2018_2018学年八年级数学上册第十三章轴对称13.1轴对称13.1.1轴对称课时练习(新版)新
八年级上册数学课件13.1.1
5
等的两个三角形不一定关于某直线成轴对称,但关于某直线
6
成轴对称的两个三角形一定全等,故本选项错误;D.轴对称
图形的对称轴至少有一条,故本选项正确.故选C.
13.1.1 轴对称
Step1 基础演练
返回目录
训练点3 轴对称及轴对称图形的性质
5.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,
返回目录
6.如图,四边形ABCD是轴对称图形,BD所在的直线是它的 对称轴,AB=5 cm,CD=3.5 cm,则四边形ABCD的周长为
___1_7____cm.
1
2
3
4
5
6
解析:∵四边形ABCD是轴对称图形,BD所在的直线是它的
对称轴,∴AB=BC=5 cm,AD=DC=3.5 cm,∴四边形
ABCD的周长为2×(5+3.5)=17(cm).故答案为:17.
Step2 能力提升
返回目录
11.【2019·江苏扬州仪征期中】如图,是平面镜里看到背向墙
7
壁的电子钟示数,这时的实际时间应该是_1_2_:__0_5__.
8
9
10
11
12
解析:本题属于镜面对称,可以运用轴对称的性质理解,一是
13
可以看到的电子钟显示的一侧竖直的直线为对称轴,想象出其
14
关于这条直线的轴对称图形,二是想象显示图面的反面的数字
解析:∵△ABC与△DEF关于直线l对称,∴AC=DF,AD⊥l,
BO=EO,故选项B,C,D正确;AB∥EF不一定成立.故选
A.
13.1.1 轴对称
Step2 能力提升
返回目录
9.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上
新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级
13.1 轴对称(第1课时)【教学目标】知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念、轴对称图形的概念.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重难点】重点:理解轴对称的概念.难点:能够识别轴对称图形并找出它的对称轴.【教学过程】一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:课本图13.1-2,把一X纸对折,剪出一个图案(折痕处不要完全剪断),再打开这X对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一X质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.5.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结:像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、课时小结这节课我们主要认识了轴对称图形,了解轴对称图形及其有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.13.1 轴对称(第2课时)【教学目标】知识与技能1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称的性质,线段垂直平分线的性质.难点:1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.【教学过程】一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小X围讨论)对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.画一个轴对称图形,并找出一组对称点,看一下对称轴和对称点连线的关系.3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如图,木条l与AB钉在一起,l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在△APC和△BPC中,AC=BC,∠ACP=∠BCP,CP=CP⇒△APC≌△BPC⇒PA=PB.证法二:利用轴对称的性质.由于点C是线段AB的中点,将线段AB沿直线l对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点到这条线段两个端点的距离相等;反过来,到这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是到线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.13.1 轴对称(第3课时)【教学目标】知识与技能1.探索作出轴对称图形的对称轴的方法,掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准确地作出轴对称图形的对称轴吗?2.轴对称图形的性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点的距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1:如图(1),点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB 的垂直平分线.作法:如图(2).(1)分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C,D 两点; (2)作直线CD.直线CD 就是线段AB 的垂直平分线.例2:图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A 和A',连接AA'.2.作出线段AA'的垂直平分线L .则L 就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.三、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形的一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出线段的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.。
新人教版八年级数学上册 第十三章 轴对称全章课件
(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
13.1.1 轴对称
如图,把一张纸对折,剪出一个图案(折
痕处不要完全剪断),再打开这张对折的纸, 就得到了美丽的窗花. 观察得到的窗花,你能 发现它们有什么共同的特点吗?
如果一个平面图形沿一条直线折叠,直 线两旁的部分能够互相重合,这个图形就叫 做轴对称图形,这条直线就是它的对称轴.
这时,我们也说这个图形关于这条直线 (成轴)对称.
轴对称图形的性质: 轴对称图形的对称轴,是任何一对
对应点所连线段的垂直平分线.
