些必需基团(主要是指活性中⼼上的⼀些基团)发⽣化学反应,因⽽引起酶活⼒下降,甚⾄丧失,致使酶反应速率降低,能引起这种抑制作⽤的物质称为抑制剂。
1.2 简单酶催化反应动⼒学(重点之重点)详细介绍简单酶催化反应模型、快速平衡法、拟稳态法以及酶动⼒学参数的求取⽅法(重点为L-B法和E-H法)。
第七章 生物反应器的放大讲解
![第七章 生物反应器的放大讲解](https://img.taocdn.com/s3/m/aaf4fd16ad02de80d5d84001.png)
( 3.4 )5 3.58
1080
62.7KW
而实际装液量为75%,HL=8.54m,D/d=3.58,
H L 8.54 8.99 d 0.95
P10
1 3
(D)*(HL
d
d
) * P0
1 3
3.58 8.99 62.7 119KW
选用三层搅拌器,m=3,
P30 P10(0.4 0.6m) 119 (0.4 0.63) 262KW
a exp(bQg ),
a, b为与气体流速和搅拌器直径有关的系数
例题
• 采用100m3机械搅拌通风式发酵罐进行谷氨酸发酵,已知
发酵液密度=1080Kg / m3,粘度为=210-3 Pa s,
D 3.4m, D / d 3.58, H 10m, H L 8.54m,装液量为75%,采用 六弯叶圆盘涡轮式搅拌器,三组,转数n 150r / min , 通风比为Q=0.2v v m, 求Pg
3、无通气时非牛顿型流体的搅拌轴功率
• 非顿型流体的,特别是高黏度流体要达到充分的湍流状态几乎是不可能的,
而功率准数总是和Re相关。
Re
Nd 2L a
• 对于细胞反应,大部分流体为拟塑性流体,又称为幂律流体,其表现粘度可 表示为:
a
K
n1, Re
Nd 2L K n1
Metzner采用流动特性指数0.14<n<0.72的高度拟塑性流体做实验, 找出了搅拌罐中搅拌器转数与液体平均剪应速率之间的关系,
3)按几何相似原则确定大罐尺寸:
取H/D=2.4,HL/D=1.5,D/d=3,有效容积60%,忽略封底 容积,则液体体积为
生物反应工程原理
![生物反应工程原理](https://img.taocdn.com/s3/m/d841960c16fc700abb68fc8f.png)
生物反应工程的定义生物反应工程是一门以研究生物反应过程中带有共性的工程技术问题的学科。
是以生物学、化学、工程学、计算机与信息技术等多学科为基础的交叉学科。
生物反应过程与化学反应过程本质的区别是有生物催化剂参与反应。
特点: 1)反应在温和的条件下进行; 2)反应速率比化学反应过程慢很多; 3)反应的复杂性有时难于预计。
共性的基本问题: 1)反应过程的定量; 2)动力学研究;生物反应过程的四个组成部分①原材料的预处理及培养基的制备;②生物催化剂的制备;③生物反应器及反应条件的选择与监控;④产物的分离纯化工程;生物反应工程的研究内容 1、生物反应动力学生物反应动力学主要研究生物反应速率和影响反应速率的各种因素。
基本内容:1)酶反应动力学的特点、均相和多相系统酶促反应动力学及酶的失活动力学; 2)微生物反应过程的质量与能量衡算、发酵动力学和微生物的培养操作技术; 3)影响动植物细胞反应的因素、动植物细胞反应及反应动力学。
2、生物反应器生物反应器是使生物技术转化为产品和生产力的关键设备。
1)生物反应体系中的流变学特性、氧的传递与微生物呼吸、体积溶氧系数及相关因素、溶氧方程及溶氧速率调节; 2)酶反应器及设计、机械搅拌式发酵罐及设计、气升式生化反应器设计、生物废水处理设备及动植物细胞培养用反应器等; 3)分批、流加和连续式操作,及动植物细胞培养技术等。
3、生物反应过程的放大与缩小1)探讨各种类型生物反应的内在规律; 2)从概念上注意与相关学科的区别; 3)要全面、深入地看待问题; 4)确立评价生物反应过程的标准。
酶的分类与命名酶:是生物体为其自身代谢活动而产生的生物催化剂,经典的酶学理论认为酶是蛋白质催化剂,具有蛋白质的一切性质。
氧化还原酶(oxido-reductase);转移酶(transferase);水解酶(hydrolase);裂合酶(lyase);异构酶(isomerase);合成酶(synthetase, ligase)酶的功能酶作为催化剂的共性:①降低反应的活化能;②酶可加快反应速率;③不能改变反应的平衡常数,只能加快反应达到平衡的速度;④反应前后酶本身不变;酶的生物催化特性:①酶有较高的催化效率;②酶有很强的专一性;一种酶仅能作用于一种物质或一类结构相似的物质进行某一种反应,这种特性称为酶的专一性或选择性。
