2020年云南省红河州石屏县中考数学一模试卷 (解析版)
云南省红河哈尼族彝族自治州2020版中考数学一模试卷B卷(新版)
云南省红河哈尼族彝族自治州2020版中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·哈尔滨月考) 的倒数是()A .B .C .D .2. (2分)(2017·磴口模拟) 下列计算正确的是()A . a3+a2=2a5B . (﹣2a3)2=4a6C . (a+b)2=a2+b2D . a6÷a2=a33. (2分)四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A . 仅是轴对称图形B . 仅是中心对称图形C . 既是轴对称图形又是中心对称图形D . 既不是轴对称图形,又不是中心对称图形4. (2分)(2019·温岭模拟) 在数轴上表示不等式3x≥x+2的解集,正确的是()A .B .C .D .5. (2分)有一组数据:3,5,5,6,7,这组数据的众数为()A . 3B . 5C . 6D . 76. (2分)方程2x(x+3)=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根7. (2分) (2017八上·重庆期中) 如果一个多边形的边数由8边变成10边,其内角和增加了()A . 90°B . 180°C . 360°D . 540°8. (2分) (2015九上·宜昌期中) 把抛物线y=﹣经()平移得到y=﹣﹣1.A . 向右平移2个单位,向上平移1个单位B . 向右平移2个单位,向下平移1个单位C . 向左平移2个单位,向上平移1个单位D . 向左平移2个单位,向下平移1个单位9. (2分)如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是()A . 50°B . 55°C . 60°D . 65°10. (2分) (2017九上·诸城期末) 如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y= 上,边CD,BC分别交双曲线于E,F两点,若线段AE过原点,则EF的长为()A . 1B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018九上·银海期末) 分解因式:a 3 b-4a 2 b+4ab=________12. (1分) (2020八下·丰台期末) 在某次体质健康测试中,将学生分两组进行测试,两组学生测试成绩的折线统计图如下,设第一组学生成绩的方差为,第二组学生成绩的方差为,则 ________ .(填“ ”,“ ”或“ ”)13. (1分) (2017七上·确山期中) a是一个两位数,b是一个三位数,把b放在a的左边得到的五位数是________.14. (1分) (2020七上·闵行期末) 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次. 将338600000亿用科学记数法表示为________.15. (1分)已知∠α=30°,∠α的余角为________ .16. (1分) (2019八下·襄汾期中) 设点(-1,m)和点是直线y=(k2-1)x+b(0<k<1)上的两个点,则m、n的大小关系为________.17. (1分) (2018八下·扬州期中) 如图,在□ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=________.18. (1分) (2019九上·温州开学考) 如图所示,AB是⊙O的直径,弦CD交AB于点E,若∠DCA=30°,AB=3,则阴影部分的面积为________.三、解答题 (共8题;共80分)19. (10分) (2019八下·雁江期中)(1)计算(π-3.14)0+()-1-|-4|+2-2(2)化简:-÷ .20. (5分) (2019八下·乐山期末) 先化简,再求值: ,其中x=21. (5分)(2017·广州模拟) 如图,在▱ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.求证:BE=DF.22. (15分) (2020七下·慈溪期末) 受新冠病毒影响,2020年春浙江省中小学延期开学,复学后,某校为了解学生对防疫知识的掌握情况,学校组织全体学生进行防疫知识竞赛。
云南省2020版中考数学一模考试试卷(II)卷
云南省2020版中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列运算正确的个数是()①a2+a2=a4;②3x-2xy2=1;③3ab-3ab=ab;④(-2)3-(-3)2=-17.A . 1B . 2C . 3D . 42. (2分) (2018八上·宽城月考) 若的计算结果中不含x的一次项,则m的值是()A . 1B . -1C . 2D . -2.3. (2分)用科学记数法表示0.000210,结果是()A . 2.10×10-4B . 2.10×10-5C . -2.1×10-4D . 2.1×10-54. (2分)在下列几何图形中一定是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,在△ABC中,∠ABC=∠ACB,∠ABC与∠ACB的平分线相交于点O,过O作EF∥BC交AB于E,交AC于F,那么图中所有的等腰三角形个数是()A . 4个B . 5个C . 6个D . 7个6. (2分)张老师上班途中要经过3个十字路口,每个十字路口遇到红、绿灯的机会都相同,张老师希望上班经过每个路口都是绿灯,但实际上这样的机会是()A .B .C .D .7. (2分)不等式组的解集是x>3,则m的取值范围是()A . m=3B . m≥3C . m≤3D . m<38. (2分)一个人从A点出发向北偏东60°方向走了一段距离到达B点,再从B点出发向南偏西15°方向走了一段距离到C点,则∠ABC的度数为()A . 15°B . 75°C . 105°D . 45°9. (2分)(2020·温岭模拟) 如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止,在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点D为曲线部分的最低点,若△ABC 的面积是10 则a=()A . 7B .C . 8D .10. (2分) (2018九上·兴化月考) 图中四个阴影的三角形中与△ABC相似的是()A .B .C .D .11. (2分) (2020八下·偃师期末) 如图,菱形对角线,,则菱形高长为()A .B .C .D .12. (2分)如图,△ABC中,AD是中线,BC=10,∠B=∠DAC,则线段AC的长为()A . 4B . 5C . 5D . 5二、填空题 (共6题;共7分)13. (1分) (2018九上·许昌月考) 三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为________.14. (1分)有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需________元.15. (2分)(2017·海陵模拟) 如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4 cm,OM=3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值________(单位:秒)16. (1分) (2019九上·兰陵期中) 若二次函数的函数值恒为正数,则的取值范围是________.17. (1分) (2019九上·卫辉期中) 将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,那么的长是________.18. (1分)(2020·哈尔滨模拟) 如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.三、计算题 (共1题;共5分)19. (5分)(2020·铜仁模拟) 计算题。
云南省红河州名校2020届数学中考模拟试卷
云南省红河州名校2020届数学中考模拟试卷一、选择题1.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A.3B.4C.6D.8 2.若抛物线y =x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是( ) A .m >9 B .m≥9 C .m <﹣9 D .m≤﹣9 3.下列计算正确的是( )A .a 2+a 2=a 4B .2a 2×a 3=2C .(a 2)3=a 6D .3a ﹣2a =14.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个5.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .以上都有可能 6.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( )A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)7.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪拼成一个如图所示的长方形,则这样的操作能够验证的等式是( )A .222()2a b a ab b -=-+ B .22()()a b a b a b -=+- C .222()2a b a ab b +=++D .2()a ab a a b +=+8.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一条直线上),量得2ED =米,4DB =米, 1.5CD =米,则电线杆AB 长为( )A .2米B .3米C .4.5米D .5米9.已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A .B .C .D .10.用计算器求35值时,需相继按“133”,“y x ”,“5”,“=”键,若小颖相继按“””4”,“y x ”,“(﹣)”,“3”,“=”键,则输出结果是( ) A .8B .4C .﹣6D .0.12511.关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1﹣x 1x 2+x 2=1﹣a ,则a 的值是( ) A .1B .﹣1C .1或﹣1D .212.如图,在平面直角坐标系中,∠α的一边与x 轴正半轴重合,顶点为坐标原点,另一边过点A (1,2),那么sin α的值为( )B.12C.2 二、填空题13.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可). 14.在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为_____. 15.数轴上的两个数﹣3与a ,并且a >﹣3,它们之间的距离可以表示为_____. 16.双曲线124,ky y x x==在第一象限的图象如图,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =3,则k 的值为_____.17.若矩形两条对角线的夹角是60°,且较短的边长为3,则这个矩形的面积为____.18.已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于_____厘米.三、解答题19.如图,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数、反比例函数的解析式;(2)求证:点C为线段AP的中点.20.如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.(1)若∠D=78°,求∠EAC的度数.(2)若∠EAC=α,则∠B的度数为(直接用含α的式子表示)21.