例如图中,l 垂直平分AA′,l 垂直平分BB′ l
A
A′
B
B′
练习2 如图所示的每个图形是轴对称图形 吗?如果是,指出它的对称轴.
练习3 如图所示的每幅图形中的两个图 案是轴对称的吗?如果是,试着找出它们的对
称轴,并找出一对对称点.
第十三章 轴对称
13.1 轴对称 13.1.1 轴对称
新课导入
我们生活在一个充满对称的世界中,许多建 筑都具有对称性,艺术作品的创作往往也从对称 角度考虑,自然界的许多动植物也具有对称性, 中国的方块字中有些具有对称性,对称给我们带 来美的感受!而轴对称是对称中尤为重要的一种, 这节课让我们一起走进轴对称的世界吧!
练习1 下列各图,你能找出它们的 对称轴吗?请一一画出:
(1)
(2)
(3)
(4)
(5)
知识点2 垂直平分线 如图,△ABC 和△A′B′C′关于直线PQ 对称,点 A′,B′,C′分别是点A,B,C 的对称点,线段AA′ ,BB′,CC′与直线PQ 有什么关系?
Q
b. 线段AA′、BB′、CC′之间的位置关系
两者的联系:
把成轴对称的两个图形看成一个整体, 它就是一个轴对称图形.把一个轴对称图形 沿对称轴分成两个图形,这两个图形关于这 条轴对称.
人教版八上数学13.1.1轴对称
如果一个平面图形沿一条直线折叠,直线两旁的部分
能够互相重合,这个图形就叫做轴对称图形,这条直线就
欣赏 生活 中的 轴对 称图 形
中国最具魅力的国粹之一
——京剧脸谱
剪纸艺术
汽车车标和交通标志
1、有些轴对称图形的对称轴只有一条,但有的轴对称
图形的对称轴却不止一条,有的轴对称图形的对称轴甚至 有无数条.
2、对称轴通常画成虚线,是直线,不能画成线段.
观察每对图形有什么共同特点?
A
A′
B C C′
7.(福州· 中考)下面四个中文艺术字中,不是轴对称图形 的是( )
【解析】选C.只有“千”字不是轴对称图形,上面的撇不对
称.Leabharlann 8、(日照· 中考)已知以下四个汽车标志图案:
其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
9.如图1,△ABC与△DEF关于直线a对称,若 2cm ,∠DFE= 55° AB=2cm,∠BCA=55°,则DE= ___ 。
A′ B′
图形轴对称的性质及轴 对称图形的性质:
如果两个图形关于某条直线对称,那么
对称轴是任何一对对应点所连线段的垂直平
分线.
类似地,轴对称图形的对称轴,
是任何一对对应点所连线段的
P. Q
垂直平分线.
课堂练习
练习1 如图所示的每个图形是轴对称图形吗?如
果是,指出它的对称轴.
