人教版八年级数学上册轴对称教案

合集下载

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

八年级数学上册轴对称教案

八年级数学上册轴对称教案

八年级数学上册轴对称教案如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,称这两个图形为轴对称,那么这个图形叫做轴对称图形。

下面是为大家整理的八年级数学上册轴对称教案5篇,希望大家能有所收获!八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

2.能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。

3.情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。

教学重点:理解对称图形的概念,能正确找、画对称轴。

教学难点:准确找对称轴。

教学具准备:1.教具:图片、剪刀、彩纸、课件2.学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。

师:谁来说说蝴蝶和蜻蜓怎么说蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识生1:什么样的图形是对称图形生2:对称图形有什么特点[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。

]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现生1:我发现蝴蝶的左右两边是一样的。

生2:我发现年年有鱼的纸花的左右两边是不一样的。

生3:我发现京剧脸谱的左右两边是一样的。

……让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。

[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。

人教版八年级数学上册13.1轴对称教案

人教版八年级数学上册13.1轴对称教案

13.1轴对称第1课时轴对称教学目标1.理解轴对称图形轴对称及线段垂直平分线的概念,并能作出它们的对称轴.2.了解轴对称图形和轴对称的区别和联系.3.掌握轴对称的性质.教学重点轴对称图形和轴对称的概念及轴对称的性质.教学难点轴对称图形和轴对称的区别和联系.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标我们生活在丰富多彩的图形世界里,许多美丽的事物往往与图形的对称联系在一起,如:中外各种风格的著名建筑、动植物、艺术作品、图标、日常生活用品等等,都和对称密不可分,我们可以根据自己的设想创造出对称的作品,装点和美化生活.就让我们一起走进轴对称的世界去感受它的奇妙和美丽吧!观察上图和教科书中的图片,你有什么感受?二、自主学习,指向目标1.自学教材第58至60页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一轴对称图形和轴对称的概念活动一:阅读教材P58~59展示点评:1.图13.1-1,有什么共同特点?什么叫轴对称图形?对称轴是什么?请举出轴对称图形的实例.2.图13.1-3有什么共同特点?什么叫两个图形关于一条直线对称?请举出成轴对称图形的实例.小组讨论:轴对称图形与两个图形成轴对称有什么区别和联系?反思小结:1.判断一个图形是不是轴对称图形,关键是抓住轴对称的本质,即图形是否有“存在直线——将其折叠——互相重合”的图形特征.2.判断两个图形是否成轴对称,关键是是否有“存在直线——将其折叠——互相重合”的图形特征.跟踪训练:见《学生用书》相应部分 探究点二 轴对称的性质 活动二:观察教材图13.3-4.展示点评:1.完成“思考”中的问题;2.一对对称点所连线段与对称轴在位置上有什么关系? 3.什么叫线段的垂直平分线?请用符号语言表示. 小组讨论:图形轴对称有什么性质?它有什么作用? 反思小结:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.它可以用来证明线段相等.跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标1.本节课学习了哪些主要内容?2.轴对称图形和轴对称的区别与联系是什么?3.成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?实际问题―→⎩⎪⎨⎪⎧轴对称图形―→轴对称图形的性质轴对称 ―→ 轴对称的性质五、达标检测,反思目标1.下列图形中是常见的安全标记,其中是轴对称图形的是( A )2.下列说法错误的是( D )A .关于某直线对称的两个三角形一定全等B .轴对称图形至少有一条对称轴C .正方形的一条对角线把它所分成的两个三角形成轴对称D .角的对称轴是角的平分线3.如图,△ABC 与△DEF 关于直线l 对称,若AB =2 cm ,∠C =55°,则DE =__2_cm __,∠F =__55°__.4.判断下列各种图形是不是轴对称图形?若是,画出它的对称轴.答:(1)(2)(3)(5)是轴对称图形.5.图中任意一个正方形与哪些正方形成轴对称?整个图形是轴对称图形吗?它有几条对称轴?答:整个图形是轴对称图形,有4条对称轴.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第1、3、4题.2.课后作业见《学生用书》.第2课时线段的垂直平分线的性质(一)教学目标1.掌握线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.教学重点线段垂直平分线的性质.教学难点线段垂直平分的性质的运用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标如图,直线l垂直平分线段AB,P1,P2,P3…是直线l上的点,请猜想并验证点P1,P2,P3…到点A与点B的距离之间的数量关系?二、自主学习,指向目标1.