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:(1)在这次调查中共随机抽取了名学生,图表中的m=,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A ,B ,C 三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A ,B 两名女生的概率. 22.发现如图1,在有一个“凹角∠A 1A 2A 3”n 边形A 1A 2A 3A 4……A n 中(n 为大于3的整数),∠A 1A 2A 3=∠A 1+∠A 3+∠A 4+∠A 5+∠A 6+……+∠A n ﹣(n ﹣4)×180°. 验证(1)如图2,在有一个“凹角∠ABC”的四边形ABCD 中,证明:∠ABC =∠A+∠C+∠D .(2)证明3,在有一个“凹角∠ABC”的六边形ABCDEF 中,证明;∠ABC =∠A+∠C+∠D+∠E+∠F ﹣360°. 延伸(3)如图4,在有两个连续“凹角A 1A 2A 3和∠A 2A 3A 4”的四边形A 1A 2A 3A 4……A n 中(n 为大于4的整数),∠A 1A 2A 3+∠A 2A 3A 4=∠A 1+∠A 4+∠A 5+∠A 6……+∠A n ﹣(n ﹣ )×180°.23.如图,在平面直角坐标系xOy 中,已知直线y=kx+b (k≠0)与双曲线y=mx(m≠0)交于点A (2,-3)和点B (n ,2);(1)求直线与双曲线的表达式; (2)点P 是双曲线y=mx(m≠0)上的点,其横、纵坐标都是整数,过点P 作x 轴的垂线,交直线AB 于点Q ,当点P 位于点Q 下方时,请直接写出点P 的坐标.24.小明是“大三”学生,按照学校积分规则,如果他的学期数学成绩达到95分,就能获得“保研”资格.在满分为100分的期中、期末两次数学考试中,他的两次成绩的平均分为90分.如果按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,那么小明能获得“保研”资格吗?请你运用所学知识帮他做出判断,并说明理由.25.已知抛物线y =ax 2+bx+2经过A (﹣1,0),B (2,0),C 三点.直线y =mx+12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【参考答案】***一、选择题13.y=x2+2x(答案不唯一).14.415.a+316.101718.7三、解答题19.(1)8yx=,114y x=+;(2)详见解析.【解析】【分析】(1)由A、B关于y轴对称,可知B点坐标,进而知道P点坐标,就可求一次函数、反比例函数的解析式;(2)利用平行线等分线段定理可求证明.【详解】(1)∵A(-4,0),点A与点B关于y轴对称,∴B(4,0),∵PB⊥x轴于点B,∴P(4,2),把P(4,2)代入y=mx,求得m=8,∴y=8x.把A(-4,0)和P(4,2)代入一次函数y=kx+b中,4042k b k b -+⎧⎨+⎩== ∴141k b ⎧⎪⎨⎪⎩==∴y=14x+1. (2)∵PB ⊥x 轴,y 轴⊥x 轴, ∴PB ∥y 轴,∵A 、B 关于y 轴对称, ∴O 为AB 中点,∴点C 为线段AP 的中点. 【点睛】本题运用了待定系数法求一次函数和反比例函数解析式的知识点,还运用了平行线分线段成比例定理的知识点,体现了数形结合的数学思想.20.(1)∠EAC =27°;(2)0180+23α.【解析】 【分析】(1)根据菱形的性质、圆内接四边形的性质以及三角形内角和定理计算即可; (2)设∠B 的度数为x ,仿照(1)的做法计算即可. 【详解】(1)∵四边形ABCD 是菱形, ∴DA =DC ,∴∠DAC =∠DCA =51°, ∵AD ∥BC ,∴∠ACE =∠DAC =51°,∵四边形AECD 是⊙O 的内接四边形, ∴∠AEC =180°﹣78°=102°, ∴∠EAC =180°﹣102°﹣51°=27°; (2)设∠B 的度数为x , 则∠DAC =∠DCA =1802x︒-,∠AEC =180°﹣x , 则(180°﹣x )+1802x︒-+α=180°, 解得,x =180+23α︒, 故答案为:180+23α︒. 【点睛】本题考查的是菱形的性质、圆周角定理,掌握菱形的四条边相等、对角相等以及圆周角定理是解题的关键.21.(1)40、12、=0.40;(2)90;(3)13.【解析】【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.【详解】(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率21 ()63P A==;【点睛】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.22.(1)见解析;(2)见解析;(3)6.【解析】【分析】(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1A n于B,则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A6……+∠A n),而∠2+∠4=360°﹣(∠1+∠3)=360°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A6……+∠A n)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠A n﹣(n﹣6)×180°.故答案为:6.【点睛】此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型 23.(1) 反比例函数的解析式为y=-6x,一次函数的解析式为y=-x-1.(2) (-6,1)或(1,-6). 【解析】 【分析】(1)利用待定系数法即可解决问题.(2)由题意点P 在点B 的左侧或在y 轴的右侧点A 的左侧,再根据点P 的横坐标与纵坐标为整数,即可确定点P 坐标. 【详解】 (1)双曲线y=mx(m≠0)经过点A(2,-3), ∴m=-6,∴反比例函数的解析式为y=-6x, ∵B(n ,2)在y=-6x上, ∴n=-3, ∴B(-3,2), 则有:{2k b 33k b 2+=--+=, 解得:{k 1b 1=-=-,∴一次函数的解析式为y=-x-1;(2)由题意点P 在点B 的左侧或在y 轴的右侧点A 的左侧,∵点P的横坐标与纵坐标为整数,∴满足条件点点P坐标为(-6,1)或(1,-6).【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.24.见解析【解析】【分析】据加权平均数的算法公式进行计算,再与95分比较大小即可求解.【详解】按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,可得期末数学成绩100分,期中数学成绩80分的成绩最高,80×30%+100×70%=24+70=94(分)∵94分<95分,∴小明不能获得“保研”资格.【点睛】本题考查的是加权平均数,熟记加权平均数的计算公式是解决本题的关键.25.(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】【分析】(1)将点A和点B的坐标代入抛物线的解析式得到关于b、c的方程组,然后求得a,b的值,从而得到问题的答案;(2)把A(﹣1,0)代入y=mx+12求得m的值,可得到直线AQ的解析式,设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),然后用含n的式子表示出PN、NF的长,然后依据PN=2NF列方程求解即可;(3)连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小,先求得点M的坐标,然后求得AM和DE的解析式,最后在求得两直线的交点坐标即可.【详解】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、二次函数的性质,用含n的式子表示出PN、NF的长是解答问题(2)的关键;明确相互垂直的两直线的一次项系数乘积为﹣1是解答问题(3)的关键.。
云南省红河哈尼族彝族自治州2020年中考数学一模试卷C卷
云南省红河哈尼族彝族自治州2020年中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共6题;共12分)1. (2分)下列关系式中,属于二次函数(x为自变量)的是()A . y=πx2B . y=2xC . y=D . y=﹣x+12. (2分)(2017·奉贤模拟) 对于非零向量、、下列条件中,不能判定与是平行向量的是()A . ∥ ,∥B . +3 = , =3C . =﹣3D . | |=3| |3. (2分)(2018·井研模拟) 如图,在平面直角坐标系中,∠α的一边与轴正半轴重合,顶点为坐标原点,另一边过点,那么sinα的值为()A .B .C .D .4. (2分)(2017·薛城模拟) 如图,在▱ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F.已知AB=4,BC=6,CE=2,则CF的长等于()A . 1B . 1.5C . 2D . 35. (2分) (2019八上·重庆月考) 已知△ABC中,∠A=80°,∠B,∠C的平分线的夹角∠BOC是()A . 130°B . 50°C . 100°D . 60°6. (2分) (2017九上·香坊期末) 把抛物线y=x2+1向右平移3个单位,再向下平移2个单位,得到抛物线()A . y=(x+3)2﹣1B . y=(x+3)2+3C . y=(x﹣3)2﹣1D . y=(x﹣3)2+3二、二.填空题 (共12题;共15分)7. (1分)若线段x是9和16的比例中项,则线段x的值为________.8. (3分)著名数学家华罗庚(1910﹣1985)倡导优选法,就是对生产和科学试验中提出的问题,根据数学原理,通过尽可能少的试验次数,迅速求得最佳方案的方法.这个数学原理就是利用中国古代黄金分割比值的近似值0.618乘以任意一个数,所得的另一个数,就是最佳的方案.某医院急诊室的护士利用体温表给病人量体温,按常规测一次体温需3分钟时间,实际上是________分钟时测的体温,同3分钟时测的体温一样,这________分钟与________分钟之间的分界点,就是用优选法产生出来的.9. (1分)(2017·闵行模拟) 计算:( + )﹣(﹣2 )=________.10. (1分) (2019九上·慈溪期中) 如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O 九个格点.抛物线l的解析式为(n为整数).若l经过这九个格点中的三个,则满足这样条件的抛物线条数为________条11. (2分) (2020九上·拱墅月考) 若实数满足,则满足的范围________,的最小值为________.12. (1分)某书定价20元,如果一次购买25本以上,超过25本的部分打七五折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系________.13. (1分)(2020·武汉模拟) 已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm 恒成立,则关于x的方程ax2+bx+c=5的解为________.14. (1分) (2016九上·吴中期末) 如图,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于B、C两点,过点C作y轴的平行线交y1的图象于点D,直线DE∥AC,交y2的图象于点E,则 =________.15. (1分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则击球的高度h为________.16. (1分)在梯形ABCD中,AD∥BC,E、F分别是边AB、CD的中点.如果AD=5,EF=11,那么BC= ________.17. (1分)(2020·无锡模拟) 如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD =10,,则EC=________.18. (1分)(2020·吉林模拟) 如图,将半径为2、圆心角为90°的扇形BAC绕点A逆时针旋转,点B,C的对应点分别为点D,E。
2020年云南省红河州中考数学模拟试卷解析版
第 3 页,共 16 页
下班的人数.
