高考导数专题(含详细解答)
【高考数学】22道压轴题:导数及其应用(练习及参考答案)
【高考数学】22道压轴题导数及其应用(练习及参考答案)1.已知函数xa x x f +=ln )(. (1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当e a 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )= xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e . (Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22. (1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈. (1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x(1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑.10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数. (Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =. (1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围; (2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围; (2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ). (Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值; (Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++?. (1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f . (1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈. (Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞. 由x a x x f +=ln )(,得221)(xa x x a x x f -=-='. ①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增, 又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f . 所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增. 当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f , 所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞. 另解:函数x a x x f +=ln )(的定义域为),0(+∞. 由xa x x f +=ln )(,得x x a ln -=. 令x x x g ln )(-=,则)1(ln )(+-='x x g . 当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g . 所以函数)(x g 在)1,0(e 上单调递增,在),1(+∞e 上单调递减. 故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=. 因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤, 综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(, 即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h . 当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f . 所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增. 当e x 1=时,a ex h +-=1)]([min . 于是,当e a 2≥时,ea e x h 11)(≥+-≥.① 令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减. 当1=x 时,ex 1)]([min =ϕ. 于是,当0>x 时,ex 1)(≤ϕ.② 显然,不等式①、②中的等号不能同时成立. 故当ea 2≥时,x e x f ->)(. 2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得 有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以 (Ⅱ) bx x x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g0ln 2)(22222=+-=bx x x x g1202x x x +=022)(000=+-='b x x x g ④ 由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++ 令12x t x =,12,01x x t <∴<<.则上式可化为122ln +-=t t t , 设函数()()10122ln <<+--=t t t t t h ,则 ()()()()011141222>+-=+-='t t t t t t h , 所以函数()122ln +--=t t t t h 在(0,1)上单调递增. 于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾. 所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)n mx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m∴()3032-≠>+m m ,得到 ①∵()()()32313223)(2++-=+-+='m x x m mx x x f∴⎪⎭⎫ ⎝⎛+-==='32110)(m x x x f 或,得 由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得② 由①②得3-<m(Ⅱ)()02301=++='n m f 得由 所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条, 令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=- 由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x.01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++= ()mx x x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()x x e e x xe x f xxx22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f(Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥xx e x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令 2)(-='x e x h2ln ,0)(=='x x h 得()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x所以当0>x 时,)()(x g x f >. 综上R x ∈∀,()()f x g x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞), 求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ), 即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e , 实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+, l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =. ∵21()()(1)ln (1)12g x f x a x x ax a x =--=-+-+, ∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>, 当1(0,)x a∈时,'()0g x >,()g x 单调递增; 当1(,)x a∈+∞时,'()0g x <,()g x 单调递减. 故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-. (2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++, '(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥ 对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==. 又(1)f a =,则1a ≥. 下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立. 1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥. 令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =. 当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增 若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0; 当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增 (2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g000min 11)()(0x e x x g x g x +-+==∴, 由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k <所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b . 经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立. 若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立, 即x x b 222--≥=21)21(22++-x 恒成立,由此得≥b 21; 若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立, 即x x b 222--≤=21)21(22++-x 恒成立. 因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立. 综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h . 当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛. ∴33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--, 即2max 1()(2)3f x f e e e==--. (Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-, 令'()0f x =,得log a x e =,则 ①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min ()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=, 因为当1a >时,ln 0a >,所以此方程无解. ②当01a <<时,ln 0a <,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞, 所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*) 设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=, 令'()0g a =,得1a e=, 当10a e <<时,'()0g a <;当1a e>时,'()0g a >; 所以当1a e =时,min 11()()ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e=. 综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)= x --2a ln x . x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增; ②当a 1时,令,得x 1=, x 2=x(0,) ()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )= x -2a ln x , h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1, x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(), H /(x )=2()lnx=当时,H/(x)<0, H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-, ∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增, ∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分 ∵2110x x+>,∴0a ≤, 故实数a 的取值范围是(],0-∞;.…………3分 (2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=--- , 令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-, 故a b +的最小值为﹣1;.…………7分 (3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得()12121212ln x x x x a x x x x +-=+ 两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,. 