生物反应器的放大与控制
![生物反应器的放大与控制](https://img.taocdn.com/s3/m/df5057a0dc88d0d233d4b14e852458fb770b38be.png)
生物反应器的放大与控制1.3生物反应器的放大1.3.1引言生物工程技术的最终目标是为人类提供服务,创造社会和经济效益,因此一个生物工程产品必须经历从实验室到规模化生产之至成为商品的一系列过程。
这一系列过程可分为三个阶段:1.实验室阶段——基本生物细胞的筛选和培养基的研究,摇瓶培养或1——3L反应器进行2.中试阶段——小型反应器5——500L规模,环境因数最佳操作条件研究。
3.工厂化规模——实验生产至商业化生产,提供产品并获经济效益。
以上同一发酵生产,规模不同,生物反应相同,但反应溶液的混合状态、传质与供热速率等不尽相同,细胞生长与代谢产物生成的速率也有差别。
1.3.2生物反应器的放大:1)定义:生物反应器的放大就是在生物反应器放大过程中,也就是以中试反应设备的实验数据为依据,设计制造大规模反应系统以进行工业规模生产。
2)放大的核心问题和目的(1)核心问题:生物反应器中有三种重要的过程:热量传递过程,微观动力学过程(主要指生物反应的速率问题,特别是细胞生长速率,各种基质组分消耗的速率、代谢产物的生成速率等),质量传递过程。
其中核心问题是传质过程,其中限制性的传质速率就是气态氧向液相中传递(溶解)的速率。
(氧的传递通常是气相的氧先溶在发酵液中再传递给菌体。
为什么氧的溶解速率为限制性速率??请看书中19页的表1-4)(2)放大的目的或指标维持中试所得到的最佳的细胞生长速率,产物的生成速率。
3)生物反应器的放大原则生物反应器的类型很多,所使用的体系也各异。
因此生物反应器的放大是比较复杂的。
书中介绍的是机械搅拌发酵罐的一些经验放大方法。
需要注意的是运用不同的放大原则,放大后罐的操作条件是不一样的。
看书中27页得表1-7.这说明在放大中选用什么准则是要积累较多的经验的。
1.4生物反应器的检测和控制1.4.1引言根据目前人们对生物反应过程的理解,生物反应器的检测和控制对象主要包括三个部分的参数,即,(1)生物反应进程的物理条件,如温度、压力、搅拌速度等;(2)生物反应器进程中的化学条件,如液相pH,氧气和二氧化碳的浓度等;(3)生物反应器进程中的生化参数,如生物体量,生物体营养和代谢产物浓度等。
6 生物反应器的放大
![6 生物反应器的放大](https://img.taocdn.com/s3/m/760187f5524de518964b7df6.png)
通气发酵罐放大准则
所占比例(%) 30 30 放大准则 维持搅拌器叶尖线速度不 变 维持培养液溶氧浓度不变 所占比例(%) 20 20
放大的内容 罐的几何尺寸,通风量,搅拌转速、搅 拌功率,传热面积等
一、几何尺寸的放大 放大倍数指反应器体积的增加倍数
3 H1 H2 常数 V2 D2 m V1 D1 D1 D2
1、以VVM相同的原则进行放大
2、以空气线速度相同的原则进行放大
(VVM ) 2 (VVM )1
(VVM )VL (VVM ) Di ug pL Di2 pL
u g1 u g 2
3、以KLa相同的原则进行放大
u g2 u g1
(
D i2
Di1
)
1
3
3
三、搅拌功率及搅拌转速的放大 1、以单位体积液体中消耗功率相同放大
2
二、空气流量的放大 (1)单位培养液体积在单位时间内通入的空气 量VVM(标准态),m3/(m3·min) Q VVM 0 VL (2)操作状态下空气的线速度,m/h。
VVM
u g pL Di2 27465.6 (273 t )VL
t——反应器的温度,℃ VL——发酵液体积,m3 PL——液柱平均绝对压力,Pa
比拟放大——相似论
(1)实验室;(2)中试;(3)生产 传统放大依据小试和中试的表观试验数据(状 态参数、操作参数、结构参数)比拟放大。 如:单位体积液体的搅拌消耗功率 搅拌雷诺准数 溶氧系数 搅拌器叶尖线速度 混合时间
忽视细胞代谢流参数!!!