19. (列方程解应用题)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一 批书籍.其中购买 A 种图书花费了 3000 元,购买 B 种图书花费了 1600 元,A 种图 书的单价是 B 种图书的 1.5 倍,购买 A 种图书的数量比 B 种图书多 20 本,求 A 和 B 两种图书的单价分别为多少元?
A. 八边形
B. 七边形
Байду номын сангаас
C. 六边形
D. 九边形
4. 某电脑公司销售部对 20 位销售员本月的销售量统计如下表:
销售量(台)
12
14
20
30
人数
4
5
8
3
则这 20 位销售人员本月销售量的平均数和中位数分别是( )
A. 19,20
B. 19,25
C. 18.4,20
D. 18.4,25
5. 如图,⊙O 的直径 AB=6,若∠BAC=50°,则劣弧 AC 的长
第 2 页,共 16 页
四、解答题(本大题共 8 小题,共 62.0 分)
16. 计算:
.
17. 已知:如图,点 B、F、C、E 在一条直线上,∠A=∠D, AC=DF 且 AC∥DF 求证:△ABC≌△DEF.
18. 自 2016 年共享单车上市以来,给人们的出行提供了便利,受到了广大市民的青睐, 某公司为了了解员工上下班回家的路程(设路程为 x 千米)情况,随机抽取了若干 名员工进行了问卷调查,现将这些员工的调查结果分为四个等级,A:0≤x≤3;B: 3<x≤6;C:6<x≤9;D:x>9;并将调查结果绘制成如下两幅不完整的统计图:
2020年云南省红河州石屏县中考数学一模试卷
中考数学一模试卷题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.函数y=中,自变量x的取值范围是()A. x≥1B. x>1C. x≥1且x≠2D. x≠22.下列计算正确是()A. 3-1=-3B.C. a6÷a2=a4D. ()0=03.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球4.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110A. 众数是110B. 方差是16C. 平均数是109.5D. 中位数是1095.关于x的一元二次方程x2+3x-1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定6.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A. 6cmB. 12cmC. 2cmD. cm7.如图,四边形OABC是矩形,等腰△ODE中,OE=DE,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=的图象上,OA=5,OC=1,则△ODE的面积为()A. 2.5B. 5C. 7.5D. 108.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)9.的倒数是______.10.云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八.将数字394000用科学记数法表示为______.11.不等式组的解集是______.12.如图,直线a∥b,直线c与直线a、b分别交于A、B两点,AC⊥b于点C,若∠1=43°,则∠2=______.13.已知(x-1)2=2,则代数式2x2-4x+5=______.14.如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=______.三、解答题(本大题共9小题,共70.0分)15.计算:(-1)2020-+4cos45°.16.如图,∠B=∠D,∠1=∠2,AB=AD.求证:BC=DE.17.香蕉苹果批发价(元/千克)34零售价(元/千克)57水果经营户老王从水果批发市场批发香蕉与苹果用了元,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?18.甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第二象限的概率.19.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)20.为挑选优秀同学参加云南省级英语听说能力竞赛,某中学举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组成听写正确的个数x组中值A0≤x<2010B20≤x<4030C40≤x<6050D60≤x<8070E80≤x<10090根据以上信息解决下列问题:(1)本次共随机抽查了______名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.21.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?22.如图,在ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm.(1)求EC的长.(2)作∠BCD的平分线交AB于F,求证:四边形AECF为平行四边形.23.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;答案和解析1.【答案】C【解析】解:依题意得:x-1≥0且x-2≠0,解得x≥1且x≠2.故选:C.根据分式的分母不为零、被开方数是非负数来求x的取值范围.本题考查了函数自变量的取值范围.本题属于易错题,同学们往往忽略分母x-2≠0这一限制性条件而解错.2.【答案】C【解析】解:A、3-1=,故此选项错误;B、-,无法计算,故此选项错误;C、a6÷a2=a4 ,正确;D、()0=1,故此选项错误.故选:C.直接利用二次根式的加减运算法则、零指数幂的性质、同底数幂的乘除运算法则,分别判断得出答案.此题主要考查了二次根式的加减运算、零指数幂的性质、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.【答案】B【解析】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选:B.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.【答案】A【解析】【分析】本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.【解答】解:这组数据的众数是110,A正确;=×(110+106+109+111+108+110)=109,C错误;s2=[(110-109)2+(106-109)2+(109-109)2+(111-109)2+(108-109)2+(110-109)2]=,B错误;六名学生的数学成绩按照从小到大的顺序排列的是:106,108,109,110,110,111,故选A.5.【答案】A【解析】解:∵a=1,b=3,c=-1,∴△=b2-4ac=32-4×1×(-1)=13>0,∴方程有两个不相等的实数根.故选:A.判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.6.【答案】A【解析】解:由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即R=6cm.故选:A.由已知的扇形的圆心角为60°,它所对的弧长为2πcm,代入弧长公式即可求出半径R.此题考查了弧长的计算,解题的关键是熟练掌握弧长公式,理解弧长公式中各个量所代表的意义.7.【答案】B【解析】解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.本题考查反比例函数系数k的几何意义,等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.【答案】A【解析】解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…故第n个正方形周长是原来的,以此类推:第六个正方形A6B6C6D6周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴第六个正方形A6B6C6D6周长是.故选:A.根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A6B6C6D6的周长本题考查了利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方的性质.进而得到周长关系.9.【答案】-2020【解析】解:-的倒数是:-2020.故答案为:-2020.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握定义是解题的关键.10.【答案】3.94×105【解析】解:394000=3.94×105,故选:3.94×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】-<x<2【解析】解:解不等式x-2<0,得:x<2,解不等式3x+5>0,得:x>-,则不等式组的解集为-<x<2,故答案为:-<x<2.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】47°【解析】解:∵AC⊥b于点C,∴∠ACB=90°,∵a∥b,∴∠3=∠ACB=90°,∴∠2=180°-∠1-∠3=180°-43°-90°=47°,故答案为:47°.先由垂直的定义可得∠ACB=90°,根据平行线的性质得出∠3=∠ACB=90°,再由平角的定义可求得∠2.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.也考查了垂直的定义与平角的定义.13.【答案】7【解析】解:2x2-4x+5=2(x-1)2+3=2×2+3=4+3=7.故答案是:7.利用完全平方公式将所求的代数式进行变形,然后整体代入进行求值.本题考查了完全平方公式,此题利用了“整体代入”的数学思想,减少了繁琐的计算过程.14.【答案】122°【解析】解:∵∠A=64°,∴∠ABC+∠ACB=180°-∠A=116°,∵BD平分∠ABC、CE平分∠ACB,∴∠DBC=∠ABC、∠BCE=∠ACB,则∠DBC+∠BCE=∠ABC+∠ACB=(∠ABC+∠ACB)=58°,∴∠BOC=180°-58°=122°,故答案为:122°由三角形内角和得∠ABC+∠ACB=180°-∠A=130°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB),进而解答即可.本题主要考查三角形内角和定理、角平分线的定义,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.15.【答案】解:原式=1-2+1+4×=1-2+1+2=2.此题考查了实数的运算,乘方的意义,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.【答案】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.【解析】先根据∠1=∠2得到∠BAC=∠DAE,再根据全等三角形的判定定理证得△ABC≌△ADE,然后根据全等三角形的性质即可得到结论.