初二数学上册(人教版)第十三章轴对称13.1知识点总结含同步练习及答案
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十三章 轴对称 13.1 轴对称一、学习任务1. 了解轴对称图形和图形成轴对称的意义,并会识别.2. 掌握线段垂直平分线的判定和性质.3. 会用尺规作图做出线段的垂直平分线.二、知识清单轴对称 垂直平分线的性质与判定 尺规作图三、知识讲解1.轴对称轴对称相关概念如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形(axisymmentric figure ),这条直线就是它的对称轴(axis of symmetry ).把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点(symmetric points ).轴对称的性质① 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;② 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.轴对称作图例题:下列图形成轴对称图形的有( )A. 个B. 个C. 个D. 个解:A.一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就是轴对称图形,所以成轴对称图形有 个.54325如图,某小区花坛的形状是左右对称的六边形 ,若 ,则 的度数为( )A. B. C. D. 解:B.根据四边形内角和 ,可得 ,再根据轴对称的性质,.ABCDEF ∠AF C +∠BCF =150∘∠E +∠D 200∘210∘230∘250∘360∘∠A +∠B =−=360∘150∘210∘∠E +∠D =∠A +∠B =210∘作图题:(写出做法,保留作图痕迹)、 为 为 、 上的两个顶点,请你在 边上找一点 ,使 周长最小?分析:由于 的周长 ,而 是定值,故只需在 上找一点,使 最小.如果设 关于 的对称点为 ,所以只要使 最小即可.作法:① 作 关于 的对称点 ;② 连接 交 于 点;③ 连接 ,则 周长最小, 为所求.M N △ABC AB AC BC P P MN △P MN =P M +P N +MN MN BC P P M +P N M BC M ′P +P N M ′M BC M ′N M ′BC P MP △PMN P描述:例题:描述:2.垂直平分线的性质与判定垂直平分线的定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicularbisector ).垂直平分线的性质线段垂直平分线上的点与这条线段两个端点的距离相等.垂直平分线的判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.尺规作图线段的画法(1)线段的画法.画一条线段等于已知线段,用圆规在射线 上截取 ,也可以测量长度的方法,再画一条等于这个长度的线段.(2)线段的和、差的画法,已知线段 ,(设).如图,在 中,,, 边上的垂直平分线 交 、 分别于点 、,则 的周长等于( )A. B. C. D. 解:A.根据垂直平分线的性质,可知 ,所以 的周长等于 的值.△ABC AB =a AC =b BC DE BC BA D E △AEC a +b a −b 2a +b a +2bEC =BE △AEC AB +AC 如图,有 、、 三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A. 在 , 两边高线的交点处B. 在 , 两边中线的交点处C. 在 , 两边垂直平分线的交点处D. 在 , 两内角平分线的交点处解:C.A B C AC BC AC BC AC BC ∠A ∠B AC AB =a a b a<b和 的和,记作段 就是线段 与 ③ 连接 ,则此时角 等于 .③ 过 , 两点作射线 AB BC AC =a BD AB ON ∠MON ∠AOB O C② 作出 的平分线.② 过 、 两点作直线 ∠DCE M N 已知线段 ,,作一条线段,使其长为 即线段 为所要画的线段.a bAB四、课后作业(查看更多本章节同步练习题,请到快乐学)分析:要找一点 ,使 ,则点 一定在线段 的垂直平分线上,又点 到 两边的距离相等,则点 也在 的平分线上,所以作线段 的垂直平分线和 的平分线,两线的交点即为点 .解:分别作线段 的垂直平分线 和 的平分线 , 与 相交于点 ,则点 即为所求.P P C =P D P CD P ∠AOB P ∠AOB CD ∠AOB P CD EF ∠AOB OM EF OM P P 答案:1. 下列图形中,为轴对称图形的是 A.B .C .D .D()2. 如图,在 中 ,边 的垂直平分线分别交 、 于点 、 ,边 的垂直平分线分别交 、 于点 、 .若 ,则 的周长为 .△ABC AB AB BC D E AC AC BC F G BC =4△AEG()高考不提分,赔付1万元,关注快乐学了解详情。
人教版八年级上册第13章《轴对称》全章教案(22页,含反思)
第十三章轴对称13.1轴对称13.1.1轴对称1.理解轴对称图形和两个图形关于某直线对称的概念.2.了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点.3.掌握线段垂直平分线的概念.4.理解和掌握轴对称的性质.重点轴对称图形和两个图形关于某直线对称的概念.难点轴对称图形和两个图形关于某直线对称的区别和联系.一、作品展示1.让部分学生展示课前的剪纸作品.2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?二、概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例,试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教材第60页练习第1题.(2)补充:判断下面的图形是不是轴对称图形?如果是轴对称图形,它们的对称轴是什么?(二)两个图形关于某条直线对称1.观察教材中的图13.1-3,思考:图中的每对图形有什么共同的特点?2.两个图形成轴对称的定义.观察右图:把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.3.举例:你能举出一些生活中两个图形成轴对称的例子吗?4.讨论:轴对称图形和两个图形成轴对称的区别.(三)轴对称的性质观察教材中图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?