9分不妨令120x x <<,记211x t x =>, 令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+, ∴()21ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分 令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln 210.8512=+≈<,∴1ln G =>>>,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分 设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分 (Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(上递增,在)上递减,∴当x =12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++ ()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+ (2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解; 设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+ 令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+ 所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=- 1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增, 所以()()max 01ln 0u x u a ==-<,所以a e > 2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭, ()11211122x h x x x -'=-=++ 令()102h x x '>⇒>,()1002h x x '<⇒<< 所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增 所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>, 所以()()00g x g >>, 所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意 综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根, ∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=, 当()0,x e ∈时,()0g x '>; 当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =, 当x e >时,()0g x >, 所以()20g e a<< ∴()210g e a e<<= 解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-, 故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+ 所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-, 所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-, 因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-, 则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈ ①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意; ③当01λ<<时,()01I t t λ'>⇔<< 所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减, 故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ), ∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值; ②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k时,f′(x )<0;当x >e k,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k,无极大值. (2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0, ∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k)上单调递减, 在区间(e k,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k<x 2<e k+1,要证x 1x 2<e 2k,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k(),x ∈(0,e k)h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ), ∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直, 所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即 1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反. 令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-, 所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增. 又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<. (Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >,e 0xx >,()2e 10x x x ->,320x>, 所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增. 所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减; 当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--, 由()'0f x <得13x <<,由()'0f x >得1x <或3x >. 所以()f x 在()1,3上单调递减,在(),1-?,()3,+?上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $?,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪?琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=, ∴0)1('=f ,23)1(-=f , ∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y . (2))0(1)('2>-=x xax x f . 当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞; 当0>a 时,)(x f 在),0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立 只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =. ∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值. (Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立. ②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==. 因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立. 故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->, 解得231e k e +>. ∴综上,k 的取值范围是231(,)e e++∞.。
函数与导数例高考题汇编(含答案)
函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)
函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
导数专题训练(含答案)
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
高考数学专题:导数恒成立问题(含答案)
1、设函数f(x)=13x3-a2x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.2、已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<c e x.3、设函数f(x)=a e x ln x+b e x-1x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.4、已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若∀x1,x2∈(0,+∞),且x1<x2,f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.5、若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)答案: B 2x ln x≥-x2+ax-3,则a≤2ln x+x+3x.设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.故a的取值范围是(-∞,4].6、已知函数f(x)=12x2-a ln x(a∈R).(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.7、已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.8、已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.9、已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.答案:1、解:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎨⎧f (0)=1,f ′(0)=0,即⎩⎨⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时, a <⎝ ⎛⎭⎪⎫x +2x max =-22即可,所以满足要求的a 的取值范围是(-∞,-22).2、【解析】 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x , 由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:方法一:①若c ≥1,则e x ≤c e x . 又由(2)知,当x >0时,x 2<e x . 所以当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x .所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增, 又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c ,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2, 所以e x=e x 2·e x 2>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22,当x >x 0时,e x>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22>4c ⎝ ⎛⎭⎪⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)内单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x.取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .3、解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x ·e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e , 即h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ), 即f (x )>1.4、解:(1)当a =1时,f (x )=x 2-3x +ln x (x >0),f ′(x )=2x -3+1x =2x 2-3x +1x,则f (1)=-2,f (1)=0.所以切线方程是y =-2.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞).当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x(x >0).令f ′(x )=0,得x =12或x =1a .①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,所以f (x )在[1,e]上的最小值是f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不合题意,故1e <a <1舍去;③当1a ≥e ,即0<a ≤1e 时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值是f (e)<f (1)=-2,不合题意,故0<a ≤1e 舍去.综上所述,a 的取值范围为[1,+∞).(3)设g (x )=f (x )+2x ,则g (x )=f (x )+2x =ax 2-ax +ln x ,只要g (x )在(0,+∞)上单调递增,即g ′(x )≥0在(0,+∞)上恒成立即可.而g ′(x )=2ax -a +1x =2ax 2-ax +1x(x >0).①当a =0时,g ′(x )=1x >0,此时g (x )在(0,+∞)上单调递增;②当a ≠0时,因为x >0,依题意知,只要2ax 2-ax +1≥0在(0,+∞)上恒成立.记h (x )=2ax 2-ax +1,则抛物线过定点(0,1),对称轴x =14.故必须⎩⎨⎧a >0,Δ=a 2-8a ≤0,即0<a ≤8. 综上可得,a 的取值范围为[0,8].6、解:(1)因为f ′(x )=x -ax(x >0),且f (x )在x =2处的切线方程为y =x +b , 所以⎩⎪⎨⎪⎧2-a ln 2=2+b ,2-a 2=1,解得a =2,b =-2ln 2.(2)若函数f (x )在(1,+∞)上为增函数,则f ′(x )=x -ax ≥0在(1,+∞)上恒成立,即a ≤x 2在(1,+∞)上恒成立.所以a ≤1.7、解:(1)f ′(x )=a (1-x )x(x >0),当a >0时,f (x )的单调增区间为(0,1),减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3, ∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点. 由于g ′(0)=-2, ∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373. 所以-373<m <-9.8、解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x ) =12⎝⎛⎭⎪⎫x -a 6⎝ ⎛⎭⎪⎫x +a 6, 此时函数f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-a 6和⎣⎢⎡⎭⎪⎫a 6,+∞, 单调递减区间为⎣⎢⎡⎦⎥⎤-a 6,a 6. (2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2| =4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎪⎫x -3 ⎛⎪⎫x +3.于是所以g (x )min =g ⎝ ⎛⎭⎪⎫33=1-439>0.所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.9、解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1, 所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e-1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