本题考查了全等三角形的判定与性质,是基础题,熟记三角形全等的判定方法并求出∠BAC=∠DAE是解题的关键.17.【答案】解:设这天他批发的香蕉和苹果分别是x千克,y千克,根据题意,得,解得,答:这天他批发的香蕉和苹果分别是50千克,80千克.【解析】设这天他批发的香蕉和苹果分别是x千克,y千克,根据题意列出方程组即可求解.本题考查了二元一次方程组的应用,解决本题的关键是根据题意找到等量关系.18.【答案】解:(1)用列表法:-7-13-2(-7,-2)(-1,-2)(3,-2)1(-7,1)(-1,1)(3,1)6(-7,6)(-1,6)(3,6)可知,点A共有9种情况.(2)由(1)知点A的坐标共有9种等可能的情况,点A落在第二象限(事件A)共有(-7,1)、(-1,1)、(-7,6)、(-1,6)四种情况.所以P(A)=.【解析】(1)根据取卡的方式,列表解答即可;(2)点A落在第二象限(事件A)共有(-7,1)、(-1,1)、(-7,6)、(-1,6)四种情况,然后根据概率公式解答.本题考查了列表法与树状图,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.【答案】解:在直角△BCD中,CD=40m,∠CBD=30°,则BD===40(m).在等腰直角△ACE中,CE=BD=40m,∠ACE=45°,则AE=CE•tan45°=40m.所以AB=AE+BE=AE+CD=40+40(m).答:公寓楼与矿业大厦间的水平距离BD的长度是40m,矿业大厦AB的高度是(40+40)m.【解析】利用所给角的三角函数用CD表示出BD、AE;根据AB=AE+CD,即可得解.本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,能够造出直角三角形是解题的关键.20.【答案】100【解析】解:(1)解:10÷10%=100,答:本次共随机抽查了100名学生.补全的频数分布直方图如下:(2)=(10×10+15×30+25×50+30×70+90×20)=57(个),答:被抽查学生听写正确的个数的平均数是57个;(3)3000×(10%+15%+25%)=1500(人),答:估计这所学校本次竞赛听写不合格的学生人数为1500人.(1)根据频数分布直方图和扇形统计图即可得本次共随机抽查了100名学生,并能补全频数分布直方图;(2)根据加权平均数即可求出被抽查学生听写正确的个数的平均数;(3)利用样本估计总体的方法即可估计这所学校本次竞赛听写不合格的学生人数.本题考查了频数(率)分布直方图、加权平均数、用样本估计总体,解决本题的关键是掌握频数分布直方图.21.【答案】解:(1)由题意可知:y=300x+400×(10-x)+500×(6-x)+800×(2+x)由此y=200x+8600.(2)由题意得200x+8600≤9000,∴x≤2.又∵B市可支援外地6台,∴0≤x≤6.综上0≤x≤2,∴x可取0,1,2,∴有三种调运方案;(3)∵0≤x≤2,且W随x的值增大而增大,当x=0时,W的值最小,最小值是8600元.此时的调运方案是:B市运往C市0台,运往D市6台;A市运往C市10台,运往D市2台.【解析】(1)从B市运往C市x台,则运费为300x,还需从A市往C市运送10-x台,运费为400×(10-x),那么从B市运往D市6-x台,运费为500×(6-x),从A市运往D市12-(10-x)台,运费为800×(2+x),从而得到总运费y关于x的函数关系式;(2)根据运费单价列出函数关系式,根据每次运出台数为非负数,列不等式组求x的范围.(3)因为所求一次函数解析式中,一次项系数200>0,x越小,W越小,为使总运费最低,x应取最小值.本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.22.【答案】解:(1)∵AE平分∠BAD,∴∠1=∠3,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠3=∠2,∴∠1=∠2,∴AD=DE=5cm,∵AB=8cm,∴EC=8-5=3cm;(2)如图,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,CD∥AB,∵AE平分∠BAD,∴∠3=,∵CF平分∠DCB,∴∠ECF=,∴∠3=∠ECF,∵∠2=∠3,∴∠2=∠ECF,∴AE∥CF,又∵EC∥AF,∴四边形AECF为平行四边形.【解析】此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行,两组对边分别平行的四边形是平行四边形.(1)首先根据角平分线的定义可得∠1=∠3,再根据平行线的性质可得∠3=∠2,利用等量代换可得∠1=∠2,根据等角对等边可得AD=DE,再根据线段的和差关系可得EC长;(2)首先根据平行四边形的性质可得∠DAB=∠DCB,CD∥AB,再根据角平分线的定义可得∠3=∠ECF,再证明AE∥CF,根据两组对边分别平行的四边形是平行四边形可证明四边形AECF为平行四边形.23.【答案】解:(1)∵抛物线y=ax2+bx+2过点A(-3,0),B(1,0),∴解得,∴二次函数的关系解析式为y=-x2-x+2;(2)存在.∵如图1所示,设点P坐标为(m,n),则n=-m2-m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.则PM=-m2-m+2,PN=-m,AO=3.∵当x=0时,y=-×0-×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO-S△ACO=AO•PM+CO•PN-AO•CO=×3×(-m2-m+2)+×2×(-m)-×3×2=-m2-3m∵a=-1<0∴函数S△PAC=-m2-3m有最大值∴当m=-=-时,S△PAC有最大值.∴n=-m2-m+2=-×(-)2-×(-)+2=,∴存在点P(-,),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(-2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(-1,-1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(-1,-1),Q4(-2,1).【解析】(1)直接把点A(-3,0),B(1,0)代入二次函数y=ax2+bx+2求出a、b的值即可得出抛物线的解析式;(2)设点P坐标为(m,n),则n=-m2-m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.根据三角形的面积公式得出△PAC的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC为边,在线段BC两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ是以BC为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,根据全等三角形的判定定理得出△Q1CD≌△CBO,△CBO≌△BQ2E,故可得出各点坐标.本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
云南省2020版数学中考一模试卷(I)卷(考试)
云南省2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·漳州) ﹣3的相反数是()A . 3B . ﹣3C .D .2. (2分)(2016·毕节) 2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A . 89×103B . 8.9×104C . 8.9×103D . 0.89×1053. (2分)(2020·云梦模拟) 下列几何体中,俯视图是长方形的是()A .B .C .D .4. (2分) (2018七下·钦州期末) 下列的点在第二象限的是()A . (2,3)B . (﹣2,3)C . (2,﹣3)D . (﹣2,﹣3)5. (2分)关于x的方程ax2+bx+c=0(a≠0)有两个相等的实数根,则的值为()A .B .C .D .6. (2分)(2017·道外模拟) 如图,热气球从空中的A处看一栋楼的顶部仰角为30°,看这栋楼的俯角为60°.热气球与楼的水平距离为120m.这栋楼的高度为()A . 160mB . 160 mC . (160﹣160 )mD . 360m7. (2分)(2017·路北模拟) 如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A . 两人皆正确B . 两人皆错误C . 甲正确,乙错误D . 甲错误,乙正确8. (2分)如图,AD是△ABC的边BC上的高,添加下列条件中的某一个,不能推出△ABC为等腰三角形的是()A . ∠BAD=∠ACDB . ∠BAD=∠CADC . BD=CDD . ∠B=∠C二、填空题 (共6题;共6分)9. (1分) (2019八下·番禺期末) 计算:=________.10. (1分)(2019·鄂州) 因式分解:4ax2-4ax+a=________.11. (1分) (2019七下·汝州期末) 一个含30°角和另一个含45°角的三角板按如图所示放置,直角顶点重合,且两条斜边,则________°.12. (1分) (2018九上·合肥期中) 在平面直角坐标系中,点C、D的坐标分别为C(3,-2)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2则点C的对应点A的坐标为________.13. (1分)(2018·广州模拟) 如图,正比例函数和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2 ,则x的取值范围是________;14. (1分) (2020九上·瑶海期末) 已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m , 0).若2<m<5,则a的取值范围是________.三、解答题 (共10题;共85分)15. (5分)先化简,再求值.÷+x+2,其中x=4sin60°+2﹣1﹣20140﹣.16. (5分)(2017·启东模拟) 体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?17. (5分)(2017·自贡) 如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.18. (5分)(2017·福田模拟) 为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球.已知用800元购买篮球的个数比购买足球的个数少2个,足球的单价为篮球单价的 .(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于5200元购买篮球、足球共60个 ,那么至少要购买多少个足球?19. (6分)(2018·溧水模拟) 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:△ADG≌△CDG.