自学教材第61页至62页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一线段垂直平分线的性质活动一:1.完成教材P61探究栏目中的问题.2.线段垂直平分线的性质是什么?展示点评:请用推理的方法证明线段垂直平分的性质.(根据右图,写出已知,求证和证明)小组讨论:线段垂直平分线的性质在解题中有哪些应用?反思小结:线段垂直平分线的性质是证明线段相等的简捷的方法,运用它解题能省时省力.探究点二线段垂直平分线的判定活动二:1.反过来,如果PA=PB,那么P是否在线段AB的垂直平分线上?2.由此,我们可以得到什么结论?3.请写出以上结论的证明过程.展示点评:你能再找一些到线段两端的距离相等的点吗?能找多少个这样的点?这些点能组成什么几何图形?由此我们可以得以什么结论.小组讨论:线段垂直平分线的性质与判定之间有何联系与区别?反思小结:线段垂直平分线的性质与判定之间题设和结论正好相反,是互逆定理. 跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?2.线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系? 3.如何判断一条直线是否是线段的垂直平分线?实际问题―→⎩⎪⎨⎪⎧线段垂直平分线的性质线段垂直平分线的判定实际应用五、达标检测,反思目标1.如图,CD 垂直平分AB ,若AC =1.6 cm ,BD =2.3 cm ,则四边形ACBD 的周长为( B ).,第1题图) ,第2题图)A .3.9 cmB .7.8 cmC .3.2 cmD .4.6 cm 2.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( C ).A .在边AC 、BC 两条高的交点处B .在边AC 、BC 两条中线的交点处 C .在边AC 、BC 两条垂直平分线的交点处D .在∠ABC 、∠ACB 两条角平分线的交点处 3.如图,OP 平分∠AOB ,PC ⊥OA ,PD⊥OB ,垂足分别为C ,D ,下列结论不一定成立的是( D ).,第3题图) ,第4题图),第5题图)A .PC =PDB .PO 平分∠CPDC.OC=OD D.CD垂直平分OP4.如图,在△ABC中,边BC的垂直平分线交AB于点E,若△ABC的周长为10 cm,BC =4 cm,求△ACE的周长.解:△ACE的周长6 cm.5.如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否与CE相等?试说明理由.解:BE=CE∵AB=AC,DB=DC.∴AD是BC的垂直平分线.∴点E是AD上一点.∴BE=CE.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第6、9题.2.课后作业见《学生用书》.第3课时线段的垂直平分线的性质(二)教学目标1.能用尺规过直线外一点作已知直线的垂线和线段的垂直平分线.2.了解作图的一般步骤和作图语言,理解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点用尺规作过直线外一点作已知直线的垂线和作线段的垂直平分线.教学难点理解作图的依据和用数学语言描述作图过程.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标教师用多媒体显示几幅轴对称的图形.问题轴对称的性质是什么?追问:说一说线段垂直平分线的性质,如何判断一条直线是否是线段的垂直平分线?有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、自主学习,指向目标 1.自学教材第62至63页.2.请完成“《学生用书》”相应部分. ●合作探究 达成目标探究点一 尺规作图:经过直线外一点作已知直线的垂线 活动一:已知:直线和直线外一点C. 求作:AB 的垂线,使它经过点C.展示点评:作法:小组讨论:为什么直线CF 就是所求作的直线.变式:尺规作图,已知:直线AB 和AB 上一点C ,求作AB 的垂线,使它经过点C.反思小结:过已知直线外一点作已知直线的垂线的依据是线段垂直平分线的性质的逆定理.跟踪训练:见《学生用书》相应部分 探究点二 作线段的垂直平分线活动二:1.思考教材P 62页“思考”栏目中的问题.例2 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?展示点评:求作的这条直线与线段AB 之间有什么关系?变式练习:作出五角星的一条对称轴,和同学比较一下,所作出的对称轴一样吗?小组讨论:用尺规作图的方法怎样作出线段的中点?这种作法的依据什么? 反思小结:用尺规作线段垂直平分线的依据是线段垂直平分线的性质和两点确定一条直线,用尺规作图的方法作线段的垂直平分线,它与线段的交点就是线段的中点.五角星有5条对称轴,作轴对称图形的对称轴的方法是:找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?2.作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用? 3.如何用尺规作轴对称图形的对称轴?过直线外一点作已知直线的垂线―→作线段的垂直平分线――→应用画轴对称图形的对称轴 五、达标检测,反思目标1.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD.若△ADC 的周长为10,AB =7,则△ABC 的周长为( C )A .7B .14C .17D .202.为了推进农村新型合作医疗制度,准备在某镇新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等(A 、B 、C 不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P 的位置.要求:不写作法,保留作图痕迹.提示:连接直线AB 、BC ,作AB ,BC 的垂直平分线交点即为所求. ●布置作业,巩固目标教学难点1.上交作业 教科书习题13.1第2,10,12题. 2.课后作业 见《学生用书》.。