引导学生说出如下关系:PA=PA′,∠MPA=∠MPA′=90°.类似的,点B和点B′,点C和点C′是否有同样的关系?你能用语言归纳上述发现的规律吗?结合学生发表的观点,教师总结并板书.对称轴经过对称点所连线段的中点,并且垂直于这条线段.在这个基础上,教师给出线段的垂直平分线的概念,然而把上述规律概括成图形轴对称的性质.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也有同样的关系?从而得出:类似的,轴对称图形的对称轴,是任何一个对应点所连线段的垂直平分线.三、归纳小结主要围绕下列几个问题:(1)概念:轴对称图形,两个图形关于某条直线对称,对称轴,对称点;(2)找轴对称图形的对称轴.四、布置作业教材习题13.1第1,2,3题.数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.13.1.2线段的垂直平分线的性质(2课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.难点灵活运用线段的垂直平分线的性质和判定解题.一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它.二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等.性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PA=PB.教师分析证明思路:图中有两个直角三角形,△APC和△BPC,只要证明这两个三角形全等,便可证得PA=PB.教师要求学生自己写已知,求证,自己证明.学生证明完后教师板书证明过程供学生对照.已知:MN⊥AB,垂足为点C,AC=BC,点P是直线MN上任意一点.求证:PA=PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论.原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”.此时,逆命题就很容易写出来.“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.请同学们自行在练习册上完成.学生给出了如下的四种证法.已知:线段AB,点P是平面内一点,且PA=PB.求证:P点在AB的垂直平分线上.证法一过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC ≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.证法四过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂.”师生共析:如图(1),PD⊥AB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的.从同学们的推理证明过程可知线段的垂直平分线的性质的逆命题是真命题,我们把它称为线段的垂直平分线的判定.要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线.下面我们一同来写出已知、求作、作法,体会作法中每一步的依据.例1 尺规作图:经过已知直线外一点作这条直线的垂线. 已知:直线AB 和AB 外一点C.(如下图) 求作:AB 的垂线,使它经过点C.作法:(1)任意取一点K ,使点K 和点C 在AB 的两旁. (2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和点E.(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF 就是所求作的垂线.师:根据上面作法中的步骤,想一想,为什么直线CF 就是所求作的垂线?请与同伴进行交流.生:从作法的第(2)(3)步可知CD =CE ,DF =EF ,∴C ,F 都在AB 的垂直平分线上(线段的垂直平分线的判定).∴CF 就是线段AB 的垂直平分线(两点确定一条直线).师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB 的中点,所以我们也用这种方法找线段的中点.三、课堂练习教材第62页练习第1,2题.四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线.五、布置作业1.教材习题13.1第6题. 2.补充题:(1)下图是某跨河大桥的斜拉索,图中PA =PB ,PO ⊥AB ,则必有AO =BO ,为什么?(2)如左下图,△ABC 中,AC =16 cm ,DE 为AB 的垂直平分线,△BCE 的周长为26 cm .求BC 的长.(3)有A ,B ,C 三个村庄(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等.第2课时 画对称轴会画轴对称图形的对称轴.重点轴对称图形的对称轴的画法. 难点轴对称图形的对称轴的画法.一、提出问题如果两个平面图形成轴对称,你能用什么办法验证?不经过折叠,你能用什么方法画出它的对称轴? 二、探究新知 我们已经学过,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,所以我们只要找到两个图形的一对对应点,然后画出以对应点为端点的线段的垂直平分线即可,如何作线段的垂直平分线呢?例1 如图(1),已知点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?分析:我们只要连接点A 和点B ,作出线段AB 的垂直平分线,就可以得到点A 和点B 的对称轴,为此作出到点A ,B 距离相等的两点,即线段AB 的垂直平分线上的两点,从而作出线段AB 的垂直平分线.教师具体分析画法、写出画法,根据画法作出图形. 学生模仿教师的画法,边写画法,边画图.作法:如图(2).(1)分别以点A ,B 为圆心,以大于12AB 的长为半径作弧(想一想,为什么),两弧相交于C ,D 两点;(2)作直线CD.CD 就是所求作的直线.这个作法实际上就是线段的垂直平分线的尺规作图. 教师引导学生思考:(1)在作法中为什么有CA=CB,DA=DB?(2)可以用这种方法找线段的中点吗?四等分点呢?三、举例分析例2如图(1),△ABC和△A′B′C′是两个成轴对称的图形,请画出它的对称轴.教学方法:启发学生把问题转化为已解决问题,只要画出点A、点A′连线的垂直平分线即可,如图(2).例3图(1)是一个五角星,请画出它的对称轴.教学方法:引导学生思考五角星有几条对称轴,点A可以和哪些点成对应点?最后化归到例2,由学生自己完成.