(2)若=,EG=4,求AG的长.20. (2分)(2018·萧山模拟) 某学校为了解本校九年级学生期末考试数学成续情况,决定进行抽样分析,已知该校九年级共有10个班,每班40名学生,请根据要求回答下列问题:(1)若要从全年级学生中抽取一个40人的样本,你认为以下抽样方法中比较合理的有________.(只要填写序号)①随机抽取一个班级的学生;②在全年级学生中随机抽取40名男学生:③在全年级10个班中各随机抽取4名学生.(2)将抽取的40名学生的数学成绩进行分组,并绘制频数表和成分布统计图(不完整)如表格、图:①C、D类圆心角度数分别为________;②估计全年级A、B类学生人数大约共有________.成绩(单位:分)频数频率A类(80~100)0.3B类(60~79)0.4C类(40~59)8D类(0~39)4(3)学校为了解其他学校数学成绩情况,将同层次的G学校和J学校的抽样数据进行对比,得下表:你认为哪所学校教学效果较好?说明你的理由.学校平均数(分)方差A、B类频率和G学校875200.7J学校874780.6521. (15分) (2020九上·遵化期末) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?22. (7分) (2015八上·卢龙期末) 如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积;(2)求证:AC平分∠ECF;(3)求证:CE=2AF.23. (20分)(2017·黄冈模拟) 如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y 轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x>0)的图象上时,求菱形ABCD平移的距离.24. (15分) (2016九下·农安期中) 如图,在平面直角坐标系中,抛物线y=﹣x2+mx(m>0且m≠1)与x 轴交于原点O和点A,点B的坐标为(1,﹣1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC.(1)求点A的横坐标.(用含m的代数式表示).(2)若m=3,则点C的坐标为________.(3)当点C与抛物线的顶点重合时,求四边形ABOC的面积.(4)结合m的取值范围,直接写出∠AOC的度数.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共6题;共6分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共10题;共85分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、答案:24-4、第21 页共22 页考点:解析:第22 页共22 页。
云南省红河哈尼族彝族自治州2020年中考数学模拟试卷(I)卷
云南省红河哈尼族彝族自治州2020年中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若|x|=7,|y|=5,且x<y,那么x﹣y的值是()A . ﹣2或12B . 2或﹣12C . 2或12D . ﹣2或﹣122. (2分) (2019七下·江苏月考) 计算(-a2)4的结果是()A . a6B . -a6C . -a8D . a83. (2分)(2014·泰州) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .4. (2分)一种细胞的直径为0.00000156,将0.00000156用科学记数法表示应为()A . 1.56×106B . 1.56×10-6C . 1.56×10-5D . 15.6×10-45. (2分) (2019八下·长兴月考) 若一个多边形的内角和为1440°,则这个多边形的边数是()A . 8B . 10C . 12D . 146. (2分)已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是()A . 相交B . 外切C . 外离D . 内含7. (2分) (2017七上·德惠期末) 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A . 主视图B . 俯视图C . 左视图D . 主视图、俯视图和左视图都改变8. (2分)(2017·泰安模拟) 在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正确的个数是()A . 1B . 2C . 3D . 49. (2分)武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之()A . 45B . 46C . 47D . 4810. (2分)(2018·青海) 如图,把直角三角形ABO放置在平面直角坐标系中,已知,B点的坐标为,将沿着斜边AB翻折后得到,则点C的坐标是()A .B .C .D .11. (2分)Rt△ABC的两条直角边分别为3 cm、4 cm,与它相似的Rt△A'B'C'的斜边为20 cm,那么Rt△A'B'C'的周长为()A . 48cmB . 28cmC . 12cmD . 10cm12. (2分)(2017·黔东南) 如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC 的度数为()A . 60°B . 67.5°C . 75°D . 54°二、填空题 (共6题;共7分)13. (1分) (2019九下·常德期中) 要使代数式有意义的x的取值范围是________.14. (1分) (2019八上·郑州开学考) 如图,,,,则的度数是________.15. (1分)(2018·成都模拟) 若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为________.16. (1分)一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=-3的解为 ________17. (1分)如图,在平行四边形ABCD中,AB=4,AD=5,∠B=60°,以点B为圆心,BA为半径作圆,交BC 边于点E,连接ED,则图中阴影部分的面积为________18. (2分)(2017·嘉兴) 如图,把个边长为1的正方形拼接成一排,求得,,,计算 ________,……按此规律,写出 ________(用含的代数式表示).三、解答题 (共8题;共75分)19. (5分)(1)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1;(2)解分式方程:+=1.20. (10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,线段AB的端点均在格点上.(1)将线段AB向右平移3个单位长度,得到线段A′B′,画出平移后的线段并连接AB′和A′B,两线段相交于点O;(2)求证:△AOB≌△B′OA′.21. (10分)(2016·凉山) 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22. (10分)(2016·黄冈) 如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.23. (10分)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡逻艇的航向为北偏西40°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,三分钟后甲、乙两艘巡逻艇相距多少海里?24. (5分) (2017七上·闵行期末) “新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?25. (10分) (2017八上·深圳月考) 在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,若AB=3 ,BC=5,求AC的长;(2)如图②,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.26. (15分)(2017·成都) 如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4 ,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M 是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4、答案:略5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、。
云南省2020年中考数学模拟试卷(一)(含解析)
2020年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.(3分)函数的自变量x的取值范围是.2.(3分)分解因式:3a3﹣12a=.3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.2370008.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.510.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)11.下面空心圆柱形物体的左视图是()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.(3分)函数的自变量x的取值范围是x≤.【分析】根据二次根式的性质,被开方数大于或等于0,可知:1﹣2x≥0,解得x的范围.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.2.(3分)分解因式:3a3﹣12a=3a(a+2)(a﹣2).【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=±6 .【分析】先根据关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根可得出△=0,据此求出k的值即可.【解答】解:∵关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,∴△=k2﹣4×9=k2﹣36=0,解得k=±6.故答案为:±6.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 3 .【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:点A为反比例函数y=的图象在第二象限上的任一点,则矩形ABOC的面积S=|k|=3.故答案为:3.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE= 5 .【分析】由折叠的性质得DE=BE,在Rt△ABE中,利用勾股定理计算出AE的长,进而得到DE的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,由折叠的性质得:DE=BE,设AE=x,则DE=BE=8﹣x,在Rt△ABE中,由勾股定理得:AE2+AB2=BE2,则x2+42=(8﹣x)2,解得:x=3,则DE=8﹣3=5,故答案为:5.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.21。