人教版数学八年级上册13.2用坐标表示轴对称教案

人教版数学八年级上册13.2用坐标表示轴对称教案
-实际应用:将轴对称的知识应用于解决实际问题,培养学生的实际操作能力和应用意识。
举例:在讲解轴对称的定义时,可以通过折纸等实际操作,让学生直观感受轴对称图形的特点。在坐标表示方面,可以结合具体图形,如矩形、正方形等,让学生学会如何找到对称轴并给出其坐标方程。
2.教学难点
-对称轴的确定:对于一些复杂的轴对称图形,如何准确地找到对称轴是学生学习的难点。
6.引导学生感悟数学的对称美,培养审美情趣和创新义:轴对称图形的基本概念是本节课的核心,教师需通过生动的实例,使学生理解轴对称图形的特征,明确对称轴在图形中的关键作用。
-掌握坐标表示轴对称的方法:教会学生如何利用坐标表示轴对称图形,以及如何通过坐标关系找到对称轴,这是本节课的重点。
在实践活动中,学生分组讨论的环节比较活跃,他们能够提出一些很有见地的观点。不过,我也观察到有些小组在讨论时,个别成员参与度不高,我适时地给予了鼓励和指导,让他们都能融入到讨论中来。
小组讨论后,学生们的成果展示让我感到惊喜。他们不仅能够理解轴对称在实际生活中的应用,还能创造性地设计出一些具有轴对称特点的图案。这一点说明学生们已经能够将所学知识内化并运用到实际中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对轴对称的概念和坐标表示的理解程度参差不齐。我尝试通过引入日常生活中的实例来激发他们的兴趣,比如折纸和设计图案,这样做的效果还不错,大部分学生都能积极参与进来。

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇

八年级数学上册轴对称的教案3篇八年级数学上册轴对称的教案篇1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?Ⅱ.导入新课计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;如果括号前是负号,去掉括号后,括号里的各项都要变号。

人教版初二数学上册轴对称教案

人教版初二数学上册轴对称教案

§ 12. 1 轴对称12.1.1 轴对称(一)教学目标1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学过程I•创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.U•导入新课出示课本的图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,?甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.如课本的图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),?再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图12.1.1 中的图形,你能发现它们有什么共同的特点吗?窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图12.1.1 中的图形也可以沿一条直线对折,使直线两旁的部分重合.结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)?对称.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,? 将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

人教版数学八年级上册12.1《轴对称》教学设计

人教版数学八年级上册12.1《轴对称》教学设计

人教版数学八年级上册12.1《轴对称》教学设计一. 教材分析人教版数学八年级上册12.1《轴对称》是初中数学中重要的内容,主要让学生了解轴对称的概念,性质和应用。