四、巩固练习教材第64页练习第1,2,3题.五、课堂小结本节课你有什么收获?还有哪些不懂的地方吗?六、布置作业教材习题13.1第7,8题.通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2画轴对称图形(2课时)第1课时作轴对称图形通过实际操作,掌握作轴对称图形的方法.重点能够按要求作出简单平面图形经过一次对称后的图形.难点较复杂图形的轴对称图形的画法.一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动]在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.认真观察,左脚印和右脚印有什么关系?(成轴对称)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1]如何画一个点的对称图形?例1画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2]如何画一条直线的对称图形?例2已知线段AB,画出AB关于直线l的对称线段.画法:(1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3]如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A 关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是()四、小结与作业1.归纳:几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.2.作业:教材习题13.2第1题.几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?【归纳】关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?【归纳】一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析【例1】已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.【解析】(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.【例2】如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固1.平面直角坐标系中,点P(4,-5)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P(-2,3)关于y轴对称点为Q(a,b),则a+b的值为()A.1B.-1C.5D.-53.点P(a,b)关于x轴对称的点为P1,点P1关于y轴的对称点为P2,则P2的坐标为() A.(a,b) B.(a,-b)C.(-a,b) D.(-a,-b)4.若点(a,b)与点(m,n)满足a+m=0,b-n=0,则这两点关于()对称.A.x轴B.y轴C.x轴或y轴D.不确定五、拓展思维如图,点A(1,4),B(4,1),l为第一、三象限角∠xOy的平分线.(1)求证:l垂直平分AB;(2)A,B关于l成轴对称吗?(3)如果点A,B的坐标分别为(6,8)和(8,6),它们还关于l对称吗?(4)如果你发现了对称点的坐标规律,写出点P(m,n)关于第一、三象限角平分线的对称点Q的坐标.六、小结与作业小结:(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.作业:教材习题13.2第3,4题.本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3等腰三角形13.3.1等腰三角形(2课时)第1课时等腰三角形的性质和应用1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.重点等腰三角形的性质及应用.难点等腰三角形的性质的证明.一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.在△ABC 中,若AB =AC ,则△ABC 是等腰三角形,AB ,AC 是腰,BC 是底边,∠A 是顶角,∠B 和∠C 是底角.【活动2】把活动1中剪出的△ABC 沿折痕AD 对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.教师活动:引导学生归纳.性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).【活动3】你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B =∠C.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明△ABD 和△ACD 全等即可,根据条件利用“边边边”可以证明.教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD ≌△ACD(SSS ),所以∠B =∠C. 这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由△ABD ≌△ACD ,还可得出∠BAD =∠CAD ,∠ADB =∠ADC =90°.从而AD⊥BC,这也就证明了等腰△ABC底边上的中线平分顶角∠A并垂直于底边BC.添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2.三、应用提高例1如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.学生活动:小组合作,分组讨论、交流.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)发现:(1)∠ABC=∠ACB=∠CDB=∠A+∠ABD;(2)∠A=∠ABD;(3)∠A+2∠C=180°.若设∠A=x,则有x+4x=180°,得到x=36°,进一步得到两个底角的度数.四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).作业:教材习题13.3第1,3,7题.本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时等腰三角形的判定1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.重点等腰三角形的判定方法.