1
传统的生物反应器物料流反馈控制
常规控制器 葡萄糖 氮源 前体 油 rpm F 热 H+ (MVS) SFR OTR HTR H+FR
生物反应工程复习重点无习题
![生物反应工程复习重点无习题](https://img.taocdn.com/s3/m/8a74b4efa26925c52dc5bf5b.png)
1.生物反应工程的定义:一生物反应动力学为基础,将传质过程原理、设备工程学、过程动态学及最优化原理等化学方法生物过程方面的知识相结合,进行生物反应过程分析与开发,以及生物反应器的设计、操作和控制。
2.生物反应动力学:主要研究生物反应速率和各种因素对反应速率的影响。
生物反应器的研究内容:(1)生物反应器中的传递特质即传质、传热及动量;(2)生物器的设计与放大;(3)生物反应器的优化与控制,包括优化操作与优化设计。
3.生物反应器的研究内容(1-34)(1)生物反应器中的传递特性。
(2)生物反应器的设计与放大。
(3)生物反应器的优化与控制。
3.酶促反应中竞争性抑制动力学方程4.酶促反应中非竞争性抑制动力学方程5.酶促反应中反竞争性抑制动力学方程6.判断酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制曲线竞争型非竞争型反竞争型7.比较酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制Km、rmax的变化8.双底物酶催化反应的机理有哪些?随机机制:两个底物S1和S2随机地与酶相结合,产物P1和P2也随机地释放出来。
许多激酶类的催化机制属于此种。
顺序机制:两个底物S1和S2与酶结合形成复合物是有顺序的,酶先与底物S1结合形成ES1复合物,然后ES1再与S2结合形成具有催化活性的ES1S2。
乒乓机制:最主要的特点是底物S1和S2始终不同时与酶结合,其机理式。
转氨酶9.固定化酶的优点:(1) 可连续稳定地生产产物;(2) 反应产物地纯度高、质量好;(3) 生产的副产物少;(4) 反应的动力学常数、反应的最佳pH和反应温度可能按意愿经固定化调整;(5) 固定化酶、细胞在使用时可以再生或回收,可反复使用;(6) 容易实现连续自动控制,节约劳动力;(7) 可大大提高酶、细胞的比生产能力10.酶固定化的方法:(1)载体结合法:将酶或细胞利用共价键或离子键、物理吸附等方法结合于水不溶性载体上的一种固定化方法。
水不溶性载体:纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等。
第7章生物反应器及其工程放大
![第7章生物反应器及其工程放大](https://img.taocdn.com/s3/m/838d2e75bcd126fff7050b5c.png)
工业重要特性 主要应用领域
人事费用高 流速受冲出限制 空压机出口压力 要高 可采用鼓风机 需转子高速旋转 人事费用高 无需通风设备 剪切应力小
需光源
大多数工业生产 污水处理、SCP生产等 有机酸,如柠檬酸生产等
面包酵母等生产 乙酸、酵母等生产 麸曲、酶制剂和麦芽生产等 酒精、啤酒等生产 杂交瘤单克隆抗体、烟草细胞 培养等 微藻等生产
7-1 生物反应器设计基础
1 生物反应器的特点与生物学基础
内容提纲
4
2 生物反应器的分类和结构特点 3 生物反应器中的混合
ห้องสมุดไป่ตู้生物反应器传热
7-1 生物反应器设计基础
生物反应器定义:
生物反应器(Bioreactor)是指任何提供生物活性环境的 制造或工程设备,是有效利用生物反应机能的系统或场所。
生物工业中使用的生物反应器有多种型式,即使在同一行 业中也可能采用不同型式的生物反应器。
基因、细胞代谢和反应器工程水平上多尺度的系统反应,虽 然,不同尺寸的反应器可能只是大小的不同,但是引起的细 胞内的生物反应的种类和速度可能大不相同,因此,达到上 述目的存在一定的挑战。
7-1-1 生物反应器设计特点与生物学基础
4)生物反应器选型与设计的要点 (1)选择适宜的生物催化剂。
7-1-1 生物反应器设计特点与生物学基础
表1 生物反应器的操作特性
反应器类型 pH 温度
控制 控制
批式(通用罐) 如需 如需 连续搅拌罐式 如需 如需 气升式反应器 如需 如需
鼓泡式反应器 自吸式反应器 通风制曲设备 嫌气反应器
动植物细胞用 反应器 光合反应器
如需 如需 难控 如需 如需
如需
如需 如需 如需 如需 如需
化学工程和生物工程中的反应器设计