通过学习,学生能理解轴对称的定义,判断一个图形是否为轴对称,并找出对称轴。

本节内容既是对前面图形的性质的巩固,也为后面学习函数的图像和坐标系打下基础。

二. 学情分析八年级的学生已经学习了图形的性质,具有一定的观察和操作能力。

但是,对于抽象的轴对称概念,可能还有一定的理解难度。

因此,在教学过程中,需要通过大量的实例和操作,帮助学生理解和掌握轴对称的概念。

三. 教学目标1.了解轴对称的定义,性质和应用。

2.能够判断一个图形是否为轴对称,并找出对称轴。

3.培养学生的观察能力和操作能力。

四. 教学重难点1.轴对称的定义和性质。

2.判断一个图形是否为轴对称,并找出对称轴。

五. 教学方法采用问题驱动法,通过大量的实例和操作,引导学生探究轴对称的性质,从而掌握轴对称的概念。

同时,利用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的图形和实例。

2.准备PPT,用于展示和讲解。

3.准备练习题,用于巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考轴对称的概念。

例如,拿一张纸,沿中心折痕对折,让学生观察两侧的图形是否重合。

提问:这种现象叫什么?什么是轴对称?2.呈现(10分钟)利用PPT,展示各种轴对称的图形,如字母“M”、数字“8”等。

让学生判断这些图形是否为轴对称,并找出对称轴。

同时,讲解轴对称的性质,如对称轴上的点关于对称轴对称,对称轴将图形分为两个面积相等的部分等。

3.操练(10分钟)让学生分组,每组选择一个图形,找出其对称轴,并互相验证。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示练习题,让学生独立完成。