云南省红河哈尼族彝族自治州2020年(春秋版)数学中考一模试卷A卷
云南省红河哈尼族彝族自治州2020年(春秋版)数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) -2的相反数是()A . 2B . -2C .D .2. (2分)下面如图是一个圆柱体,则它的正视图是()A .B .C .D .3. (2分)(2019·无锡) 已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是()A . 66,62B . 66,66C . 67,62D . 67,664. (2分)(2020·郑州模拟) 既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 等腰梯形C . 平行四边形D . 正六边形5. (2分)(2019·红塔模拟) 下列运算正确的是()A .B .C .D .6. (2分) (2018·黄冈模拟) 已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A .B . 2C .D .二、填空题 (共10题;共12分)7. (1分) (2016九上·苍南期末) sin30°的值为________.8. (1分)(2016·安徽) 因式分解:a3﹣a=________.9. (1分)(2016·铜仁) 函数的自变量x取值范围是________.10. (1分)(2019·张家港模拟) 已知直线 //b,将一块含45°角的直角三角板(∠C=90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为________11. (1分)(2018·灌南模拟) 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为________元.12. (1分) (2019九上·新蔡期末) 将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.13. (3分)如图,在△ABC中,D、E分别是AB和AC的中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=________ ,△ADE与△ABC的周长之比为________ ,△CFG与△BFD的面积之比为________ .14. (1分)如图,在某监测点B 处望见一艘正在作业的渔船在南北偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为________ 海里.15. (1分)(2019·南平模拟) 扇形的圆心角为60°,弧长为4πcm ,则此扇形的面积等于________cm2 .16. (1分) (2019·北部湾模拟) 如图,把Rt△OAB置于平面直角坐标系中,点A的坐标为(0,4),点B 的坐标为(3,0),点P是Rt△OAB内切圆的圆心.将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为P1 ,第二次滚动后圆心为P2 ,…,依此规律,第2019次滚动后,Rt△OAB内切圆的圆心P2019的坐标是________.三、解答题 (共11题;共120分)17. (5分)(2017·西城模拟) 计算:﹣2﹣1+(﹣π)0﹣4sin45°.18. (5分)(2016·新化模拟) 先化简,再求值:(﹣)•(x﹣3),从不大于4的正整数中,选择一个合适的值代入x求值.19. (10分)已知x1 , x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.20. (6分) (2019九上·新兴期中) 商店只有雪碧可乐果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同。
2024年云南省红河州初中学业水平考试数学模拟试卷(一)(原卷版)
2024年红河哈尼族彝族自治州初中学业水平考试(一模)数学试题卷(全卷三个大题,共27个小题,共8页,满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上.在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 锂电池是电动汽车的关键部件,我国的锂电池正突破重围,势不可挡.规定充电时长为正,耗电时长为负,若新能源汽车快充充电小时记作小时,那么新能源汽车连续性耗电8小时记作( )A. 小时B. 小时C. 小时D. 小时2. 边境兴则边疆稳,边民富则边防固.在云南省红河哈尼族彝族自治州河口瑶族自治县这座与越南接壤的边境城市里,边民互市贸易一直是中越两国边民日常生活和经济活动的重要形式,对兴边、富民、睦邻有着重要作用.据统计,2023年河口口岸边民互市完成贸易量达350900吨.数据350900用科学记数法表示为( )A. B. C. D. 3. 如图,已知直线,被直线所截,,平分,若,则的度数为( )A. B. C. D. 4. 下列运算正确的是( )A. B. C. D. 5. 下列几何体,主视图、俯视图、左视图都相同的是()0.50.5+0.5+0.5-8+8-60.350910⨯50.350910⨯63.50910⨯53.50910⨯AB CD AE AB CD ∥CF ECD ∠140∠=︒A ∠40︒80︒100︒140︒23m m m-=()22439a a =236a a a ⋅=22(1)1x x +=+A. B. C. D.6. 如果反比例函数y=的图象在二、四象限,那么k 的取值范围是( )A. k >0 B. k <0 C. k≥0 D. k≤07. 彝族(尼苏)剪纸是云南省非物质文化遗产代表性项目,下列“彝族(尼苏)剪纸”图案中,不属于轴对称图形的是( )A. B. C. D.8. 经省教育厅同意,关工委科技活动委员会、省教育厅关工委研究,决定于2024年5月中下旬举办第四届(2023-2024学年)全国青少年科技教育成果展示大赛云南省区域赛.今年的线上竞赛项目有五项,分别是::ICode 未来编程赛技,:GOC 编程挑战赛,:科技创意动画挑战赛,:AI+程序算法竞赛,:月背行走创意赛.某中学学生会为了考察该校1000名初中学生参加线上竞赛项目的情况,采取抽样调查的方法,随机调查了若干名学生参加线上竞赛项目的情况(每人必须参加且只能参加其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息,下列判断正确的是( )A. 本次抽样调查的样本容量是100B. 参加线上竞赛项目对应的扇形圆心角度数为C. 本次抽样调查中,参加线上竞赛项目的人数是50人D. 该校1000名初中学生中参加线上竞赛项目人数约为260人9. 如图,是的直径,是的弦,且.若,则的度数是( )的k x A B C D E C 90︒B C AB O CD O AB CD ⊥25ABD ∠=︒AOC ∠A. B. C. D. 10. 按一定规律排列的单项式:,,,,…,则第个单项式为( )A. B. C. D. 11. 已知两个相似三角形的相似比是,那么它们的面积比是( )A. B. C. D. 12. 函数的自变量的取值范围在数轴上表示正确的是( )A.B. C. D. 13. 随着经济的发展和人们生活水平的提高,春节旅游逐渐成为了人们追求幸福的新方式,越来越多的人选择在春节期间出游,体验不一样的年味.据统计2022年春节假期国内旅游出游人数约2.5亿人次,2024年达到4.7亿人次.设2022年到2024年春节假期国内旅游出游人数的年平均增长率为,则根据题意所列方程正确的是( )A. B. C D. 14. “莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,转子发动机的设计就是利用了莱洛三角形.它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为10,则这个“莱洛三角形”的周长是( )A. 10B.C. 30D. 15. 黄金分割被公认为“最美比例”,是因为它符合人们的视觉习惯和审美心理,能够创造出更加和谐、平.25︒50︒40︒65︒2a 25a 310a 417a n ()21n n a +()1n n a +2n na ()21nn a +2:32:34:98:2727:81y =x x ()22.51 4.7x +=()22.51 4.7x +=()22.51 4.7x -=()22.51 1.7x -=10π310π,通常人们也把这个数叫做黄金分割数.请估计它的分子的值()A. 在0和1之间 B. 在1和2之间 C. 在2和3之间 D.在3和4之间二、填空题(本大题共4个小题,每小题2分,共8分)16. 分解因式:______.17. 已知菱形面积为24,一条对角线长为6,则这个菱形的另一条对角线长是____.18. 某市市场监督管理局对市面上烤红薯的价格进行调查,得到五家店铺的销售单价(单位:元)分别为5,7,5,9,8,这组数据的中位数为______.19. 圆锥的底面半径为,高为,则圆锥侧面展开图扇形的面积为______.三、解答题(本大题共8个小题,共62分)20. 计算:.21. 如图,,,.求证:.22. 时令节气,三月是春茶采收的好时节,云南各地春茶也开始抢“鲜”上市.现有某茶商销售两种云南春茶,已知甲种春茶每千克单价比乙种春茶每千克单价少70元,花7000元购进甲种春茶的重量是花4200元购进乙种春茶重量的2倍.求甲、乙两种春茶的单价.23. 2024年是中华人民共和国成立75周年,是实现“十四五”规划目标任务关键一年,也是全面推进美丽中国建设的重要一年.全国生态环境系统要坚持以习近平新时代中国特色社会主义思想特别是习近平生态文明思想为指导,全面贯彻落实中央经济工作会议和全国生态环境保护大会精神,坚持稳中求进、以进促稳、先立后破,以美丽中国建设为统领,锚定目标、真抓实干,推动生态环境质量持续稳定改善,全面推进人与自然和谐共生的现代化.某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加某市组织的中学生“生态文明,从我做起,建设美丽中国”的主题演讲比赛.(1)请用列表法或画树状图法中一种方法,列出所有可能出现的结果总数;(2)已知每名同学被选到的概率是一样的,求恰好选中1男1女参加主题演讲比赛的概率.24. 如图,在等腰中,,平分,过点A作,使,连接,.的的的1)-3x x-=/kg3cm2cm()01π202432cos60--++︒BC ED=AC AD=AB AE=B E∠=∠ABCAB AC=AD BAC∠AE BC∥AE BD=CE DE(1)求证:四边形是矩形;(2)若,,求四边形的面积.25. 为响应地摊经济,小宁准备购进和两种唱片进行售卖,其中唱片单价为每张40元,唱片购进费用(元)与唱片购进数量(张)符合如图所示的函数关系.(其中,且为整数)(1)求出唱片购进费用(元)与唱片购进数量(张)的函数关系式;(2)若小宁打算购进两种唱片共150张,其中唱片的数量不少于40张,唱片数量不少于唱片数量的一半,设购进,两种唱片的总购进费用为元,则如何设计购进方案,才能使总购进费用元最少?26. 在平面直角坐标系中,抛物线(为常数)与轴交点坐标为.(1)求该抛物线的解析式;(2)当时.若抛物线的最小值为3,求的值.27. 如图,是的外接圆,是的直径,点在上(点不与点,重合),,连接,过点作延长线的垂线,垂足为点.(1)求证:是的切线;(2)若,.求的长;ADCE 6AD =3tan 4B =ABCE A B A B y B x 0x ≥x B y B x B A B A B W W 223y x mx =-+m x ()1,01t x t ≤≤+t O ABC AB OD O D A B AC CD =AD C DBE CE O 8AC =6BC =CE(3)在中,若,,试问是否为定值?如果是,请求出这个定值,并用含,的代数式表示;如果不是,请说明理由.ABC AC m =BC n =AB BD AD-m n。