难点等腰三角形的判定方法的证明.一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系? 学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等. 如何证明? 二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证. 已知:在△ABC 中,∠B =∠C.求证:AB =AC.与学生一起回顾等腰三角形中常添加的辅助线:高、顶角平分线、底边上的中线.让学生逐一尝试,发现可以作AD ⊥BC ,或AD 平分∠BAC ,但不能作BC 边上的中线.学生口头证明后,选一种方法写出证明过程.如图,在△ABC 中,∠B =∠C ,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C ,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.归纳等腰三角形的判定方法: 如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”. 三、应用举例 1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明. 学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B =∠C.因为∠1=∠2,所以可以设法找出∠B ,∠C 与∠1,∠2的关系.证明:∵AD ∥BC ,∴∠1=∠B(______________________),∠2=∠C(______________________).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(______________).2.出示教材例3.让学生自学例3.例3已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.重点等边三角形的性质和判定.难点等边三角形的性质的应用.一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?。
人教版八年级上册数学第十三章 《轴对称》全章教学设计
人教版八年级上册数学第十三章《轴对称》全章教学设计13.1.1 轴对称在本节中,我们将研究轴对称图形和两个图形关于某直线对称的概念。
我们需要了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴和对应点,以及线段垂直平分线的概念。
此外,我们还将理解和掌握轴对称的性质。
在作品展示环节,我们可以让部分学生展示课前的剪纸作品,并进行小组活动,讨论窗花制作过程中的剪纸方法和窗花图案的共同特点。
在概念形成环节中,我们首先提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”。
然后,我们结合教材图13.1-1进一步分析轴对称图形的特点,以及对称轴的位置。
学生可以举例,试举几个在现实生活中你所见到的轴对称例子。
在概念形成环节的第二部分,我们观察教材中的图13.1-3,思考每对图形共同的特点,并给出两个图形成轴对称的定义。
我们可以举例,讨论轴对称图形和两个图形成轴对称的区别。
在概念形成环节的第三部分,我们观察教材中图13.1-4,引导学生发现线段AA′与直线MN的位置关系,并总结出对称轴经过对称点所连线段的中点,并且垂直于这条线段的规律。
在这个基础上,我们给出线段的垂直平分线的概念,并把上述规律概括成图形轴对称的性质。
此外,我们还讨论了类似的,轴对称图形的对称轴是任何一个对应点所连线段的垂直平分线。
你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果…那么…”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果…那么…”的形式,逆命题就容易写出。
因此,我们需要找出原命题的条件和结论,然后将其写成“如果…那么…”的形式。
我们鼓励学生找出原命题的条件和结论。
原命题的条件是:“有一个点是线段垂直平分线上的点”,结论是:“这个点与这条线段两个端点的距离相等”。
此时,逆命题就很容易写出来。
“如果有一个点与线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上。
人教版初中八年级上册数学《轴对称》知识归纳
第十三章轴对称13.1 轴对称(对称点)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合。
这条直线就是它的对称轴。
垂直平分线:经过线段中点并且垂直于这条线段的直线。
图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
线段垂直平分线的性质:垂直平分线上的点到两端的距离相等。
若PA=PB,点C为AB中点,则PC⊥AB或点P在线段AB的垂直平分线上。
13.2 画轴对称图形先画对称点(过该点画对称轴的垂线,取等长),然后连接对称点,形成轴对称图形。
13.3 等腰三角形概念:有两边相等的三角形。
性质:等边对等角,三线合一(顶角平分线、底边上的中线、底边上的高)。
判定:等角对等边等边三角形:三边都相等的特殊的等腰三角形。
三个内角都相等,每个内角60º。
(判定:三个角都相等的三角形;有一个角是60º的等腰三角形。
)在RtΔ中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(在RtΔ中,斜边上的中线等于斜边的一半。
)13.4 课题学习最短路径问题利用轴对称、平移作出最短路径选择。
(两点之间线段最短)作者留言:非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!制定学习计划有什么好处?一、计划是实现目标的蓝图。
目标不是什么花瓶,你需要制定计划,脚踏实地、有步骤地去实现它。
通过计划合理安排时间和任务,使自己达到目标,也使自己明确每一个任务的目的。
二、促使自己实行计划。
学习生活是千变万化的,它总是在引诱你去偷懒。
制定学习计划,可以促使你按照计划实行任务,排除困难和干扰。
三、实行计划是意志力的体现。
持实行计划可以磨练你的.意志力,而意志力经过磨练,你的学习收获又会更一步提升。
这些进步只会能使你更有自信心,取得更好的成功。
四、有利于学习习惯的形成。
人教版八年级数学上册集体备课(教案)13.1.1轴对称
类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线 ”.