题目可以是判断图形是否为轴对称,或找出对称轴等。

完成后,教师讲解答案,并引导学生总结解题思路。

人教版数学八年级上册《轴对称》教学全章设计

人教版数学八年级上册《轴对称》教学全章设计

人教版数学八年级上册《轴对称》教学全章设计一、教学目标1. 理解轴对称的概念和特征。

2. 学会判断图形是否具有轴对称性。

3. 掌握绘制具有轴对称性的图形的方法。

4. 运用轴对称的知识解决实际问题。

二、教学内容1. 轴对称的概念和特征。

2. 判断图形是否具有轴对称性的方法。

3. 绘制具有轴对称性的图形的方法。

4. 运用轴对称的知识解决实际问题的例题。

三、教学重点1. 理解轴对称的概念和特征。

2. 学会判断图形是否具有轴对称性。

3. 掌握绘制具有轴对称性的图形的方法。

四、教学难点1. 运用轴对称的知识解决实际问题的例题。

2. 绘制具有轴对称性的图形的方法。

五、教学方法1. 导入法:通过展示一些具有轴对称性的图形,引起学生对轴对称的兴趣。

2. 讲授法:通过讲解轴对称的概念、特征以及判断和绘制轴对称图形的方法,提高学生的理解和操作能力。

3. 练习法:设计一系列练习题,让学生进行判断和绘制轴对称图形的练习,巩固所学知识。

4. 案例法:引导学生通过解决实际问题的案例,运用轴对称的知识,培养学生的应用能力。

六、教学步骤1. 导入:展示一些具有轴对称性的图形,引起学生对轴对称的兴趣。

2. 引入:介绍轴对称的概念和特征,让学生对轴对称有一个初步的了解。

3. 讲解:详细讲解判断图形是否具有轴对称性的方法,以及绘制具有轴对称性的图形的方法。

4. 练习:设计一些练习题,让学生进行判断和绘制轴对称图形的练习。

5. 拓展:通过解决实际问题的案例,让学生运用轴对称的知识解决问题。

6. 总结:对轴对称的概念、特征和操作方法进行总结,并强调学习的重点和难点。

7. 作业布置:布置相关的课后作业,巩固所学知识。

七、教学资源1. 人教版数学八年级上册教材。

2. 多媒体投影仪、电脑、幻灯片等教学设备。

3. 相关练习题和案例题。

八、教学评价1. 课堂表现:观察学生的积极性、参与度和表现情况。

2. 练习成绩:检查学生在练习中的答题情况和得分情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1轴对称第1课时轴对称教学目标1.理解轴对称图形轴对称及线段垂直平分线的概念,并能作出它们的对称轴.2.了解轴对称图形和轴对称的区别和联系.3.掌握轴对称的性质.教学重点轴对称图形和轴对称的概念及轴对称的性质.教学难点轴对称图形和轴对称的区别和联系.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标我们生活在丰富多彩的图形世界里,许多美丽的事物往往与图形的对称联系在一起,如:中外各种风格的著名建筑、动植物、艺术作品、图标、日常生活用品等等,都和对称密不可分,我们可以根据自己的设想创造出对称的作品,装点和美化生活.就让我们一起走进轴对称的世界去感受它的奇妙和美丽吧!观察上图和教科书中的图片,你有什么感受?二、自主学习,指向目标1.自学教材第58至60页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一轴对称图形和轴对称的概念活动一:阅读教材P58~59展示点评:1.图13.1-1,有什么共同特点?什么叫轴对称图形?对称轴是什么?请举出轴对称图形的实例.2.图13.1-3有什么共同特点?什么叫两个图形关于一条直线对称?请举出成轴对称图形的实例.小组讨论:轴对称图形与两个图形成轴对称有什么区别和联系?反思小结:1.判断一个图形是不是轴对称图形,关键是抓住轴对称的本质,即图形是否有“存在直线——将其折叠——互相重合”的图形特征.2.判断两个图形是否成轴对称,关键是是否有“存在直线——将其折叠——互相重合”的图形特征.跟踪训练:见《学生用书》相应部分 探究点二 轴对称的性质 活动二:观察教材图13.3-4.展示点评:1.完成“思考”中的问题;2.一对对称点所连线段与对称轴在位置上有什么关系? 3.什么叫线段的垂直平分线?请用符号语言表示. 小组讨论:图形轴对称有什么性质?它有什么作用? 反思小结:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.它可以用来证明线段相等.跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标1.本节课学习了哪些主要内容?2.轴对称图形和轴对称的区别与联系是什么?3.成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?实际问题―→⎩⎪⎨⎪⎧轴对称图形―→轴对称图形的性质轴对称 ―→ 轴对称的性质五、达标检测,反思目标1.下列图形中是常见的安全标记,其中是轴对称图形的是( A )2.下列说法错误的是( D )A .关于某直线对称的两个三角形一定全等B .轴对称图形至少有一条对称轴C .正方形的一条对角线把它所分成的两个三角形成轴对称D .角的对称轴是角的平分线3.如图,△ABC 与△DEF 关于直线l 对称,若AB =2 cm ,∠C =55°,则DE =__2_cm __,∠F =__55°__.4.判断下列各种图形是不是轴对称图形?若是,画出它的对称轴.答:(1)(2)(3)(5)是轴对称图形.5.图中任意一个正方形与哪些正方形成轴对称?整个图形是轴对称图形吗?它有几条对称轴?答:整个图形是轴对称图形,有4条对称轴.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第1、3、4题.2.课后作业见《学生用书》.第2课时线段的垂直平分线的性质(一)教学目标1.掌握线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.教学重点线段垂直平分线的性质.教学难点线段垂直平分的性质的运用.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标如图,直线l垂直平分线段AB,P1,P2,P3…是直线l上的点,请猜想并验证点P1,P2,P3…到点A与点B的距离之间的数量关系?