(完整版)高考导数专题(含详细解答)
导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。
A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。
对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。
故本题正确答案为B 。
2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。
导数高中试题及解析答案
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数()ln xf x x =, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()321623f x x ax x =+-+在2x =处取得极值.(1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln ex f x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞,则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e e e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明.(1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =-【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞, 令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。
2025年高考数学二轮复习导数专题19:双变量问题【含答案】
专题19:双变量问题1.已知函数2()1(0)f x lnx ax x a =--++>.(Ⅰ)若()f x 是定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若()f x 在定义域上有两个极值点1x ,2x ,证明:12()()522f x f x ln +>-.【解析】(Ⅰ)2()1f x lnx ax x =--++,∴221()ax x f x x-+'=-令2()21(0)g x ax x x =-+>则△18a=-0a >,∴对称轴104x a=>①当18a 时,△0 ,()0g x ,()0f x '∴ ,故()f x 在(0,)+∞单调递减.②当108a <<时,△0>,方程2210ax x -+=有两个不相等的正根1x ,2x 不妨设12x x <,则当(0x ∈,12)()x x +∞时,()0f x '<,当1(x x ∈,2))x 时,()0f x '>,这时()f x 不是单调函数.综上,a 的取值范围是18a .(Ⅱ)由(Ⅰ)知,当1(0,)8a ∈,()f x 有极小值点1x 和极大值2x ,且1212x x a+=,1212x x a=,2212111222()()2f x f x lnx ax x lnx ax x +=--+--++12121211()(1)(1)()222lnx lnx x x x x =-+----+++121211()()3(2)324ln x x x x ln a a=-+++=++,令11()(2)3,(0,]48g a ln a a a =++∈,则当1(0,)8a ∈时,221141()044a g x aa a -'=-=<,g ∴(a )在1(0,8单调递减,所以1()(5228g a g ln >=-,故12()()522f x f x ln +>-.2.已知函数21()(0)2f x x x alnx a =-+>(1)若1a =,求()f x 的图象在(1,f (1))处的切线方程;(2)若()f x 在定义域上是单调函数,求a 的取值范围;(3)若()f x 存在两个极值点1x ,2x ,求证:12322()()4ln f x f x ++>-.【解析】(1)11,(1)2a f ==-,函数21()(0)2f x x x alnx a =-+>,可得1()1f x x x'=-+,f '∴(1)1=,∴切线方程为2230x y --=;(2)()1a f x x x'=-+依题意有()0f x ' 或()0f x ' 在(0,)+∞上恒成立,即2a x x -+或2a x x -+ 在(0,)+∞上恒成立,显然2a x x -+不可能恒成立,2a x x ∴-+ ,解得14a ;(3)由()1a f x x x'=-+,()0f x '=得20x x a -+=,即1x ,2x 是()0f x '=的两根,121x x ∴+=-,12x x a =,222121112221212121211111()()()()122222f x f x x x alnx x x alnx x x x x x x alnx x a alna a alna +=-++-+=+-+-+=--+=--+,由已知14a <,∴112244a lna ln ln ->->=-,∴2222ln alna aln >->-,∴12322()()4ln f x f x ++>-.3.设函数241()(0)f x lnx ax a a x=-+>.(1)若()f x 在定义域上为单调函数,求a 的取值范围;(2)设1x ,2x 为函数()f x 的两个极值点,求12()()f x f x +的最小值.【解析】(1)221()(0,0)x ax f x x a x-+'=->>设2()21g x x ax =-+.①△280a =-,即0a < 时,()0g x 恒成立,()0f x ∴' ,()f x ∴在(0,)+∞上为减函数;②△0>,即a >时,()0g x =在(0,)+∞上有两相异实根,()f x ∴在(0,)+∞上不是单调函数,不合题意,综上,0a < ;(2)由(1)知,1x ,2x 为2210x ax -+=的两根,122a x x +=,1212x x =222121122441211()()2814a f x f x ln x ax ln x ax ln lna a x a x ∴+=-++-+=-++.设h (a )22814a ln lna =-++,则h '(a )(4)(4)2a a a+-=,h ∴(a)在4)上单调递减,在(4,)+∞上单调递增,h ∴(a )min h =(4)5152ln =-,12()()f x f x ∴+的最小值为5152ln -.4.已知函数21()2(2f x lnx x ax a =+-为常数).(1)若()f x 是定义域上的单调函数,求a 的取值范围;(2)若()f x 存在两个极值点1x ,2x ,且12||1x x - ,求12|()()|f x f x -的取值范围.【解析】(1)21()2(0)2f x lnx x ax x =+->,222()x ax f x x a x x-+∴'=+-=,设2()2g x x ax =-+,(0,)x ∈+∞,()f x 是定义域上的单调函数,函数()g x 的图象为开口向上的抛物线,()0f x ∴' 在定义域上恒成立,即()0g x 在(0,)+∞上恒成立.又二次函数图象的对称轴为2a x =,且图象过定点(0,2),∴02a 或20280aa ⎧>⎪⎨⎪-⎩,解得:a ∴实数a 的取值范围为(-∞,;(2)由(1)知()f x 的两个极值点1x ,2x 满足220x ax -+=,所以122x x =,12x x a +=,不妨设120x x <<<,则()f x 在1(x ,2)x 上是减函数,12()()f x f x ∴>,12|()()|f x f x ∴-12()()f x f x =-22111222112(2)22lnx x ax lnx x ax =+--+-22112121221()()()22x x x x x x x ln x =--+-+2212121()22x x x ln x =-+222222122222x lnx ln x =--+,令22t x =,则2t >,又12222||1x x x x -=- ,即22220x x --22x < ,2224t x ∴<= .设12()222(24)2h t t lnt ln t t=--+< ,则22(2)()02t h t t-'=>,()h t ∴在(2,4]上单调递增,h (2)0=,h (4)3222ln =-,()(0h t ∴∈,322]2ln -,即12|()()|(0f x f x -∈,322]2ln -,所以12|()()|f x f x -的取值范围为)(0,322]2ln -.5.已知函数2()1(1)f x x aln x =-+-,a R ∈.(Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围;(Ⅱ)若函数()f x 存在两个极值点1x ,2x ,且12x x <.证明:1221()()f x f x x x >.【解析】(Ⅰ)函数()f x 的定义域为(,1)-∞,求导:222()211a x x af x x x x-+-'=-=--,1x <,令2()22g x x x a =-+-,则△44(2)()48a a =---=-,当480a - 时,即12a ,则2220x x a -+- 恒成立,则()f x 在(,1)-∞上单调减函数,当480a ->时,即12a <,则2220x x a -+-=的两个根为112x =,2x =,当1(,)x x ∈-∞时,()0f x '<,函数()f x 单调递减,当1(x x ∈,1),()0f x '>,函数()f x 单调递增,不符合题意,综上可知:函数()f x 为定义域上的单调函数,则实数a 的取值范围1[2,)+∞;(Ⅱ)证明:由函数有两个极值点,则()0f x '=,在1x <上有两个不等的实根,即2220x x a -+-=,在1x <有两个不等式的实根,1x ,2x ,由102a <<,则121212x x a x x +=⎧⎪⎨=⎪⎩,且11(0,2x ∈,21(2x ∈,1),则211112*********()1(1)(1)(1)2(1)(1)2(1)f x x aln x x x x x ln x x x ln x x x x -+--++-===-++-,同理可得:22221()(1)2(1)f x x x ln x x =-++-,则1221112221()()()2(1)2(1)f x f x x x x ln x x ln x x x -=-+---,22222212(1)2(1)x x lnx x ln x =-+---,令()212(1)2(1)g x x x lnx xln x =-+---,1(2x ∈,1),求导,22()2[(1)]1xg x ln x x x x '=--++-,1(2x ∈,1),由1(2x ∈,1),则2201xx x+>-,则()0g x '>,则()g x 在1(2x ∈,1),上单调递增,则1()()02g x g >=,则1221()()0f x f x x x ->,∴1221()()f x f x x x >成立.6.已知函数()f x lnx =.(1)若曲线()()1ag x f x x=+-在点(2,g (2))处的切线与直线210x y +-=平行,求实数a 的值.(2)若(1)()()1b x h x f x x -=-+在定义域上是增函数,求实数b 的取值范围.(3)设m 、*n R ∈,且m n ≠,求证:||2m n lnm lnn m n --<+.【解析】(1)()1a g x lnx x=+-,21()a g x xx '=-(2分)g()x 在点(2,g (2))处的切线与直线210x y +-=平行,∴11(2)4242a g a '=-=-⇒=(4分)(2)证:由(1)()1b x h x lnx x -=-+得:2221(1)(1)2(1)1()(1)(1)b x b x x b x h x x x x x +--+-+'=-=++()h x 在定义域上是增函数,()0h x ∴'>在(0,)+∞上恒成立22(1)10x b x ∴+-+>,即2212x x b x++<恒成立(6分)2211112222x x x x x ++=+++= 当且仅当11,222x x x ==时,等号成立2b ∴ ,即b 的取值范围是(-∞,2](8分)(3)证:不妨设0m n >>,则1m n>要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,即2(1)1mm n lnm n n-<+(10分)设2(1)()(1)1x h x lnx x x -=->+由(2)知h()x 在(1,)+∞上递增,h∴()x h>(1)0=故2(1)01m m n ln m n n-->+,∴||2m n lnm lnn m n --<+成立(12分)7.已知函数()x lnx ϕ=.(1)若曲线()()1a g x x xϕ=+-在点(2,g (2))处的切线与直线310x y +-=平行,求a 的值;(2)求证函数2(1)()()1x f x x x ϕ-=-+在(0,)+∞上为单调增函数;(3)设m ,n R +∈,且m n ≠,求证:||2m n lnm lnn m n--<+.【解析】(1)()()11(0)a a g x x lnx x xxφ=+-=+->,21()(0)ag x x x x '=->,曲线()()1a g x x xφ=+-在点(2,g (2))处的切线与直线310x y +-=平行,∴1(2)324ag '=-=-,解得14a =;(2)证明:2(1)2(1)()()(0)11x x f x x lnx x x x φ--=-==->++,∴22212(1)2(1)(1)()0(1)(1)x x x f x x x x x +---'=-=++ ,∴函数2(1)()()1x f x x x φ-=-+在(0,)+∞上为单调增函数;(3)不妨设0m n >>,则1m n>,要证||2m n lnm lnn m n--<+,即证2m n lnm lnn m n--<+,只需证121m m ln n n m n-<+,即证2(1)1m m n ln m n n->+,只需证2(1)01m m n ln m n n-->+,设2(1)()(1)1x h x lnx x x -=->+,由(2)得,()h x 在(1,)+∞上是单调增函数,1x >,()h x h ∴>(1)0=,即2(1)01m m n ln m n n-->+,即2m n lnm lnn m n--<+.∴不等式||2m n lnm lnnm n --<+成立.8.已知函数2()1ax bf x x +=+在点(1-,(1))f -处的切线方程为30x y ++=.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设()g x lnx =,求证:()()g x f x 在[1x ∈,)+∞上恒成立;(Ⅲ)已知0a b <<,求证:222lnb lna a b a a b ->-+.【解析】(Ⅰ)将1x =-代入切线方程得2y =-∴(1)211b af --==-+,化简得4b a -=-222(1)()2()(1)a x ax b xf x x +-+'=+22()2(1)1442a b a b bf +-'-====-解得:2a =,2b =-.∴222()1x f x x -=+.(Ⅱ)由已知得2221x lnx x -+ 在[1,)+∞上恒成立化简2(1)22x lnx x +- 即2220x lnx lnx x +-+ 在[1,)+∞上恒成立设2()22h x x lnx lnx x =+-+,1()22h x xlnx x x'=++-1x ∴120,2xlnx x x+ ,即()0h x ' ()h x ∴在[1,)+∞上单调递增,()h x h (1)0=()()g x f x ∴ 在[1x ∈,)+∞上恒成立(Ⅲ)0a b<<∴1ba>,由(Ⅱ)知有222()1b b a ln ba a->+整理得222lnb lna a b aa b ->-+∴当0a b <<时,222lnb lna ab a a b ->-+.9.