![化学工程和生物工程中的反应器设计](https://img.taocdn.com/s3/m/4577435df4335a8102d276a20029bd64783e62c2.png)
化学工程和生物工程中的反应器设计在化学工程和生物工程中,反应器是非常重要和核心的设备之一。
它的作用是将化学反应或生物反应的原料转化成产品,并控制反应过程的各种参数,使反应过程能够尽可能地达到最优状态,从而提高生产效率和产品质量,减少能源和资源的浪费。
因此,反应器设计是一个非常重要的任务,需要深入了解反应过程的特点和机理,以及反应器的物理和化学性质,从而合理地选择和设计反应器结构、材料、运行条件等,以达到最佳效果和经济性。
第一部分:反应器的分类和特点反应器的分类和特点有很多,根据反应介质的性质和反应方式,可以将其分为化学反应器和生物反应器。
化学反应器主要应用于各种化学反应,例如合成、加氢、裂解等,其特点是反应速度快,反应产生的能量和物质往往是危险的或有害的,因此需要安全可靠地控制反应条件,防止事故的发生。
生物反应器主要应用于各种微生物、细胞或酶等生物物质的反应过程,例如发酵、细胞培养、代谢工程等,其特点是温和、选择性好,反应过程常常需要在特定的生理条件下进行,例如温度、pH、氧气含量、营养物等方面的控制。
另外,反应器还可以按照规模和结构的不同进行分类。
例如按照规模可以分为试验型反应器、中试反应器和工业规模反应器。
试验型反应器主要用于研究和开发新的反应过程,中试反应器用于验证和扩大试验型反应器的效果,而工业规模反应器则是实际应用于生产过程中的设备。
按照结构可以分为批式反应器、连续式反应器和半批连续式反应器等。
不同结构的反应器有着不同的特点和适用范围,需要根据具体的反应过程和生产要求选择最合适的反应器。
第二部分:反应器设计的关键问题反应器设计的关键问题包括反应类型、反应器结构和材料、反应过程控制和优化、反应器操作和管理等方面。
首先,在选择反应器类型时需要考虑反应材料的特性和反应条件的要求。
例如对于大规模的化学反应,通常会选择中空筒式反应器或管式反应器,而对于生物反应,通常会选择发酵罐或生物反应器。
其次,反应器结构和材料的选择与反应器的类型密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物反应过程的分类及其特征
分类 反应水平 酶催化反 应 分子水平 单一细胞反 应过程 细胞水平 多细胞反应过 程 细胞水平 动植物细胞 反应体系 细胞或组织 水平
底物数量
产物数量 反应的复杂性 反应速率或生 长速率
1-2种
1-2种
若干种
细胞和若干 种代谢产物
若干种
若干种菌体和 CO2、CH4等
若干种
三、新时期(20世纪90年代)
基因工程技术与生物反应工程技术不断 的融合,人类基因组计划的完成,后基因 组计划的进行,给生物反应工程技术带来 新的发展机遇。 质粒复制与表达动力学 超临界相态下的生物反应 界面微生物生长模型 双液相生物反应
1.3生物反应工程的主要内容
生物反应工程是以工业规模的生物反应 过程为主要研究对象,具体研究中要兼顾可 操作性,生物反应工程的研究内容为下述2项,
1979年,日本山根恒夫《生物反应工 程》,生物反应工程是一门以速率为基础, 研究酶反应、微生物反应及废水处理过程 的合理设计、操作和控制的工程学。 1985年,德国学者卡尔.许格尔提出生 物反应工程的研究应当包括两个方面,一 是宏观动力学,它涉及生物、化学、物理 之间的相互关系;二是生物反应器工程, 它主要涉及不同的反应器对生物化学和物 理过程的影响。
2 反应工程的用途、作用
反应动力学
反应模式 速率方程 活化能
反应器的设计与分析
各因素(T, P, c)的变化规律 最佳工况
研究目的:
提供适宜的动力学方程,以描 述微生物(酶、动植物等)反应体 系,确定这些方程在设计方面的用 途,规划实验室的实验,决定动力 学方程所需的速率常数。
1.2生物反应工程的erch制药厂因在建立抗 生素工业中由于解决了高效通气搅拌技术、 无菌空气过滤技术、大型反应器灭菌等一 系列工程技术问题,使以青霉素为代表的 微生物发酵工业进入一个新的发展阶段, 而被授予“生化工程专题研究”成果奖, 一门反映生物和化学工程交叉的学科—— 生物化学工程诞生,并取得了快速的发展。
动物细胞反应器
用于新型基因工程药物、疫苗 及抗体等产品的研究和生产。 具有如下特点 磁力驱动搅拌装置; 根据流体运动几何学专门 设计的符合动物细胞培养的搅 拌浆叶; 配置符合动物细胞培养的 专用卫生级隔膜阀、取样阀; 具有符合动物细胞培养特 点的专用高级软件包.