石屏县九年级复习统一检测(一)数学参考答案及评分标准
2020年石屏县九年级复习统一检测(一)数学试卷参考答案一、填空题二、选择题三、解答题(本大题共9个小题,共70分) =2……………6分16.证明:∵∠1=∠2, ∴∠1+∠BAE =∠2+∠BAE . ∴∠DAE =∠BAC .∵在△DAE 和△BAC 中,B D AB AD BAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△BAC (ASA ).……………4分∴BC =DE .……………6分17.解:设批发的香蕉是x 千克,苹果是y 千克,则卖完香蕉的利润是(5-3)x 元,卖完苹果的利润是(7-4)y 元,由题意得:…………1分 34470(53)(74)340x y x y +=⎧⎨-+-=⎩.…………3分解得:x =50,y =80.…………5分答:这天他批发的香蕉为50千克,苹果为80千克. …………7分 18.解:(1)列表如下:如果画树形图,则树形图如下:由上可知,点A共有9种等可能的情况.………………………4分2)由(1)知,点A的坐标共有9种等可能的情况,点A在第二象限(事件A)共有(-7,1),(-7,6),(-1,1),(-1,6),4种情况.………………………6分20.解:(1)100.……………2分补全频数分布直方图如图所示:……………4分(2)被抽查学生听写正确的个数的平均数为:1100×(10×10+30×15+50×25+70×30+90×20)=57(个).……………5分(3)3000×101525100++=1500(人).答:这所学校本次竞赛听写不合格的学生人数约有1500人.……………8分21.解:(1)∵B市运往C市机器x台,∴B市运往D市机器(6-x)台,A市运往C市机器(10x)台,A市运往D市机器(2+x)台.w=300x+500(6-x)+400(10-x)+800(2+x)=200x+8600.………………3分(2)由题意得:200x+8600≤9000.∴x≤2.………………4分又∵B市可支援外地6台,∴0≤x≤2. ………………5分∴x可取0,1,2. ………………7分∴有三种调运方案.………………8分22.(1)解:∵AE平分∠BAD,∴∠1=∠3.∵四边形ABCD是平行四边形,∴DC∥AB.∴∠3=∠2.∴∠1=∠2.………………2分又∵AD=5cm,∴DE=5cm.∵AB=8cm,∴EC=8-5=3cm.………………4分(2)证明:如图,四边形ABCD是平行四边形,∴∠DAB=∠DCB,CD∥AB,∵AE平分∠BAD,∴∠3=12∠DAB.…………5分∴CF平分∠DCB.∴∠ECF=12∠DCB=12∠BAD,∴∠3=∠ECF.………………7分∴∠2=∠3.∴∠2=∠ECF.∴AE∥CF.∴四边形AECF为平行四边形.………………9分23.解:(1)抛物线y=ax2+bx+2过点A(-3,0),B(1,0),则0=932 02a ba b-+⎧⎨=++⎩.解这个方程组,得a=-23,b=-43.∴二次函数的关系解析式为y=-23x2-43x+2.………………4分(2)设点P坐标为(m,n),则n=-23m2-43m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM=-23m2-43m+2,PN=-m,AO=3.当x=0时,y=-23×0-43×0+2=2,所以OC=2.S△P AC=S△P AO+S△PCO-S△ACO=12AO·PM+12CO·PN-12AO·CO=12×3·(-23m2-43m+2)+12×2·(-m)-12×3×2=-m2-3m.∵a=-1<0.∴函数S△P AC=-m2-3m有最大值.此时n=-23m2-43m+2=-23×(-32)2-43×(-32)+2=52,S△P AC有最大值.∴存在点P(-32,52),使△P AC的面积最大.………………8分(3)如图(3)所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,∵∠BCQ1=90°,∴∠Q1CD+∠OCB=90°.又∵在直角△OBC中,∠OCB+∠CBO=90°,∴∠Q1CD=∠OCB.又∴Q1C=BC,∠Q1DC=∠BOC,∴△Q1CD≌△CBO.∴Q1D=OC=2,CD=OB=1.∴OD=OC+CD=3.∴Q1(2,3).同理求得Q2(3,1),Q3(-1,-1),Q4(-2,1).∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(-1,-1),Q4(-2,1).……………12分(温馨提示:以上答案仅供评卷参考,若有其它解法,请参考评分标准酌情给分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学一模试卷一、填空题(共6小题).1.的倒数是.2.云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八.将数字394000用科学记数法表示为.3.不等式组的解集是.4.如图,直线a∥b,直线c与直线a、b分别交于A、B两点,AC⊥b于点C,若∠1=43°,则∠2=.5.已知(x﹣1)2=2,则代数式2x2﹣4x+5=.6.如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠28.下列计算正确是()A.3﹣1=﹣3B.C.a6÷a2=a4 D.()0=0 9.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110 A.众数是110B.方差是16C.平均数是109.5D.中位数是10911.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定12.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D.cm13.如图,四边形OABC是矩形,等腰△ODE中,OE=DE,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=的图象上,OA=5,OC=1,则△ODE的面积为()A.2.5B.5C.7.5D.1014.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是()A.B.C.D.三、解答题(本大题共9个小题,共70分)15.计算:(﹣1)2020﹣+4cos45°.16.如图,∠B=∠D,∠1=∠2,AB=AD.求证:BC=DE.17.某水果批发市场,香蕉和苹果某天的批发价与市场零售价如下表所示:香蕉苹果批发价(元/千克)34零售价(元/千克)57水果经营户老王从水果批发市场批发香蕉与苹果用了470元,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?18.甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为﹣7,﹣1,3,乙袋中的三张卡片上所标的数值分别为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第二象限的概率.19.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)20.为挑选优秀同学参加云南省级英语听说能力竞赛,某中学举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组成听写正确的个数x组中值A0≤x<2010B20≤x<4030C40≤x<6050D60≤x<8070E80≤x<10090根据以上信息解决下列问题:(1)本次共随机抽查了名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.21.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?22.如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm.(1)求EC的长.(2)作∠BCD的平分线交AB于F,求证:四边形AECF为平行四边形.23.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;参考答案一、填空题(本大题共6个小题,每小题3分,共18分)1.的倒数是﹣2020.【分析】直接利用倒数的定义进而分析得出答案.解:﹣的倒数是:﹣2020.故答案为:﹣2020.2.云南,简称云或滇,位于中国西南边陲,是人类文明重要发祥地之一,有“彩云之南”、“七彩云南”之称,面积约394000平方千米,居全国第八.将数字394000用科学记数法表示为 3.94×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负整数.解:394 000=3.94×105,故选:3.94×105.3.不等式组的解集是﹣<x<2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x﹣2<0,得:x<2,解不等式3x+5>0,得:x>﹣,则不等式组的解集为﹣<x<2,故答案为:﹣<x<2.4.如图,直线a∥b,直线c与直线a、b分别交于A、B两点,AC⊥b于点C,若∠1=43°,则∠2=47°.【分析】先由垂直的定义可得∠ACB=90°,根据平行线的性质得出∠3=∠ACB=90°,再由平角的定义可求得∠2.解:∵AC⊥b于点C,∴∠ACB=90°,∵a∥b,∴∠3=∠ACB=90°,∴∠2=180°﹣∠1﹣∠3=180°﹣43°﹣90°=47°,故答案为:47°.5.已知(x﹣1)2=2,则代数式2x2﹣4x+5=7.【分析】利用完全平方公式将所求的代数式进行变形,然后整体代入进行求值.解:2x2﹣4x+5=2(x﹣1)2+3=2×2+3=4+3=7.故答案是:7.6.如图,BD、CE是△ABC的角平分线,它们相交于点O,若∠A=64°,则∠BOC=122°.【分析】由三角形内角和得∠ABC+∠ACB=180°﹣∠A=130°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB),进而解答即可.解:∵∠A=64°,∴∠ABC+∠ACB=180°﹣∠A=116°,∵BD平分∠ABC、CE平分∠ACB,∴∠DBC=∠ABC、∠BCE=∠ACB,则∠DBC+∠BCE=∠ABC+∠ACB=(∠ABC+∠ACB)=58°,∴∠BOC=180°﹣58°=122°,故答案为:122°二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x≥1且x≠2D.x≠2【分析】根据分式的分母不为零、被开方数是非负数来求x的取值范围.解:依题意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故选:C.8.