已知函数()(f x lnx mx m =+为常数).(1)讨论函数()f x 的单调区间;(2)当322m -时,设21()()2g x f x x =+的两个极值点1x ,212()x x x <恰为2()2h x lnx ax x =--的零点,求1212()()2x x y x x h +'=-的最小值.【解析】(1)11()mx f x m xx+'=+=,0x >,当0m <时,由10mx +>,解得1x m<-,即当10x m<<-时,()0f x '>,()f x 单调递增;由10mx +<解得1x m>-,即当1x m>-时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m >时,10mx +>,故()0f x '>,即()f x 在(0,)+∞上单调递增.所以当0m <时,()f x 的单调递增区间为1(0,)m-,单调递减区间为1(,)m-+∞;当0m 时,()f x 的单调递增区间为(0,)+∞.(2)由21()2g x lnx mx x =++得211()x mx g x m x x x ++'=++=,由已知210x mx ++=有两个互异实根1x ,2x ,由根与系数的关系得12x x m +=-,121x x =,因为1x ,212()x x x <是()h x 的两个零点,故21111()20h x lnx x ax =--=①22222()20h x lnx x ax =--=②由②-①得:222212112()()0x ln x x a x x x ----=,解得2121212()x lnx a x x x x =-+-,因为2()2h x x a x '=--,得1212124()222x x x x h a x x ++'=--+,将2121212()x ln x a x x x x =-+-代入得:21212121122124()2[()]22x lnx x x x x h x x x x x x ++'=---++-22122121221122111221112(1)2()422[][2]1x x lnx x x x x x ln ln x x x x x x x x x x x x x x --=-+=--=---+-+-+,所以21221122111()(2[2]21x x x x x y x x h ln x x x -+'=-=-+,设211x t x =>,因为22221212129()22x x x x x x m +=++= ,所以221252x x + ,所以221212122152x x x x x x x x +=+ ,所以152t t + ,所以2t .构造1()21t F t lnt t -=-+,得22214(1)()0(1)(1)t F t t t t t -'=-=>++,则1()21t F t lnt t -=-+在[2,)+∞上是增函数,所以2()(2)23min F x F ln ==-,即1212()(2x x y x x h +'=-的最小值为4223ln -.10.已知函数()()f x lnx mx m R =-∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)当m 时,设2()2()g x f x x =+的两个极值点1x ,212()x x x <恰为2()h x lnx cx bx =--的零点,求1212()()2x x y x x h +=-'的最小值.【解析】()I 函数()f x lnx mx =-,∴11()mx f x m x x -'=-=,0x >;当0m >时,由10mx ->解得1x m <,即当10x m <<时,()0f x '>,()f x 单调递增;由10mx -<解得1x m >,即当1x m >时,()0f x '<,()f x 单调递减;当0m =时,1()0f x x'=>,即()f x 在(0,)+∞上单调递增;当0m <时,10mx ->,故()0f x '>,即()f x 在(0,)+∞上单调递增;∴当0m >时,()f x 的单调递增区间为1(0,m ,单调递减区间为1(m,)+∞;当0m 时,()f x 的单调递增区间为(0,)+∞;⋯(5分)22()()2()22II g x f x x lnx mx x =+=-+,则22(1)()x mx g x x-+'=,()g x '∴的两根1x ,2x 即为方程210x mx -+=的两根;又m ,∴△240m =->,12x x m +=,121x x =;⋯(7分)又1x ,2x 为2()h x lnx cx bx =--的零点,21110lnx cx bx ∴--=,22220lnx cx bx --=,两式相减得11212122()()()0x ln c x x x x b x x x --+--=,得121212()x lnx b c x x x x =-+-,而1()2h x cx b x'=--,1212122()[()]y x x c x x b x x ∴=--+-+1212121212122()[()()]x ln x x x c x x c x x x x x x =--+-+++-11212111222212()21x x x x x x ln ln x x x x x x --=-=-++,⋯(10分)令12(01)x t t x =<<,由2212()x x m +=得22212122x x x x m ++=,因为121x x =,两边同时除以12x x ,得212t m t++=,m ,故152t t + ,解得12t 或2t ,102t ∴< ;⋯(12分)设1()21t G t lnt t -=-+,2(1)()0(1)t G t t t --'∴=<+,则()y G t =在(0,1]2上是减函数,12()(223min G t G ln ∴==-+,即1212()(2x x y x x h +'=-的最小值为223ln -+.⋯(14分)。
历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)
历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。
高考数学-导数及其应用(含22年真题讲解)
高考数学-导数及其应用(含22年真题讲解)1.【2022年全国甲卷】当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f ′(2)=( ) A .−1 B .−12C .12D .1【答案】B 【解析】 【分析】根据题意可知f (1)=−2,f ′(1)=0即可解得a,b ,再根据f ′(x )即可解出. 【详解】因为函数f (x )定义域为(0,+∞),所以依题可知,f (1)=−2,f ′(1)=0,而f ′(x )=ax −bx 2,所以b =−2,a −b =0,即a =−2,b =−2,所以f ′(x )=−2x +2x 2,因此函数f (x )在(0,1)上递增,在(1,+∞)上递减,x =1时取最大值,满足题意,即有f ′(2)=−1+12=−12. 故选:B.2.【2022年全国甲卷】已知a =3132,b =cos 14,c =4sin 14,则( ) A .c >b >a B .b >a >c C .a >b >c D .a >c >b【答案】A 【解析】 【分析】由cb =4tan 14结合三角函数的性质可得c >b ;构造函数f(x)=cosx +12x 2−1,x ∈(0,+∞),利用导数可得b >a ,即可得解. 【详解】因为cb =4tan 14,因为当x ∈(0,π2),sinx <x <tanx 所以tan 14>14,即cb >1,所以c >b ; 设f(x)=cosx +12x 2−1,x ∈(0,+∞),f ′(x)=−sinx +x >0,所以f(x)在(0,+∞)单调递增, 则f (14)>f(0)=0,所以cos 14−3132>0,所以b >a ,所以c >b >a , 故选:A3.【2022年新高考1卷】设a =0.1e 0.1,b =19,c =−ln0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【答案】C 【解析】 【分析】构造函数f(x)=ln(1+x)−x , 导数判断其单调性,由此确定a,b,c 的大小. 【详解】设f(x)=ln(1+x)−x(x >−1),因为f ′(x)=11+x −1=−x1+x , 当x ∈(−1,0)时,f ′(x)>0,当x ∈(0,+∞)时f ′(x)<0,所以函数f(x)=ln(1+x)−x 在(0,+∞)单调递减,在(−1,0)上单调递增, 所以f(19)<f(0)=0,所以ln109−19<0,故19>ln109=−ln0.9,即b >c ,所以f(−110)<f(0)=0,所以ln 910+110<0,故910<e −110,所以110e 110<19,故a <b ,设g(x)=xe x +ln(1−x)(0<x <1),则g ′(x)=(x +1)e x +1x−1=(x 2−1)e x +1x−1,令ℎ(x)=e x (x 2−1)+1,ℎ′(x)=e x (x 2+2x −1),当0<x <√2−1时,ℎ′(x)<0,函数ℎ(x)=e x (x 2−1)+1单调递减, 当√2−1<x <1时,ℎ′(x)>0,函数ℎ(x)=e x (x 2−1)+1单调递增, 又ℎ(0)=0,所以当0<x <√2−1时,ℎ(x)<0,所以当0<x <√2−1时,g ′(x)>0,函数g(x)=xe x +ln(1−x)单调递增, 所以g(0.1)>g(0)=0,即0.1e 0.1>−ln0.9,所以a >c 故选:C.4.【2022年新高考1卷】(多选)已知函数f(x)=x 3−x +1,则( ) A .f(x)有两个极值点B .f(x)有三个零点C .点(0,1)是曲线y =f(x)的对称中心D .直线y =2x 是曲线y =f(x)的切线【答案】AC【解析】 【分析】利用极值点的定义可判断A ,结合f(x)的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,f ′(x )=3x 2−1,令f ′(x )>0得x >√33或x <−√33,令f ′(x)<0得−√33<x <√33,所以f(x)在(−√33,√33)上单调递减,在(−∞,−√33),(√33,+∞)上单调递增, 所以x =±√33是极值点,故A 正确;因f(−√33)=1+2√39>0,f(√33)=1−2√39>0,f (−2)=−5<0,所以,函数f (x )在(−∞,−√33)上有一个零点,当x ≥√33时,f (x )≥f (√33)>0,即函数f (x )在(√33,+∞)上无零点,综上所述,函数f(x)有一个零点,故B 错误;令ℎ(x)=x 3−x ,该函数的定义域为R ,ℎ(−x )=(−x )3−(−x )=−x 3+x =−ℎ(x ), 则ℎ(x)是奇函数,(0,0)是ℎ(x)的对称中心, 将ℎ(x)的图象向上移动一个单位得到f(x)的图象, 所以点(0,1)是曲线y =f(x)的对称中心,故C 正确; 令f ′(x )=3x 2−1=2,可得x =±1,又f(1)=f (−1)=1,当切点为(1,1)时,切线方程为y =2x −1,当切点为(−1,1)时,切线方程为y =2x +3, 故D 错误. 故选:AC.5.【2022年全国乙卷】已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点.若x 1<x 2,则a 的取值范围是____________. 【答案】(1e ,1) 【解析】 【分析】由x 1,x 2分别是函数f (x )=2a x −ex 2的极小值点和极大值点,可得x ∈(−∞,x 1)∪(x 2,+∞)时,f′(x)<0,x∈(x1,x2)时,f′(x)>0,再分a>1和0<a<1两种情况讨论,方程2lna ⋅a x−2ex=0的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,构造函数g(x)=lna⋅a x,利用指数函数的图象和图象变换得到g(x)的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解:f′(x)=2lna⋅a x−2ex,因为x1,x2分别是函数f(x)=2a x−ex2的极小值点和极大值点,所以函数f(x)在(−∞,x1)和(x2,+∞)上递减,在(x1,x2)上递增,所以当x∈(−∞,x1)∪(x2,+∞)时,f′(x)<0,当x∈(x1,x2)时,f′(x)>0,若a>1时,当x<0时,2lna⋅a x>0,2ex<0,则此时f′(x)>0,与前面矛盾,故a>1不符合题意,若0<a<1时,则方程2lna⋅a x−2ex=0的两个根为x1,x2,即方程lna⋅a x=ex的两个根为x1,x2,即函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,∵0<a<1,∴函数y=a x的图象是单调递减的指数函数,又∵ln a<0,∴y=lna⋅a x的图象由指数函数y=a x向下关于x轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的|ln a|倍得到,如图所示:设过原点且与函数y=g(x)的图象相切的直线的切点为(x0,lna⋅a x0),则切线的斜率为g′(x0)=ln2a⋅a x0,故切线方程为y−lna⋅a x0=ln2a⋅a x0(x−x0),则有−lna⋅a x0=−x0ln2a⋅a x0,解得x0=1lna,则切线的斜率为ln2a⋅a1lna=eln2a,因为函数y=lna⋅a x与函数y=ex的图象有两个不同的交点,所以eln2a<e,解得1e<a<e,又0<a<1,所以1e<a<1,综上所述,a的范围为(1e,1).【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.6.【2022年新高考1卷】若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________________.【答案】(−∞,−4)∪(0,+∞)【解析】【分析】设出切点横坐标x0,利用导数的几何意义求得切线方程,根据切线经过原点得到关于x0的方程,根据此方程应有两个不同的实数根,求得a的取值范围.【详解】∵y=(x+a)e x,∴y′=(x+1+a)e x,设切点为(x0,y0),则y0=(x0+a)e x0,切线斜率k=(x0+1+a)e x0,切线方程为:y−(x0+a)e x0=(x0+1+a)e x0(x−x0),∵切线过原点,∴−(x0+a)e x0=(x0+1+a)e x0(−x0),整理得:x02+ax0−a=0,∵切线有两条,∴∆=a2+4a>0,解得a<−4或a>0,∴a的取值范围是(−∞,−4)∪(0,+∞),故答案为:(−∞,−4)∪(0,+∞)7.【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,___ _________.【答案】y=1e x y=−1ex【解析】【分析】分x>0和x<0两种情况,当x>0时设切点为(x0,lnx0),求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出x0,即可求出切线方程,当x <0时同理可得;【详解】解:因为y=ln|x|,当x>0时y=lnx,设切点为(x0,lnx0),由y′=1x ,所以y′|x=x0=1x,所以切线方程为y−lnx0=1x0(x−x0),又切线过坐标原点,所以−lnx0=1x0(−x0),解得x=e,所以切线方程为y−1=1e(x−e),即y=1ex;当x<0时y=ln(−x),设切点为(x1,ln(−x1)),由y′=1x ,所以y′|x=x1=1x1,所以切线方程为y−ln(−x1)=1x1(x−x1),又切线过坐标原点,所以−ln(−x1)=1x1(−x1),解得x1=−e,所以切线方程为y−1=1−e(x+e),即y=−1ex;故答案为:y=1e x;y=−1ex8.【2022年全国甲卷】已知函数f(x)=x3−x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=−1,求a;(2)求a的取值范围.【答案】(1)3(2)[−1,+∞)【解析】【分析】(1)先由f(x)上的切点求出切线方程,设出g(x)上的切点坐标,由斜率求出切点坐标,再由函数值求出a即可;(2)设出g(x)上的切点坐标,分别由f(x)和g(x)及切点表示出切线方程,由切线重合表示出a,构造函数,求导求出函数值域,即可求得a的取值范围.