应用提高,拓展创新
1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等
先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?
学法指导
启发诱导,实例探究,讲练结合,小组合作
学习过程
学习内容
二次备课
一、激趣导入,呈现目标
我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.
问题:观察下列几幅图片,大家观察后回答下列问题:(出示天安门、蝴蝶、窗花等图片).
(1)这些图形有什么共 同的特征?
对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?
探究轴对称图形的性质和线段垂直平分线的概念
1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?
学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合
于是有AP=PA′、∠MPA=∠MPA′=90°
对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.
2.鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线 段的垂直平分线”
3.进而引 导学生进行归纳:
学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.
13.1.1 轴对称
第十三章轴对称13.1 轴对称13.1.1 轴对称学习目标1.认识轴对称图形的共同特征,能识别简单的轴对称图形及其对称轴,通过实践操作,理解轴对称图形和两个图形成轴对称的区别.2.经历折叠、剪纸等活动,发展形象思维和空间观念,积累数学活动的经验,在动手实践中学会与人合作、彼此交流.3.初步获得动手的乐趣和成就感,欣赏并体会对称美,感受轴对称的价值,培养热爱生活的情感.学习过程一、自主学习一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”你知道怎么做吗?同学们可以带着这个问题进行下面的学习.二、深化探究1.欣赏生活中的轴对称图片.2.观察特点、形成概念问题1:这些美丽的图形均来自生活,细心观察之后,你能发现这些图形有什么共同特征吗?用自己的语言描述一下..问题2:举出几个生活中具有对称特征的物体,并与同伴交流.举例:.轴对称图形的概念:.3.练习:(1)我们学过的图形中,你知道哪些图形是轴对称图形吗?你能找出它们的对称轴吗?平行四边形是轴对称图形吗?学过的轴对称图形有:.平行四边形(是或否)轴对称图形(动手折折试试).(2)下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?(3)下列图形是轴对称图形吗?各有几条对称轴?4.作“印墨迹”实验.(1)在纸上滴几滴墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是什么呢?(2)观察探究、相互交流.5.类比观察,发现区别(1)观察老师展示的图案.(2)观察下列每组图案,你发现和刚才的轴对称图形是一回事吗?与大家交流.两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(3)全等与对称的关系概念中的“重合”是什么意思?(全等),那么全等的两个图形一定关于某直线对称吗?这两个全等三角形关于某直线对称吗?(4)轴对称图形和两个图形成轴对称的区别:认识了轴对称图形,探讨了两个图形关于直线对称的特点,那么轴对称图形和两图形关于直线对称是不是一回事?它们有什么区别和联系?你能结合一个具体的例子说明吗?三、练习巩固1.生活中的轴对称图形随处可见,我们每天使用的数字、字母和汉字中也有一些可以看成是轴对称图形,你能识别它们吗?能说出它们的对称轴吗?(1)下面的数字,哪些是轴对称图形?它们各有几条对称轴?0123456789(2)你能发现下列哪些汉字可以看成是轴对称图形吗?