下列计算正确是()A.3﹣1=﹣3B.C.a6÷a2=a4 D.()0=0【分析】直接利用二次根式的加减运算法则、零指数幂的性质、同底数幂的乘除运算法则,分别判断得出答案.解:A、3﹣1=,故此选项错误;B、﹣,无法计算,故此选项错误;C、a6÷a2=a4 ,正确;D、()0=1,故此选项错误.故选:C.9.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选:B.10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()姓名小红小明小东小亮小丽小华成绩(分)110106109111108110 A.众数是110B.方差是16C.平均数是109.5D.中位数是109【分析】根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.解:这组数据的众数是110,A正确;=×(110+106+109+111+108+110)=109,C错误;S2=[(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+(110﹣109)2]=,B错误;中位数是109.5,D错误;故选:A.11.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.12.一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D.cm【分析】由已知的扇形的圆心角为60°,它所对的弧长为2πcm,代入弧长公式即可求出半径R.解:由扇形的圆心角为60°,它所对的弧长为2πcm,即n=60°,l=2π,根据弧长公式l=,得2π=,即R=6cm.故选:A.13.如图,四边形OABC是矩形,等腰△ODE中,OE=DE,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=的图象上,OA=5,OC=1,则△ODE的面积为()A.2.5B.5C.7.5D.10【分析】过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.14.如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是()A.B.C.D.【分析】根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A6B6C6D6的周长解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…故第n个正方形周长是原来的,以此类推:第六个正方形A6B6C6D6周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴第六个正方形A6B6C6D6周长是.故选:A.三、解答题(本大题共9个小题,共70分)15.计算:(﹣1)2020﹣+4cos45°.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.解:原式=1﹣2+1+4×=1﹣2+1+2=2.16.如图,∠B=∠D,∠1=∠2,AB=AD.求证:BC=DE.【分析】先根据∠1=∠2得到∠BAC=∠DAE,再根据全等三角形的判定定理证得△ABC≌△ADE,然后根据全等三角形的性质即可得到结论.【解答】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.17.某水果批发市场,香蕉和苹果某天的批发价与市场零售价如下表所示:香蕉苹果批发价(元/千克)34零售价(元/千克)57水果经营户老王从水果批发市场批发香蕉与苹果用了470元,当天他卖完这些香蕉和苹果共赚了340元,这天他批发的香蕉和苹果分别是多少千克?【分析】设这天他批发的香蕉和苹果分别是x千克,y千克,根据题意列出方程组即可求解.解:设这天他批发的香蕉和苹果分别是x千克,y千克,根据题意,得,解得,答:这天他批发的香蕉和苹果分别是50千克,80千克.18.甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为﹣7,﹣1,3,乙袋中的三张卡片上所标的数值分别为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第二象限的概率.【分析】(1)根据取卡的方式,列表解答即可;(2)点A落在第二象限(事件A)共有(﹣7,1)、(﹣1,1)、(﹣7,6)、(﹣1,6)四种情况,然后根据概率公式解答.解:(1)用列表法:﹣7﹣13﹣2(﹣7,﹣2)(﹣1,﹣2)(3,﹣2)1(﹣7,1)(﹣1,1)(3,1)6(﹣7,6)(﹣1,6)(3,6)可知,点A共有9种情况.(2)由(1)知点A的坐标共有9种等可能的情况,点A落在第二象限(事件A)共有(﹣7,1)、(﹣1,1)、(﹣7,6)、(﹣1,6)四种情况.所以P(A)=.19.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)【分析】利用所给角的三角函数用CD表示出BD、AE;根据AB=AE+CD,即可得解.解:在直角△BCD中,CD=40m,∠CBD=30°,则BD===40(m).在直角△ACE中,CE=BD=40m,∠ACE=45°,则AE=CE•tan45°=40m.所以AB=AE+BE=AE+CD=40+40(m).答:公寓楼与矿业大厦间的水平距离BD的长度是40m,矿业大厦AB的高度是(40+40)m.20.为挑选优秀同学参加云南省级英语听说能力竞赛,某中学举行了“英语单词听写”竞赛,每位学生听写单词99个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组成听写正确的个数x组中值A0≤x<2010B20≤x<4030C40≤x<6050D60≤x<8070E80≤x<10090根据以上信息解决下列问题:(1)本次共随机抽查了100名学生,并补全频数分布直方图;(2)若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于60个定为不合格,请你估计这所学校本次竞赛听写不合格的学生人数.【分析】(1)根据频数分布直方图和扇形统计图即可得本次共随机抽查了100名学生,并能补全频数分布直方图;(2)根据加权平均数即可求出被抽查学生听写正确的个数的平均数;(3)利用样本估计总体的方法即可估计这所学校本次竞赛听写不合格的学生人数.解:(1)解:10÷10%=100,答:本次共随机抽查了100名学生.补全的频数分布直方图如下:(2)=(10×10+15×30+25×50+30×70+90×20)=57(个),答:被抽查学生听写正确的个数的平均数是57个;(3)3000×(10%+15%+25%)=1500(人),答:估计这所学校本次竞赛听写不合格的学生人数为1500人.21.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?【分析】(1)从B市运往C市x台,则运费为300x,还需从A市往C市运送10﹣x台,运费为400×(10﹣x),那么从B市运往D市6﹣x台,运费为500×(6﹣x),从A 市运往D市12﹣(10﹣x)台,运费为800×(2+x),从而得到总运费W关于x的函数关系式;(2)根据运费单价列出函数关系式,根据每次运出台数为非负数,列不等式组求x的范围.(3)因为所求一次函数解析式中,一次项系数200>0,x越小,W越小,为使总运费最低,x应取最小值.解:(1)由题意可知:W=300x+400×(10﹣x)+500×(6﹣x)+800×(2+x)由此W=200x+8600.(2)由题意得200x+8600≤9000,∴x≤2.又∵B市可支援外地6台,∴0≤x≤6.综上0≤x≤2,∴x可取0,1,2,∴有三种调运方案;(3)∵0≤x≤2,且W随x的值增大而增大,当x=0时,W的值最小,最小值是8600元.此时的调运方案是:B市运往C市0台,运往D市6台;A市运往C市10台,运往D市2台.22.如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm.(1)求EC的长.(2)作∠BCD的平分线交AB于F,求证:四边形AECF为平行四边形.【分析】(1)首先根据角平分线的性质可得∠1=∠3,再根据平行线的性质可得∠3=∠2,利用等量代换可得∠1=∠2,根据等角对等边可得AD=DE,再根据线段的和差关系可得EC长;(2)首先根据平行四边形的性质可得∠DAB=∠DCB,CD∥AB,再根据角平分线的性质可得∠3=∠ECF,再证明AE∥CF,根据两组对边分别平行的四边形是平行四边形可证明四边形AECF为平行四边形.解:(1)∵AE平分∠BAD,∴∠1=∠3,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠3=∠2,∴∠1=∠2,∴AD=DE=5cm,∵AB=8cm,∴EC=8﹣5=3cm;(2)∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,CD∥AB,∵AE平分∠BAD,∴∠3=,∵CF平分∠DCB,∴∠ECF=,∴∠3=∠ECF,∵∠2=∠3,∴∠2=∠ECF,∴AE∥CF,∴四边形AECF为平行四边形.23.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;【分析】(1)直接把点A(﹣3,0),B(1,0)代入二次函数y=ax2+bx+2求出a、b 的值即可得出抛物线的解析式;(2)设点P坐标为(m,n),则n=﹣m2﹣m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.根据三角形的面积公式得出△PAC的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC为边,在线段BC两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ是以BC为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q1点作Q1D ⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,根据全等三角形的判定定理得出△Q1CD≌△CBO,△CBO≌△BQ2E,故可得出各点坐标.解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴解得,∴二次函数的关系解析式为y=﹣x2﹣x+2;(2)存在.∵如图1所示,设点P坐标为(m,n),则n=﹣m2﹣m+2.连接PO,作PM⊥x轴于M,PN⊥y轴于N.则PM=﹣m2﹣m+2,PN=﹣m,AO=3.∵当x=0时,y=﹣×0﹣×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=AO•PM+CO•PN﹣AO•CO=×3×(﹣m2﹣m+2)+×2×(﹣m)﹣×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣=﹣时,S△PAC有最大值.∴n=﹣m2﹣m+2=﹣×(﹣)2﹣×(﹣)+2=,∴存在点P(﹣,),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).。