(1)由题意知,f(−1)=−1−(−1)=0,f′(x)=3x2−1,f′(−1)=3−1=2,则y=f(x)在点(−1,0)处的切线方程为y=2(x+1),即y=2x+2,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2=2,解得x2=1,则g(1)=1+a=2+2,解得a=3;(2)f′(x)=3x2−1,则y=f(x)在点(x1,f(x1))处的切线方程为y−(x13−x1)=(3x12−1)(x−x1),整理得y=(3x12−1)x−2x13,设该切线与g(x)切于点(x2,g(x2)),g′(x)=2x,则g′(x2)=2x2,则切线方程为y−(x22+a)=2x2(x−x2),整理得y=2x2x−x22+a,则{3x12−1=2x2−2x13=−x22+a ,整理得a=x22−2x13=(3x122−12)2−2x13=94x14−2x13−32x12+14,令ℎ(x)=94x4−2x3−32x2+14,则ℎ′(x)=9x3−6x2−3x=3x(3x+1)(x−1),令ℎ′(x)>0,解得−13<x<0或x>1,令ℎ′(x)<0,解得x<−13或0<x<1,则x变化时,ℎ′(x),ℎ(x)的变化情况如下表:则ℎ(x)的值域为[−1,+∞),故a的取值范围为[−1,+∞).9.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −x e1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−x e1x−lnx−1x>0,x∈(1,+∞)即证e xx −x e1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −x e1x>0,lnx−12(x−1x)<0设g(x)=e xx−x e1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+x e1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x)=(1−1x)(exx−e1x)=x−1x(exx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2ex>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−x e1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −x e1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握10.【2022年全国乙卷】已知函数f(x)=ax−1x−(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【答案】(1)−1(2)(0,+∞)【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得f′(x)=(ax−1)(x−1)x2,按照a≤0、0<a<1及a>1结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当a=0时,f(x)=−1x −lnx,x>0,则f′(x)=1x2−1x=1−xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=−1;(2)f(x)=ax−1x −(a+1)lnx,x>0,则f′(x)=a+1x2−a+1x=(ax−1)(x−1)x2,当a≤0时,ax−1≤0,所以当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;所以f(x)max=f(1)=a−1<0,此时函数无零点,不合题意;当0<a<1时,1a >1,在(0,1),(1a,+∞)上,f′(x)>0,f(x)单调递增;在(1,1a)上,f′(x)<0,f(x)单调递减;又f(1)=a−1<0,当x趋近正无穷大时,f(x)趋近于正无穷大,所以f(x)仅在(1a,+∞)有唯一零点,符合题意;当a=1时,f′(x)=(x−1)2x2≥0,所以f(x)单调递增,又f(1)=a−1=0,所以f(x)有唯一零点,符合题意;当a>1时,1a <1,在(0,1a),(1,+∞)上,f′(x)>0,f(x)单调递增;在(1a,1)上,f′(x)<0,f(x)单调递减;此时f(1)=a−1>0,又f(1a n )=1a n−1−a n+n(a+1)lna,当n趋近正无穷大时,f(1a n)趋近负无穷,所以f(x)在(0,1a )有一个零点,在(1a,+∞)无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.11.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=ex+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.12.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x−lnx−b有两个不同的零点即x−lnx=b的解的个数为2.当b=1,由(1)讨论可得x−lnx=b、e x−x=b仅有一个零点,当b<1时,由(1)讨论可得x−lnx=b、e x−x=b均无零点,故若存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点,则b>1.设ℎ(x)=e x+lnx−2x,其中x>0,故ℎ′(x)=e x+1x−2,设s(x)=e x−x−1,x>0,则s′(x)=e x−1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x>x+1,所以ℎ′(x)>x+1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e−2>0,ℎ(1e3)=e1e3−3−2e3<e−3−2e3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e3<x 0<1且:当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−b x 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 13.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围; (3)设n ∈N ∗,证明:√12+1√22+2⋯√n 2+n>ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=x e ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=x e x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=x e ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +ax e ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a=12,则∀x>0,总有x e12x−e x+1<0成立,令t=e12x,则t>1,t2=e x,x=2lnt,故2tlnt<t2−1即2lnt<t−1t对任意的t>1恒成立.所以对任意的n∈N∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n+1)−lnn<√n2+n,故√12+1√22+2⋯√n2+n>ln2−ln1+ln3−ln2+⋯+ln(n+1)−lnn=ln(n+1),故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.14.【2022年北京】已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).【答案】(1)y=x(2)g(x)在[0,+∞)上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),由第二问结论可知m(x)在[0,+∞)上单调递增,即得证.(1)解:因为f(x)=e x ln(1+x),所以f(0)=0,即切点坐标为(0,0),又f′(x)=e x(ln(1+x)+11+x),∴切线斜率k=f′(0)=1∴切线方程为:y=x(2)解:因为g(x)=f′(x)=e x(ln(1+x)+11+x),所以g′(x)=e x(ln(1+x)+21+x−1(1+x)2),令ℎ(x)=ln(1+x)+21+x−1(1+x)2,则ℎ′(x)=11+x −2(1+x)2+2(1+x)3=x2+1(1+x)3>0,∴ℎ(x)在[0,+∞)上单调递增,∴ℎ(x)≥ℎ(0)=1>0∴g′(x)>0在[0,+∞)上恒成立,∴g(x)在[0,+∞)上单调递增.(3)解:原不等式等价于f(s+t)−f(s)>f(t)−f(0),令m(x)=f(x+t)−f(x),(x,t>0),即证m(x)>m(0),∵m(x)=f(x+t)−f(x)=e x+t ln(1+x+t)−e x ln(1+x),m′(x)=e x+t ln(1+x+t)+e x+t1+x+t −e x ln(1+x)−e x1+x=g(x+t)−g(x),由(2)知g(x)=f′(x)=e x(ln(1+x)+11+x)在[0,+∞)上单调递增,∴g(x+t)>g(x),∴m′(x)>0∴m(x)在(0,+∞)上单调递增,又因为x,t>0,∴m(x)>m(0),所以命题得证.15.【2022年浙江】设函数f(x)=e2x+lnx(x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1)),(x2,f(x2)),(x3,f(x3))处的切线都经过点(a,b).证明:(ⅰ)若a >e ,则0<b −f(a)<12(ae−1);(ⅱ)若0<a <e ,x 1<x 2<x 3,则2e+e−a 6e2<1x 1+1x 3<2a −e −a 6e2. (注:e =2.71828⋯是自然对数的底数)【答案】(1)f(x)的减区间为(0,e 2),增区间为(e 2,+∞). (2)(ⅰ)见解析;(ⅱ)见解析. 【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) k =x 3x 1,m =a e<1,则题设不等式可转化为t 1+t 3−2−2m<(m−13)(m 2−m+12)36m(t 1+t 3),结合零点满足的方程进一步转化为lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0,利用导数可证该不等式成立. (1)f ′(x)=−e 2x 2+1x=2x−e 2x 2,当0<x <e 2,f ′(x)<0;当x >e2,f ′(x)>0, 故f(x)的减区间为(0,e 2),f(x)的增区间为(e 2,+∞). (2)(ⅰ)因为过(a,b)有三条不同的切线,设切点为(x i ,f(x i )),i =1,2,3, 故f(x i )−b =f ′(x i )(x i −a),故方程f(x)−b =f ′(x)(x −a)有3个不同的根,该方程可整理为(1x −e 2x 2)(x −a)−e 2x −lnx +b =0, 设g(x)=(1x −e 2x 2)(x −a)−e 2x −lnx +b , 则g ′(x)=1x −e 2x 2+(−1x 2+e x 3)(x −a)−1x +e 2x 2 =−1x 3(x −e )(x −a),当0<x <e 或x >a 时,g ′(x)<0;当e <x <a 时,g ′(x)>0, 故g(x)在(0,e ),(a,+∞)上为减函数,在(e ,a)上为增函数,因为g(x)有3个不同的零点,故g(e )<0且g(a)>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b <0且(1a −e 2a 2)(a −a)−e2a −lna +b >0, 整理得到:b <a 2e+1且b >e2a +lna =f(a),此时b −f(a)−12(ae−1)<a2e+1−(e 2a +lna)−a2e+12=32−e 2a −lna , 设u(a)=32−e 2a −lna ,则u ′(a)=e -2a2a 2<0, 故u(a)为(e ,+∞)上的减函数,故u(a)<32−e 2e −ln e =0,故0<b −f(a)<12(ae−1).(ⅱ)当0<a <e 时,同(ⅰ)中讨论可得:故g(x)在(0,a),(e ,+∞)上为减函数,在(a,e )上为增函数, 不妨设x 1<x 2<x 3,则0<x 1<a <x 2<e <x 3, 因为g(x)有3个不同的零点,故g(a)<0且g(e )>0, 故(1e −e2e 2)(e −a)−e 2e−ln e +b >0且(1a −e 2a 2)(a −a)−e2a −lna +b <0, 整理得到:a2e+1<b <a 2e+lna ,因为x 1<x 2<x 3,故0<x 1<a <x 2<e <x 3, 又g(x)=1−a+e x+e a2x 2−lnx +b ,设t =ex ,a e=m ∈(0,1),则方程1−a+e x+e a2x 2−lnx +b =0即为: −a+e et +a2et 2+lnt +b =0即为−(m +1)t +m 2t 2+lnt +b =0,记t 1=e x 1,t 2=e x 2,t 3=e x 3, 则t 1,t 1,t 3为−(m +1)t +m 2t 2+lnt +b =0有三个不同的根, 设k =t1t 3=x3x 1>e a >1,m =a e<1,要证:2e+e−a 6e2<1x 1+1x 2<2a −e −a 6e2,即证2+e −a 6e<t 1+t 3<2ea−e −a6e,即证:13−m6<t 1+t 3<2m −1−m6,即证:(t 1+t 3−13−m6)(t 1+t 3−2m +1−m6)<0, 即证:t 1+t 3−2−2m <(m−13)(m 2−m+12)36m(t 1+t 3),而−(m +1)t 1+m 2t 12+lnt 1+b =0且−(m +1)t 3+m 2t 32+lnt 3+b =0,故lnt 1−lnt 3+m 2(t 12−t 32)−(m +1)(t 1−t 3)=0,故t 1+t 3−2−2m =−2m ×lnt 1−lnt 3t 1−t 3,故即证:−2m ×lnt 1−lnt 3t 1−t 3<(m−13)(m 2−m+12)36m(t 1+t 3),即证:(t 1+t 3)ln t 1t 3t 1−t 3+(m−13)(m 2−m+12)72>0即证:(k+1)lnk k−1+(m−13)(m 2−m+12)72>0,记φ(k)=(k+1)lnk k−1,k >1,则φ′(k)=1(k−1)2(k −1k −2lnk)>0,设u(k)=k −1k −2lnk ,则u ′(k)=1+1k 2−2k >2k −2k =0即φ′(k)>0, 故φ(k)在(1,+∞)上为增函数,故φ(k)>φ(m), 所以(k+1)lnk k−1+(m−13)(m 2−m+12)72>(m+1)lnm m−1+(m−13)(m 2−m+12)72,记ω(m)=lnm +(m−1)(m−13)(m 2−m+12)72(m+1),0<m <1,则ω′(m)=(m−1)2(3m 3−20m 2−49m+72)72m(m+1)2>(m−1)2(3m 3+3)72m(m+1)2>0,所以ω(m)在(0,1)为增函数,故ω(m)<ω(1)=0, 故lnm +(m−1)(m−13)(m 2−m+12)72(m+1)<0即(m+1)lnm m−1+(m−13)(m 2−m+12)72>0,故原不等式得证: 【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.1.(2022·全国·南京外国语学校模拟预测)设函数()f x 在R 上存在导数()f x ',对于任意的实数x ,有()()22f x f x x +-=,当(],0x ∈-∞时,()42f x x '+<,若()()2422f m f m m m +++≤-,则实数m 的取值范围是( ) A .[)1,2 B .(](),12,-∞+∞ C .[)2,2-D .