口工用中由水日甲田2.下列图形是部分汽车的标志,哪些是轴对称图形?3.下列英文字母中哪些是轴对称图形A B C D E F G H I J K L M N O P Q R S T U VW X Y Z4.这是一个车牌在镜子中的图案,你知道这个车牌号是多少吗?5.回归问题情境:你能解决课堂开始提出的问题吗?一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”小兰仅仅拿了一面镜子,就很快地解决了这道题目.你能解释为什么吗?四、深化提高1.动手创作:在中国的剪纸艺术中,大量地应用了轴对称的知识,你能利用今天学的知识自己动手剪一个美丽的图案吗?2.课外拓展这节课我们认识了生活中的许多轴对称图形,它们不但体现了一种对称美,还有一定的科学道理,你们知道吗?——表盘的对称保证了走时的均匀性.——飞机的对称使飞机能够在空中保持平衡.——人眼睛的对称使人观看物体能够更加准确全面.——双耳的对称能使听到的声音具有较强的立体感……五、反思小结这节课……我学会了……我发现了……我感触最深的……我还有什么问题……如果世界没有对称会怎样……参考答案二、深化探究2.轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线即折痕所在直线就是它的对称轴.3.比如线段、角、长方形、等腰三角形、圆等,平行四边形不是轴对称图形.三、练习巩固1.(1)0,3,8(2)口工中由日甲田2.3.A C D E H I M O T U V W X Y Z4.MT79365.利用轴对称“5+3=8”四、深化提高略。
八年级数学上册13.1.1 轴对称
*学校:智慧都市明泉山镇平坝小学**教师:雷来龙**班级:凤凰1班*第十三章轴对称13.1 轴对称13.1.1 轴对称【知识与技能】掌握轴对称图形和关于直线成轴对称等概念.【过程与方法】通过生活中的具体实例认识,培养观察、思维、操作、归纳能力.【情感态度】体验数学与生活的联系,发展审美观.【教学重点】准确掌握轴对称图形和关于直线成轴对称的实质.【教学难点】轴对称图形和关于直线成轴对称的区别与联系.一、情境导入,初步认识展示学生按要求收集的图片资料,教师指导并对所有图片进行分类:第一类是轴对称图形,第二类是关于一条直线对称的图形.学生观察,并以小组为单位,讨论下列问题:1.第一类图案有什么共同特征?2.第二类图案有什么共同特征?【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知1.轴对称图形在学生交流和说出两类图案的特征的基础上,教师提出第一类的图案称为轴对称图形.问题1 学生尝试说出轴对称图形的定义,教师适当纠正与补充.问题2 请学生再举一些日常生活中的轴对称图形的例子.问题3 请观察下列图案,看这些轴对称图形各有几条对称轴.2.两个图形关于某条直线对称教师提出第二类图案称为两个图形关于某条直线对称.问题4 鼓励学生说出两个图形关于某条直线对称的定义.问题5 举出生活中两个图形成轴对称的例子.如:提示:对称轴可能不止1条,也可能是水平的或倾斜的.教师再归纳总结轴对称图形和两个图形成轴对称间的区别与联系.三、运用新知,深化理解1.如图,在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.2.角是轴对称图形,它的对称轴是 .【教学说明】问题1中有两种方法比较容易,方法3鼓励学生交流讨论得到;问题2提醒学生不能说成角平分线.【答案】1.2.角平分线所在的直线.四、师生互动,课堂小结本节课你学会了什么?有哪些收获?还有什么疑问?1.布置作业:从教材“习题13.1”中选取.2.如图是一个圆形的纸片,请问:它是轴对称图形吗?如果是, 对称轴有多少条?请你找到它的圆心.3.完成练习册中本课时的练习.本课时教学应重视以下几点:1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.形成提炼概念的能力,注重从实物的形象思维向抽象思维转变.3.在对比中发现,认识知识,如“轴对称”与“轴对称图形”的区别与联系.。