二、自主学习,指向目标1.自学教材第61页至62页.2.请完成“《学生用书》”相应部分.三、合作探究,达成目标探究点一线段垂直平分线的性质活动一:1.完成教材P61探究栏目中的问题.2.线段垂直平分线的性质是什么?展示点评:请用推理的方法证明线段垂直平分的性质.(根据右图,写出已知,求证和证明)小组讨论:线段垂直平分线的性质在解题中有哪些应用?反思小结:线段垂直平分线的性质是证明线段相等的简捷的方法,运用它解题能省时省力.探究点二线段垂直平分线的判定活动二:1.反过来,如果PA=PB,那么P是否在线段AB的垂直平分线上?2.由此,我们可以得到什么结论?3.请写出以上结论的证明过程.展示点评:你能再找一些到线段两端的距离相等的点吗?能找多少个这样的点?这些点能组成什么几何图形?由此我们可以得以什么结论.小组讨论:线段垂直平分线的性质与判定之间有何联系与区别?反思小结:线段垂直平分线的性质与判定之间题设和结论正好相反,是互逆定理. 跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?2.线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系? 3.如何判断一条直线是否是线段的垂直平分线?实际问题―→⎩⎪⎨⎪⎧线段垂直平分线的性质线段垂直平分线的判定实际应用五、达标检测,反思目标1.如图,CD 垂直平分AB ,若AC =1.6 cm ,BD =2.3 cm ,则四边形ACBD 的周长为( B ).,第1题图) ,第2题图)A .3.9 cmB .7.8 cmC .3.2 cmD .4.6 cm 2.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( C ).A .在边AC 、BC 两条高的交点处B .在边AC 、BC 两条中线的交点处C .在边AC 、BC 两条垂直平分线的交点处D .在∠ABC 、∠ACB 两条角平分线的交点处 3.如图,OP 平分∠AOB ,PC ⊥OA ,PD⊥OB ,垂足分别为C ,D ,下列结论不一定成立的是( D ).,第3题图) ,第4题图),第5题图)A .PC =PDB .PO 平分∠CPDC .OC =OD D .CD 垂直平分OP4.如图,在△ABC 中,边BC 的垂直平分线交AB 于点E ,若△ABC 的周长为10 cm ,BC =4 cm ,求△ACE 的周长.解:△ACE 的周长6 cm.5.如图,AB =AC ,DB =DC ,E 是AD 延长线上的一点,BE 是否与CE 相等?试说明理由. 解:BE =CE∵AB =AC ,DB =DC.∴AD 是BC 的垂直平分线.∴点E是AD上一点.∴BE=CE.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第6、9题.2.课后作业见《学生用书》.第3课时线段的垂直平分线的性质(二)教学目标1.能用尺规过直线外一点作已知直线的垂线和线段的垂直平分线.2.了解作图的一般步骤和作图语言,理解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点用尺规作过直线外一点作已知直线的垂线和作线段的垂直平分线.教学难点理解作图的依据和用数学语言描述作图过程.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景,明确目标教师用多媒体显示几幅轴对称的图形.问题轴对称的性质是什么?追问:说一说线段垂直平分线的性质,如何判断一条直线是否是线段的垂直平分线?有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、自主学习,指向目标1.自学教材第62至63页.2.请完成“《学生用书》”相应部分.●合作探究达成目标探究点一尺规作图:经过直线外一点作已知直线的垂线活动一:已知:直线和直线外一点C.求作:AB的垂线,使它经过点C.展示点评:作法:小组讨论:为什么直线CF 就是所求作的直线.变式:尺规作图,已知:直线AB 和AB 上一点C ,求作AB 的垂线,使它经过点C.反思小结:过已知直线外一点作已知直线的垂线的依据是线段垂直平分线的性质的逆定理.跟踪训练:见《学生用书》相应部分 探究点二 作线段的垂直平分线活动二:1.思考教材P 62页“思考”栏目中的问题.例2 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?展示点评:求作的这条直线与线段AB 之间有什么关系?变式练习:作出五角星的一条对称轴,和同学比较一下,所作出的对称轴一样吗?小组讨论:用尺规作图的方法怎样作出线段的中点?这种作法的依据什么? 反思小结:用尺规作线段垂直平分线的依据是线段垂直平分线的性质和两点确定一条直线,用尺规作图的方法作线段的垂直平分线,它与线段的交点就是线段的中点.五角星有5条对称轴,作轴对称图形的对称轴的方法是:找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.跟踪训练:见《学生用书》相应部分 四、总结梳理,内化目标 1.本节课学习了哪些内容?2.作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用? 3.如何用尺规作轴对称图形的对称轴?过直线外一点作已知直线的垂线―→作线段的垂直平分线――→应用画轴对称图形的对称轴 五、达标检测,反思目标1.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD.若△ADC 的周长为10,AB =7,则△ABC 的周长为( C )A .7B .14C .17D .202.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:不写作法,保留作图痕迹.提示:连接直线AB、BC,作AB,BC的垂直平分线交点即为所求.●布置作业,巩固目标教学难点1.上交作业教科书习题13.1第2,10,12题.2.课后作业见《学生用书》.。

相关文档
最新文档