(](),12,-∞-+∞【解析】 【分析】构造函数()()24g x f x x x =-+,得到()g x 为奇函数,()g x 在R 上单调递减,分20m -<和20m ->两种情况,利用奇偶性和单调性解不等式,求出实数m 的取值范围.【详解】∵()42f x x '+<,∵()420f x x '+-<.令()()24g x f x x x =-+,且()()24g x f x x ''=-+,则()g x 在(],0-∞上单调递减.又∵()()22f x f x x +-=,∵()()()()2244g x g x f x x x f x x x +-=-++---=()()220f x f x x +--=,∵()g x 为奇函数,()g x 在R 上单调递减. ∵()()2422f m f m m m +++≤-,∵()()2242402f m f m m m m +++-+≤-.当20m -<,即2m <时,()()224240f m f m m m +++-+≥,即()()()()2222424f m m m f m m m ⎡⎤+-+++≥--+⎣⎦即()()2g m g m +≥-,由于()g x 在R 上递减,则2m m +≤-, 解得:1m ≤-, ∵1m ≤-.当20m ->,即2m >时,()()224240f m f m m m +++-+≤,即()()2g m g m +≤-.由()g x 在R 上递减,则2m m +≥-, 解得:1m ≥-,所以2m >.综上所述,实数m 的取值范围是(](),12,-∞-+∞.【点睛】构造函数,研究出构造的函数的奇偶性和单调性,进而解不等式,是经常考查的一类题目,结合题干信息,构造出函数是关键.2.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e x g x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e x g x x =+,其中x ∈R ,则()e 10xg x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减,所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D. 【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键就是将所求不等式进行转化,通过不等式的结构构造新函数,结合新函数的单调性来求解.3.(2022·江苏无锡·模拟预测)已知13e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x =≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===,显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·福建·三明一中模拟预测)己知e 为自然对数的底数,a ,b 均为大于1的实数,若1e ln a a b b b ++<,则( )A .1e a b +<B .1e a b +>C .e ab <D .e ab >【答案】B 【解析】 【分析】由题意化简得到e ln e ln e e a a b b <,设()ln f x x x =,得到(e )()eab f f <,结合题意和函数()f x 的单调性,即可求解. 【详解】由1e ln a a b b b ++<,可得1eln (ln 1)ln ea b a b b b b b b +<-=-=,即e ln e ln e e a a b b<,设()ln f x x x =,可得(e )()eab f f <,因为0a >,可得e 1a >,又因为(ln 1)0,0b b b ->>,所以ln 1b >,即e b >,所以1eb>, 当1x >时,()ln 10f x x '=+>,可得函数()f x 在(1,)+∞为单调递增函数,所以e eab<,即1e a b +>. 故选:B.5.(2022·河南·开封市东信学校模拟预测(文))已知函数e ()e ln 2xf x x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .e 2e 0x y +-= B .e e 02x y +=- C .e 2e 0x y --= D .e 2e 0x y ++=【答案】B 【解析】 【分析】根据导数的几何意义及点斜式方程即可求解. 【详解】 ∵e ()e 2x f x x ='-,∵e e (1)e 22f '=-=. 又1e (1)e ln12e f =-⨯=,切点为(1,e)所以曲线()y f x =在点(1,(1))f 处的切线的斜率为e (1)2k f '==, 所以曲线()y f x =在点(1,(1))f 处的切线方程为 ee (1)2y x -=-,即e e 02x y +=-. 故选:B.6.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<-B .3n m >-C .0n <D .30n m <=-【答案】A 【解析】 【分析】设切点为()3,t t -,根据导数的几何意义写出切线的方程,代入点()(),0m n m <,转化为方程有3个根,构造函数()3223g t t mt n =--,利用导数可知函数的极值,根据题意列出不等式组求解即可. 【详解】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A7.(2022·全国·模拟预测(理))若关于x 的方程22e ln (eln )0()x a x x x a ++=∈R 有两个不相等的实数根,则a 的取值范围是( ) A .(,2)(2,)-∞-+∞ B .(,2][2,)-∞-+∞ C .(2,2)- D .[2,2]-【答案】A 【解析】 【分析】首先判断1x =不是方程的根,再方程两边同除以2(eln )x ,即可得到210eln eln x x a x x ⎛⎫++= ⎪⎝⎭,令()eln xf x x=,利用导数说明函数的单调性,即可得到函数的图象,令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,对∆分类讨论,结合函数图象即可得解;【详解】解:当1x =时等式显然不成立,故1不是方程的根,当1x ≠时,将22e ln (eln )0x a x x x ++=的两边同除以2(eln )x ,可得210eln eln x x a x x ⎛⎫++= ⎪⎝⎭, 令()eln x f x x =,则0x >且1x ≠,所以()2ln 1eln x f x x-'=, 所以当01x <<和1e x <<时()0f x '<,当e x >时()0f x '>,即()f x 在()0,1和()1,e 上单调递减,在()e,+∞上单调递增,且()e 1f =, 函数()f x 的图象如下所示:令()t f x =,设方程210t at ++=的两根分别为1t 、2t ,24a ∆=-, ①当∆<0时,方程无解,舍去;②当0∆=时,2a =±,若2a =,则1t =-,由图可得()1f x =-有且仅有一个解,故舍去, 若2a =-,则1t =,由图可得()1f x =有且仅有一个解,故舍去, ③当0∆>时,2a >或2a <-,若2a >,由120t t a +=-<,1210t t ⋅=>,所以10t <,10t <由图可得()1f x t =与()2f x t =各有一个解,符合题意,若2a <-,由122t t a +=->,1210t t ⋅=>,可设210t t >>,()10,1t ∈,()21,t ∈+∞, 由图可得()1f x t =无解,()2f x t =有两个解,符合题意, 综上可得a 的取值范围为(,2)(2,)-∞-+∞; 故选:A8.(2022·河南安阳·模拟预测(理))已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( )A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立,整理得()213(ln )a x x -≤,当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方,结合图像分析处理.【详解】根据题意得()(1)f x f ≤当21,e x ⎡⎤∈⎣⎦时恒成立则23(ln )x ax a -+≤,即()213(ln )a x x -≤∵当21,e x ⎡⎤∈⎣⎦时,()1y a x =-在()23(ln )g x x =图像的下方 ()6ln xg x x'=,则()10g '=,则0a ≤ 故选:B .9.(2022·河南开封·模拟预测(理))若关于x 的不等式ln ln 0e x x a a xx+->对()0,1x ∀∈恒成立,则实数a 的取值范围为( ) A .1,e ⎛⎤-∞ ⎥⎝⎦B .1e ,⎡⎫+∞⎪⎢⎣⎭C .1,1e ⎡⎫⎪⎢⎣⎭D .10,e ⎛⎤ ⎥⎝⎦【答案】B 【解析】 【分析】由题设有ln e ln e x x a xa x>,构造ln ()x f x x =,利用导数研究其单调性及值域,将问题转化为e x a x >在0,1上恒成立,再构造()ex xg x =结合导数求参数范围.【详解】由题设可得ln e ln e xx a xa x>,令ln ()x f x x =,则(e )()x f a f x >在0,1上恒成立, 由21ln ()xf x x -'=,在()0,e 上()0f x '>;在()e,+∞上()0f x '<;所以()f x 在()0,e 上递增;在()e,+∞上递减,且(1)0f =, 在0,1上()0f x <,(1,)+∞上()0f x >,而0a >, 所以,只需e x a x >在0,1上恒成立,即e xxa >恒成立, 令()e x x g x =,则1()0e x x g x -'=>,即()g x 在0,1上递增,故1(1)e a g ≥=. 故a 的取值范围为1e ,⎡⎫+∞⎪⎢⎣⎭.故选:B 【点睛】。
2023年高考备考导数与放缩法综合应用(含答案)
高考材料高考材料专题13 导数与放缩法综合应用一、解答题1.〔2023·全国·高三专题练习〕已知函数. ()1ln xf x x x=+〔1〕假设时,,求实数的取值范围; 1≥x ()1mf x x ≥+m 〔2〕求证:.()()2*11ln ln 11nk n n k k n N n =--++>∈⎡⎤⎣⎦+∑(答案)〔1〕;〔2〕证明见解析. 2m ≤(解析) (分析)〔1〕先别离参数转化为求函数的最小值,通过求导函数,进而分析单调性再求得最小值得出结果; 〔2〕由〔1〕知:恒成立,即,则累加后结合放缩法即可证明命题. ()21f x x ≥+2ln 1>-x x ()22ln 111+>-+⎡⎤⎣⎦+n n n n (详解)解:〔1〕不等式,即为,()1m f x x ≥+()()11ln x x m x++≤记,()()()11ln x x g x x++=故, ()()()()()'2211ln 11ln ln x x x x x x x g x x x ⎡⎤++-++-='⎣⎦=令,则, ()ln h x x x =-()11h x x'=-∵,∴在单调递增, 1≥x ()()0,h x h x '≥[)1,+∞故,故, ()()min 110h x h ==>()0g x '>故在上单调递增, ()g x [)1,+∞故,故; ()()min 12g x g ==2m ≤〔2〕由〔1〕知:恒成立, ()21f x x ≥+即, 122ln 1112x x x x x-≥=->-++令,则,()1x n n =+()()222ln 11111+>-=-+⎡⎤⎣⎦++n n n n n n 故,()()2222ln 121,ln 2311223⨯>-+⨯>-+, ()()2222ln 341,,ln 11341⨯>-++>-+⎡⎤⎣⎦+ n n n n 累加得:,()21111ln ln 1212111nk n n k k n n n n n =--⎛⎫++>-->-+=⎡⎤ ⎪⎣⎦+++⎝⎭∑故. ()()2*11ln ln 11nk n n k k n N n =--++>∈⎡⎤⎣⎦+∑2.〔2023·上海·闵行中学高三开学考试〕定义在上的函数满足:假设对任意的实数,有R ()f x x y ≠,则称为函数.()()y x x f f y -<-()f x L 〔1〕推断和是否为函数,并说明理由; ()21f x x =+()211g x x =+L 〔2〕当时,函数的图像是一条连续的曲线,值域为,且,求证:关于的方程[],x a b ∈L ()f x G [],G a b ⊆x ()f x x =在区间上有且只有一个实数根;[],a b 〔3〕设为函数,且,定义数列:,,证明:对任意,有()f x L ()33f ={}()n a n *∈N 11a =()()112n n n a f a a +=+n *∈N .13n n a a +<<(答案)〔1〕不是函数,是函数,理由见解析;〔2〕证明见解析;〔3〕证明见解析. ()f x L ()g x L (解析) (分析)(1)利用给定定义结合已知函数式直接验证即可得解;(2)构造函数,利用零点存在性定理及反证法即可得解;()(),[,]h x f x x x a b =-∈(3)依据给定条件,先证得,然后利用数学归纳法证明对任意正整数成立. 123a a <<13n n a a +<<(详解)(1),,12,R x x ∀∈12x x ≠,显然值可以趋近于正无穷大,即不成立,2212121212|()()|||||||f x f x x x x x x x -=-=+⋅-12||x x +1212|()()|||f x f x x x -<-所以函数不是函数;()f x L , 12121222221212||11|()()|||||11(1)(1)x x g x g x x x x x x x +-=-=⋅-++++而,则恒成立, ()()()()()2222121212122222222212121212111111222111111x x x x x x x x x x x x x x x x +++++++≤≤=<++++++++1212|()()|||g x g x x x -<-所以函数是函数;()g x L (2)令,显然的图象是上的一条连续曲线,而值域为,且, ()(),[,]h x f x x x a b =-∈()h x [,]a b ()f x G [],G a b ⊆于是得,,由零点存在性定理知,方程在内有实根,()()0h a f a a =-≥()()0h b f b b =-≤()0h x =[,]a b 假设在内有两个不同的实根,则有,即, ()()0h x f x x =-=[,]a b 34,x x 3344(),()f x x f x x ==3434|()()|||f x f x x x -=-而函数是函数,对上述的,必有与矛盾, ()f x L 34,x x 3434|()()|||f x f x x x -<-3434|()()|||f x f x x x -=-所以关于的方程在区间上有且只有一个实数根;x ()f x x =[],a b高考材料高考材料(3)因函数是函数,又,,于是得,即, ()f x L ()33f =11a =11|()(3)||3|2f a f a -<-=11()5f a <<,从而有,2111[()](1,3)2a f a a =+∈123a a <<用数学归纳法证明不等式:,, 13n n a a +<<n *∈N ①当时,不等式显然成立,1n =②假设时,不等式成立,即,,N n k k *=∈13k k a a +<<,即有,则, ()()()()11113333k k k k f a f f a f a a ++++-≤-<-=-()()11336k k f a a f +++<+=()211132k k k a f a a +++⎡⎤=+<⎣⎦又,即, ()()()()1111k k k k k k k k f a f a f a f a a a a a ++++-≤-<-=-()()11k k k k f a a f a a +++<+则,即, ()()111122k k k k f a a f a a ++⎡⎤⎡⎤+<+⎣⎦⎣⎦12k k a a ++<从而得,即时,不等式成立, 123k k a a ++<<1n k =+综合①②得,对任意,有.n *∈N 13n n a a +<<3.