植物细胞反应器
光生物反应器
适用于藻类的培养,反应 过程中提供了充足的光照,比 表面积大。光生物反应器分扁 平箱式光培养器( LLS )和 圆筒形光培养器( LLG )。 扁平箱式光培养器两侧外部窄 面是温度控制循环水夹套,两 侧外部宽面内配光源,培养器 内有气流导板,通入空气使培 养液混合均匀。圆筒形光培养 器的透明玻璃筒体外装有人造 光源,筒体下部是温度控制循 环水夹套,同时装备有机械搅 拌桨,特别适用于藻细胞浓度 较高的培养。
得率系数
研究细胞反应过程总物质和能量变化的规律, 常用得率系数对碳源等物质生成细胞或其他产物 的潜力进行定量评价。例如:
生成细胞的质量 X 细胞得率 Yx/c= 消耗基质的质量 S
生物反应器的设计、优化与放大
生物反应器是使生物技术转化为产品 生产力的关键设备,使用高效率生物反应 器的目的是提高产品生成速率,减少有关 辅助设备,降低生产成本,获得尽可能大 的经济效益。
21世纪高等院校 —生物工程类
生物反应工程
Bioreation Engineering
李敬
第一章 绪论
1.1 1.2 1.3 1.4 1.5 生物反应工程的研究目的 生物反应工程的发展过程 生物反应工程的主要内容 生物反应工程的研究方法 思考题
1.1生物反应工程的研究目的
生物技术产品生产过程
生物催化剂 - enzyme - microbioass - animal and plant cell
生物反应动力学 生物反应器的设计、放大与缩小
生物反应动力学
生物反应动力学主要研究生物反应速率 和各种因素对反应速率的影响,它是生物 反应工程学的理论基础之一,这里所讨论 计算反应 的生物反应动力学包含两个层次的动力学。 时间和反 应器体积 (1)本征动力学,又称微观动力学。 (2)宏观动力学,又称反应器动力学。
生物反应器的设计,包括反应器型式、 结构和操作方式的选择,以及反应器几何 尺寸的确定。
机械搅拌罐
气升式发酵罐
(1)能精确地测量并控制 温度、 pH 值和溶解氧浓度。 (2)气流搅拌,剪切力小。 (3)具有可靠的抗污染密封 性能;精密气体过滤器,能 有效而可靠地滤除空气中杂 菌; (4)适用于科研、生产单 位的新产品开发、新工艺研 究及生物医药产品的生产。
FERMENTATION
原材料
DOWNSTREAM PROCESSES - product extraction, purification - waste treatment by product recovery
生物反应工程定义:
以生物反应动力学为基础,研究生 物反应器的设计、放大和生物反应过 程的优化操作和控制的学科。
细胞或组织 或若干种产 物
简单
快
一般
一般
复杂
慢
很复杂
很慢
细胞反应动力学
考虑细胞之间有无差别可分为概率论和确定论模型 实际 考虑细胞组成变化可分为结构模型和非结构模型 情况
(1)概率论的结构模型 (2)概率论的非结构模型理想 情况 (3)确定论的结构模型 (4)确定论的非结构模型
化学计量学
细胞反应中参与反应的培养基成分多,反应途 径复杂。必须用化学计量学方法来处理,可将反应 器中细胞的活动用元素的平衡式来表示。 碳源+氮源+氧=菌体+有机产物+CO2+H2O CHmOn+aO2+bNH3=cCHxOyNz+dCHuOvNw +eH2O+fCO2 C: 1=c+d+f H: m+3b=cx+ud+2e O: n+2a=cy+vd+e+2f N: b=zc+wd
二、发展时期(20世纪50年代以后)
1964年,Aiba等认为放大是生化工程的 焦点,与微生物代谢反应紧密相连,1973年, 进一步指出,在大规模研究方面,应当进 一步开展对微生物反应本质的研究。 1971年,英国的Atkinson首先采用了生 物反应工程这一术语,1974年,在他编著的 《生物反应器》一书中指出,生物反应工 程的目的是描述微生物体系反应动力学的 合适表达式,并能够通过实验求出其常数。