〔2023·宁夏·银川一中三模〔理〕〕已知函数,其中 21()e 2xf x k x =-.k ∈R (1)假设有两个极值点,记为 ()f x 1212,(),x x x x <①求的取值范围; k ②求证:; 122x x +>(2)求证:对任意恒有 ,n *∈N 22212112 1.23e (1)e (1)ek n k n k n --+++++<++ (答案)(1)①;② 证明见解析; 10e<<k (2)证明见解析. (解析) (分析)〔1〕① 由题得有两个变号零点,设求出函数的单调性即得解;② 利用极值点偏移的方法证明; e x x k =(),e xxg x =〔2〕证明,再利用裂项相消求和即得证.21e 11(1)1n n n n n -<-++(1)解:〔1〕由题得有两个变号零点, ()e 0x f x k x '=-=所以有两个变号零点, e xxk =设 1(),(),e e x xx xg x g x -'=∴=当时,函数单调递增,当时,函数单调递减,1x <()g x 1x >()g x当时,,当时,,, 0x <()0g x <0x >()0>g x 1(1)eg =所以. 10e<<k (2)设, ()()(2),(1)h x g x g x x =-->所以, 211()()[(2)]=0,(1)e ex x x xh x g x g x x ---'''=--+>>所以在单调递增,又, ()h x (1,)+∞(1)0h =所以 又, ()(2),g x g x >-121x x <<所以22()(2),g x g x >-所以 因为,所以. 12()(2),g x g x >-221x -<12122,+2x x x x >-∴>(2)证明:由〔1〕知,所以 1,e e x x ≤11,e x x-≤所以对任意恒有, ,n *∈N 2121111(1)e (1)(1)1n n n n n n n n -≤<=-++++所以 2221211211111(1()()23e (1)e (1)e 2231k n k n k n n n --+++++<-+-++-+++ 所以. 2221211211123e (1)e (1)e 1k n k n k n n --+++++<-<+++ 4.〔2023·全国·高三专题练习〕已知函数. ()2()ln 12xf x x x =+-+〔1〕证明:时,; 0x >()0f x>〔2〕证明:1113521n ++⋅⋅⋅+<+(答案)〔1〕证明见解析;〔2〕证明见解析. (解析)〔1〕由,即在定义域内为增函数,即可证明结论. 22()0(1)(2)x f x x x '=>++()f x 〔2〕依据〔1〕结论,令可得,将所得的n 个式子相加,结合对数运算性质、放缩法即可1x n =21ln 21n n n+<+*n N ∈证不等式. (详解)〔1〕时,, 0x >22214()01(2)(1)(2)x f x x x x x '=-=>++++故为增函数,; ()f x ()()00f x f >=〔2〕由〔1〕知:, 2ln(1)2xx x +>+令时,有, 1x n =12121ln 1ln 1212n n n n n n⋅+⎛⎫<+⇒< ⎪+⎝⎭+高考材料高考材料故,,…,, 22ln 31<23ln 52<21ln 21n n n+<+将式相加得:,n 222231ln ln ln 352112n n n ++++<++++ 231ln ln(1)12n n n +⎛⎫=⋅=+ ⎪⎝⎭ ∴. 1111ln(1)35212n n +++<+=+ 5.〔2023·云南师大附中高三阶段练习〔文〕〕已知函数.()ln f x x =〔1〕证明:当时,恒成立;2x >()2532xf x x -+<<〔2〕设数列的通项公式为,记为的前项和,求证:.{}n a 2222n a f n n ⎛⎫=+ ⎪+⎝⎭n S {}n a n 213364n n S n +<<+〔参考数据:〕 2.71828e = 1.41421= (答案)〔1〕证明见解析;〔2〕证明见解析. (解析) (分析)〔1〕构造函数,利用导数得出,可证得成立,构造函数()()253g x f x x =+-()()20g x g >>()253f x x >-+,利用导数得出可证得,综合可证得结论成立; ()()2x h x f x =-()()20h x h <<()2xf x <〔2〕由〔1〕中的结论可得出,利用放缩法得出,22225112132n n n a n n n n +-+<<++++211111131222n a n n n n ⎛⎫+-<<+- ⎪+++⎝⎭结合裂项求和法可证得结论成立. (详解)证明:〔1〕令,可得, ()()2525ln 33g x f x x x x =+-=+-()22122x g x x x x-'=-=当时,,所以,函数在上单调递增.2x >()0g x '>()g x ()2,+∞又,而,,,()22ln 23g =-22ln 2332e e e -=-328=3223e e ⎛⎫= ⎪⎝⎭2.83e =≈>,在上恒成立. ()22ln 203g ∴=->()253f x x >-+()2,+∞令,则, ()()ln 22x x h x f x x =-=-()11222xh x x x-'=-=当时,,所以,函数在上单调递减. 2x >()0h x '<()h x ()2,+∞又,在上恒成立. ()2ln 21ln 2ln 0h e =-=-<()2xf x ∴<()2,+∞综上,当时,恒成立;2x >()2532xf x x -+<<〔2〕,而,22222ln 222n a f n n n n ⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭ 22222n n +>+所以令〔1〕中不等式的, 2222242222n n x n n n n++=+=++由〔1〕可得,22225112132n n n a n n n n+-+<<++++则一方面,, ()()()()()222221125521212133331211n n n n a n n n n n n +-+>-+=-=+>+++++++211312n n =+-++, 211111121121121323341232232336n S n n n n n n n ⎛⎫∴>+-+-++-=+->+-=+ ⎪+++⎝⎭ 另一方面,,()111111222n a n n n n ⎛⎫<+=+- ⎪++⎝⎭, 111111111111232422212n S n n n n n n ⎛⎫⎛⎫∴<+-+-++-=++-- ⎪ ⎪+++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭综上,有.213364n n S n +<<+6.〔2023·四川省宜宾市第四中学校高三阶段练习〕已知函数,满足:①对任意,都有(),y f x x N +=∈,a b N +∈;()()()()af a bf b af b bf a +>+②对任意都有. *n N ∈[()]3f f n n =〔1〕试证明:为上的单调增函数; ()f x +N 〔2〕求;(1)(6)(28)f f f ++〔3〕令,试证明:(3),nn a f n N +=∈121111.424n n n a a a <+++<+ (答案)〔1〕证明见解析;〔2〕66;〔3〕证明见解析. (解析) (分析)〔1〕对①中等式变形,利用定义法推断出的单调性;()f x 〔2〕先假设,依据条件确定出的值,即可求解出的值,再结合〔1〕的单调性确定出的()1f a =a ()()1,6f f ()28f 值,由此计算出结果;〔3〕依据条件推断出为等比数列并求解出通项公式,利用不等式以及二项展开式采纳放缩方法证明不等式. {}n a (详解)解:〔1〕 由①知,对任意,都有 , *,,a b N a b ∈<()(()())0a b f a f b -->由于,从而,所以函数为上的单调增函数;0a b -<()()f a f b <()f x *N 〔2〕令,则,显然,否则,与矛盾. ()1f a =1a …1a ≠()()()111f f f ==()()13f f =从而,而由,即得. 1a >((1))3f f =()3f a =又由〔1〕知,即.()(1)f a f a >=3a <于是得,又,从而,即.13a <<*a N ∈2a =()12f =高考材料高考材料又由知. ()3f a =()23f =于是,(3)((2))326f f f ==⨯=,, (6)((3))339f f f ==⨯=(9)((6))3618f f f ==⨯=,, (18)((9))3927f f f ==⨯=(27)((18))31854f f f ==⨯=, 由于,(54)((27))32781f f f ==⨯=5427815427-=-=而且由〔1〕知,函数为单调增函数,因此. ()f x (28)54155f =+=从而.(1)(6)(28)295566f f f ++=++=〔3〕,()()()13333n n n n f a f f +==⨯=,. ()()()()1133n n n n a f f f f a a ++===1(3)6a f ==即数列是以为首项,以为公比的等比数列. {}n a 63∴16323(1,2,3)n n n a n -=⨯=⨯= 于是,显然, 21211(1)111111111133((1)1233324313n n n n a a a -+++=+++=⨯=--1111434n ⎛⎫-< ⎪⎝⎭另一方面,1223(12)122212n n n nn n n C C C n =+=+⨯+⨯++⨯>+ 从而. 1111114342142nn n n ⎛⎫⎛⎫->-=⎪ ⎪++⎝⎭⎝⎭综上所述,. 121111424n n n a a a <+++<+ 7.〔2023·安徽省霍邱县第二中学高三开学考试〔理〕〕已知函数 . ()ln 3f x a x ax =--(0)a ≠〔1〕商量的单调性;()f x 〔2〕假设对任意恒成立,求实数的取值范围〔为自然常数〕; ()(1)40f x a x e +++-≤2[,]x e e ∈a e 〔3〕求证:. 22221111ln(1)ln(1)ln(1)...ln(1)1234n++++++++<*(2,)n n ≥∈N (答案)〔1〕答案见解析;〔2〕;〔3〕证明见解析.212e e a --≤(解析)〔1〕求导得到 ,然后分和两种求解商量求解. '(1)()a x f x x-=0a >0a <〔2〕令,求导得到,令,得到()ln 3(1)4ln 1F x a x ax a x e a x x e =--+++-=++-'()a x F x x +='()0a x F x x+==x a =-,然后分,和三种情况商量求解.a e -≤2a e -≥2e a e <-<〔3〕令得到,则,由〔1〕知在上单调递增,则有1a =-()ln 3f x x x =-+-(1)2f =-()ln 3f x x x =-+-[1,)+∞即对一切成立, 从而,然后利用裂项相消法求解. ()(1)f x f >ln 1x x <-(1,)x ∈+∞2211111ln(1)(1)1n n n n n n+<<=---(详解)〔1〕函数的定义域为 , , ()0+∞,'(1)()a x f x x-=当时,的单调增区间为,单调减区间为; 0a >()f x (0,1][1,)+∞当时,的单调增区间为,单调减区间为; 0a <()f x [1,)+∞(0,1]〔2〕令,()ln 3(1)4ln 1F x a x ax a x e a x x e =--+++-=++-则,令,则 '()a x F x x +='()0a x F x x+==x a =- 〔a 〕假设,即 则在是增函数, a e -≤a e ≥-()F x 2[,]e e 无解.22max ()()210F x F e a e e ==++-≤〔b 〕假设即,则在是减函数,2a e -≥2a e ≤-()F x 2[,]e e 所以max ()()10F x F e a ==+≤1a ≤-2a e ≤-〔c 〕假设,即,在是减函数, 在是增函数,2e a e <-<2e a e -<<-()F x [,]e a -2[,]a e -可得, 可得22()210F e a e e =++-≤212e e a --≤()10F e a =+≤1a ≤-所以 2212e e e a ---≤≤综上所述 212e e a --≤〔3〕令〔或〕此时,所以, 1a =-1a =()ln 3f x x x =-+-(1)2f =-由〔1〕知在上单调递增,()ln 3f x x x =-+-[1,)+∞∴当时,即,∴对一切成立, (1,)x ∈+∞()(1)f x f >ln 10x x -+->ln 1x x <-(1,)x ∈+∞∵,则有, *2,n n N ≥∈2211111ln(1)(1)1n n n n n n+<<=---所以 22221111ln(1)ln(1)ln(1)...ln(1)234n ++++++++.1111111(1)(()...(223341n n <-+-+-+--111n=-<8.〔2023·四川·石室中学高三期末〕已知函数的图象上有一点列,点在()()()3log 101x f x x x +=>+()(),n n n P x y n N *∈n P x轴上的射影是,且〔且〕,. (),0n n Q x 132n n x x -=+2n ≥n *∈N 12x =〔1〕求证:是等比数列,并求出数列的通项公式;{}1n x +{}n x 〔2〕对任意的正整数,当]时,不等式恒成立,求实数的取值范围; n []1,1m ∈-21363n t mt y -+>t 〔3〕设四边形的面积是,求证:. 11n n n n P Q Q P ++n S 1211132nS S nS +++< (答案)〔1〕证明见解析,;〔2〕;〔3〕证明见解析.31nn x =-()(),22,-∞-+∞ (解析)高考材料高考材料(分析)〔1〕利用等比数列的定义可证得数列为等比数列,确定该数列的首项和公比,可求得数列的通项公式; {}1n x +{}n x 〔2〕求得,利用数列单调性求得数列的最大项为,由题意可知,]时,不等式3n n n y ={}n y 113y =[]1,1m ∈-恒成立,设,依据题意可知关于实数的不等式组,由此可解得实数的取值范围;220t mt ->()22g m mt t =-+t t 〔3〕求得,进而可求得,利用放缩法可得,进而可证得所证不等式成立. 3n n n nP Q =413nn S +=11131n nS n n ⎛⎫<- ⎪+⎝⎭(详解)〔1〕当且时,,则,且, 2n ≥n *∈N 132n n x x -=+111133311n n n n x x x x ---++==++113x +=所以,数列是以为首项,以为公比的等比数列,{}1n x +33,则;11333n n n x -∴+=⨯=31n n x =-〔2〕, ()()33log 1log 3133n n n n n n n x ny f x x +====+则,所以,数列单调递减, 1111120333n n n n n n n ny y ++++--=-=<{}n y 所以,数列的最大项为,可知对任意的,, {}n y 113y =n *∈N 21363n t mt y -+>则,化简得, 2113633t mt -+>220t mt ->当]时,不等式恒成立,[]1,1m ∈-220t mt ->设,则,解得或. ()22g m mt t =-+()()22120120g t t g t t ⎧-=+>⎪⎨=->⎪⎩2t <-2t >因此,实数的取值范围是;t ()(),22,-∞-+∞ 〔3〕由〔2〕可得,则, 3n n n nn P Q y ==11113n n n n P Q ++++=所以,,()()()1111111131312233n nn n n n n n n n n n n S x x P Q P Q ++++++⎛⎫=-+=⨯---⋅+ ⎪⎝⎭413n +=, ()()()113121111121241414414414443n n n nS n n n n n n n n ⎛⎫⎛⎫====-<- ⎪ ⎪+++++⎝⎭⎝⎭1131n n ⎛⎫=- ⎪+⎝⎭因此,.121111111113133313222311n S S nS n n n ⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-++-=-< ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ 故所证不等式成立. (点睛)此题考查等比数列定义的证明,同时也考查了数列不等式恒成立以及数列不等式的证明,考查推理能力与计算能力,属于中等题.9.〔2023·山东·模拟预测〕已知函数.()2ln(2)2f x x x =--〔1〕求证:有且仅有2个零点;()f x 〔2〕求证:. ()22*1ln (1)(21)2(2,1)nk k n n N n n n k=-++≥∈∑<(答案)〔1〕证明见解析;〔2〕证明见解析. (解析) (分析)〔1〕先求出函数的单调区间,得到在上存在唯—零点,在上存在唯—的零点,即得有且()f x 1,2⎛⎫+∞ ⎪⎝⎭()f x 10,2⎛⎫ ⎪⎝⎭()f x 仅有2个零点;〔2〕设,,证明, 令,得,得到,()ln 1g x x x =-+0x >ln 11x x x ≤-()2*x k k N =∈222ln 11k k k≤-222ln11111≤-,,…,,相加化简即得. 222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-()21*2ln (1)(21)22,(1)ni n n N k n n kn =≥+<+∈-∑(详解)解:〔1〕由题意,函数的定义域为. ()f x (0,)+∞则. 121()2x f x x x-'=-=令,得, ()0f x '=12x =当时,,单调递减;10,2⎛⎫∈ ⎪⎝⎭x ()0f x '<() f x 当时,,单调递增,1,2⎛⎫∈+∞ ⎪⎝⎭x ()0f x '>()f x 所以在处取得极小值,且极小值为, ()f x 12x =112102f ⎛⎫=-=-< ⎪⎝⎭而,故在上存在唯—零点,22222224202e f e e e ⎛⎫=--=-=-> ⎪⎝⎭()f x 1,2⎛⎫+∞ ⎪⎝⎭因为,,故在上存在唯—的零点, 2221112202f e ee ⎛⎫=+-=> ⎪⎝⎭102f ⎛⎫< ⎪⎝⎭()f x 10,2⎛⎫⎪⎝⎭综上所述,有且仅有2个零点. ()f x 〔2〕 设,, ()ln 1g x x x =-+0x >则,可得当时,单调递增, 11()1xg x x x-'=-=(0,1)x ∈()g x 当时,单调递减,所以,所以. (1,)x ∈+∞()(1)0g x g ≤=ln 1≤-x x 即〔当且仅当时,取等号〕. ln 11x x x≤-1x =令,得〔,当且仅当时,取等号〕 ()2*x k k N =∈222ln 11k k k≤-*N k ∈1k =所以依次令,得到1,2,3,,k n =⋯,,,…, 222ln11111≤-222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-高考材料高考材料所以222222222222ln1ln 2ln3ln 11111111123123n n n++++-+-+-++-……22211111111232334(1)n n n n n ⎡⎤⎛⎫=--+++--+++ ⎪⎢⨯⨯+⎝⎭⎣⎦…<…111111123341n n n ⎛⎫=---+-++- ⎪+⎝⎭…11121n n ⎛⎫=--- ⎪+⎝⎭(1)(21)2(1)n n n -+=+即 ()21*2ln (1)(21)22,(1)ni n n N k n n kn =≥+<+∈-∑10.〔2023·浙江·效实中学模拟预测〕已知为定义在上的奇函数,且当时,取最大值为1. ()2ax bf x x c+=+R 1x =()f x 〔1〕写出的解析式. ()f x 〔2〕假设,,求证 112x =()1n n x f x +=〔ⅰ〕;1n n x x +>〔ⅱ〕. ()()()2221223112231516n n n n x x x x x x x x x x x x ++---++⋅⋅⋅+<(答案)〔1〕;〔2〕〔ⅰ〕证明见解析;〔ⅱ〕证明见解析. ()221xf x x =+(解析) (分析)〔1〕先利用求出,再依据当时,取最大值为1可求出,从而得到的解析式. ()0f b 1x =()f x ,a c ()f x 〔2〕先利用数学归纳法证明,从而可证.再依据可得,利用根本不等式可证()0,1n x ∀∈1n n x x +>112x =112n x ≤<,再利用裂项相消法可证原不等式成立,也可以利用导数证明,从而得到,利1516n n x x +-<323110n n n x x x -≤+1310n n x x +-≤用裂项相消法可证原不等式成立. (详解)〔1〕因为的定义域为,得,又为奇函数, ()2ax bf x x c +=+R 0c >()f x 所以,得;又,所以. ()00b f c ==0b =()111af c==+10a c =+>当时,.0x ≤()()210c x f x x c+=≤+当时,,当且仅当0x >()()211c x c f x c x cx x++==≤++x =也就是当,x =()max f x =1==所以,,即的解析式为, 1c =2a =()f x ()221xf x x =+此时,为奇函数,故的解析式为. ()()221x f x f x x -=-=-+()f x ()f x ()221xf x x =+〔2〕〔ⅰ〕先证明, ()0,1n x ∀∈当时,,符合; 1n =()110,12x =∈设当时,有, n k =()0,1k x ∈则当时,因为,故. 1n k =+1221kk k x x x +=+10k x +>又,故,故.()2121011k k kx x x +-=-<+-11k x +<()10,1k x +∈ 由数学归纳法可知.()0,1n x ∀∈因为,故. ()231222120111n n n n nn n n n n n x x x x x x x x x x x +---=-==>+++1n n x x +>〔ⅱ〕法一〔根本不等式+裂项相消〕:因为,所以, 01n x <<()()()3122211111141n n n nn n n n n n n x x xx x x x x x x x +++--==-⋅≤⋅+++又因为, 21121121n n n n x x x x +=+++-+115416n n x x +-≤=<所以,()()211111151116n n n n n n n n n n n n x x x x x x x x x x x x ++++++-⎛⎫-=-⋅<- ⎪⎝⎭所以()()()222122311223112231151111115121616nn n n n n n x x x x x x x x x x x x x x x x x x x ++++---⎛⎫⎛⎫++⋅⋅⋅+<-+-+⋅⋅⋅+-=- ⎪ ⎪⎝⎭⎝⎭由〔ⅰ〕可知,,所以,得. 1112n x +≤<151521616n x +⎛⎫-< ⎪⎝⎭()()()2221223112231516n n n n x x x x x x x x x x x x ++---++⋅⋅⋅+<法二〔函数的值域+裂项相消〕:因为,所以,由〔ⅰ〕可知,,设, 01n x <<3121n n n n n x x x x x +--=+1112n x +≤<()321x x g x x -=+112x ⎛⎫≤< ⎪⎝⎭所以()()()()()2232213121x x x x x g x x -+--'=+,()()()()()()222322222121252011x x x x x x x x -+---+==<++高考材料高考材料得在时单调递减,所以,得;()g x 1112n x +≤<()13210g x g ⎛⎫≤= ⎪⎝⎭1310n n x x +-≤所以,()()211111131110n n n n n n n n n n n n x x x x x x x x x x x x ++++++-⎛⎫-=-⋅≤- ⎪⎝⎭由〔ⅰ〕可知,,()()()222122311223112231131111113121010nn n n n n n x x x x x x x x x x x x x x x x x x x ++++---⎛⎫⎛⎫++⋅⋅⋅+≤-+-+⋅⋅⋅+-=- ⎪ ⎪⎝⎭⎝⎭1112n x +≤<所以, 1121n x +-<,证毕. ()()()2221223112231131352101016nn n n n x x x x x x x x x x x x x +++---⎛⎫++⋅⋅⋅+≤-<< ⎪⎝⎭11.〔2023·全国·高三课时练习〕已知函数,其中. 2()ln f x a x x =+a R ∈〔1〕商量的单调性;()f x 〔2〕当时,证明:;1a=2()1f x x x ≤+-〔3〕求证:对任意的且,都有:.*n N ∈2n …222211*********e n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭〔其中为自然对数的底数〕.2.7183e ≈(答案)〔1〕当时,函数在上调递增;当时,函数在上单调递减,在0a ≥()f x (0,)+∞0a <()f x ⎛ ⎝⎫+∞⎪⎪⎭上单调递增;〔2〕证明见解析;〔3〕证明见解析. (解析) (分析)〔1〕求出导函数,按照和商量,确定的正负,得的单调区间;()'f x 0a ≥0a <()'f x ()f x 〔2〕不等式即为,即.引入函数,由导数确定其最大值后可证结论. ln 1≤-x x ln 10x x -+≤()ln 1g x x x =-+〔3〕关键是如何应用刚刚所证得的函数不等式,由〔2〕,令,让,这些不等式相加ln 1x x <-211x k =+2,3,,k n = 后右边利用放缩法证明和式,可得证结论. 1<(详解)解:〔1〕函数的定义域为,,()f x (0,)+∞22()2a a xf x x x x'+=+=①当时,,所以在上单调递增,a ≥()0f x '>()f x (0,)+∞②当时,令,解得0a <()0fx '=x =当,所以,所以在上单调递减; 0x <<220a x +<()0f x '<()f x ⎛ ⎝当,所以,所以在上单调递增. x >220a x +>()0f x '>()f x ⎫+∞⎪⎪⎭综上,当时,函数在上调递增;0a ≥()f x (0,)+∞当时,函数在上单调递减,在上单调递增. 0a <()f x ⎛ ⎝⎫+∞⎪⎪⎭〔2〕当时,,要证明, 1a =2()ln f x x x =+2()1f x x x ≤+-即证,即. ln 1≤-x x ln 10x x -+≤设,则,令得,. ()ln 1g x x x =-+1()xg x x-'=()0g x '=1x =当时,,当时,. (0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<所以为极大值点,也为最大值点.1x =所以,即.故. ()(1)0g x g ≤=ln 10x x -+≤2()1f x x x ≤+-〔3〕证:由〔2〕,〔当且仅当时等号成立〕令,则, ln 1≤-x x 1x =211x n =+2211ln 1n n⎛⎫+< ⎪⎝⎭∴222222*********ln 1ln 1ln 123231223(1)n n n n ⎛⎫⎛⎫⎛⎫++++++<+++<+++ ⎪ ⎪ ⎪⨯⨯-⎝⎭⎝⎭⎝⎭L L L , 111111111ln 12231e n n n =-+-++-=-<=-L 即,22221111ln 1111ln 234e n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以. 222211*********e n ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12.〔2023·四川·成都七中高三期中〕已知函数,其中是的导函数. ()ln(1),()(),0f x x g x xf x x '=+=≥()'f x ()f x 假设.[]*11()(),()(),n n g x g x g x g g x n +==∈N 〔1〕求的表达式;()n g x 〔2〕求证:,其中n ∈N x .()()()()2222211213111n g g f g n n -+-+-++-<+ (答案)〔1〕;〔2〕证明见解析. ()*N 1n xg x n nx=∈+(解析) (分析)〔1〕依据已知条件猜测,利用数学归纳法证得猜测成立. ()1n xg x nx=+〔2〕利用放缩法,结合裂项求和法,证得不等式成立. (详解)〔1〕由题意可知,, ()01xg x x x=≥+由已知 ()()()12111x x g x g x g g x g x x ⎛⎫⎡⎤=== ⎪⎣⎦++⎝⎭,高考材料高考材料,, 11211xx x x x x+==+++()313xg x x =+ ,猜测,下面用数学归纳法证明: ()*N 1n xg x n nx=∈+〔i 〕当 n =1 时,,结论成立: ()11xg x x=+假设 n =k 〔k ≥1,k ∈N x 〕 时结论成立,即, ()1k xg x kx=+那么,当n =k +1〔k ≥1,k ∈N x 〕时,,即结论成立. ()()()()()1111111k k k k xg x x kx g x g g x x g x k x kx++⎡⎤====⎣⎦+++++由〔i 〕〔ii 〕可知,结论对 n ∈N x 成立. 〔2〕∵, ()01xg x x x=≥+,∴, ()()221111111x g x g n x x n==-⇒-=-++∴g 〔12﹣1〕+g 〔22﹣1〕+g 〔32﹣1〕+…+g 〔n 2﹣1〕222211*********n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22221111123n n ⎛⎫=-++++ ⎪⎝⎭()11111223341n n n ⎡⎤-++++⎢⎥⨯⨯⨯+⎢⎥⎣⎦ <11111112231n n n ⎡⎤⎛⎫⎛⎫⎛⎫=--+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦ , 21111n n n n ⎛⎫=--=⎪++⎝⎭∴g 〔12﹣1〕+g 〔22﹣1〕+g 〔32﹣1〕+…+g 〔n 2﹣1〕. 21n n <+13.〔2023·全国·高三专题练习〕已知二次函数满足,,,. ()f x (2)()f x f x -=-()11f -=(0)2f =()x g x e =〔1〕求的解析式;()f x 〔2〕求证:时,; 0x ≥2()()g x f x ≥〔3〕求证:.()*11112(1)12(2)22()2n N g g g n n +++<∈+++ (答案)〔1〕〔2〕证明见解析;〔3〕证明见解析; 2()22f x x x =++(解析) (分析)〔1〕由,得的对称轴为,再利用待定系数法可求得结果;()2()f x f x -=-()f x 1x =-〔2〕作差构造函数,求导得,再构造函数,求导可得其最2()2e 22x x x x ϕ=---'()222x x e x ϕ=--()222x h x e x =--小值为0,所以,可知为上的增函数,所以时,,即; ()0x ϕ'≥()ϕx R 0x ≥()0x ϕ≥2()()g x f x ≥〔3〕由〔2〕知,即.易知时, 得,2()()g x f x ≥22()32g x x x x +≥++*x ∈N 211112()3212g x x x x x x <=-+++++,再裂项求和后放缩可证不等式.1112()12g n n n n <-+++(详解)〔1〕由,得的对称轴为, ()2()f x f x -=-()f x 1x =-所以可设,()2()1f x a x c =++由 (1)1,1,(0)21,f a f c ⎧-==⎧⇒⎨⎨==⎩⎩,即. 2()(1)1f x x ∴=++2()22f x x x =++〔2〕设,2()2()()2e 22x x g x f x x x ϕ=-=---,'()222x x e x ϕ=--令,即, ()'()x h x ϕ=()222x h x e x =--则,'()22x h x e =-由,'()00,'()00h x x h x x <⇒<>⇒>在区间上单调递减,在区间上单调递增,.()h x (),0-∞()0,∞+min ()(0)0h x h ==∴,'()0x ϕ≥∴在上单调递增, ()x ϕR ∴时,, 0x ≥()(0)0x ϕϕ≥=∴.2()()g x f x ≥〔3〕由〔2〕知即. 2()()g x f x ≥222()222()32g x x x g x x x x ≥++⇔+≥++易知时,,,*x ∈N 2()0g x x +>2320x x ++>,2111112()32(1)(2)12g x x x x x x x x ∴<==-+++++++所以,1112()12g n n n n <-+++.1111111111112(1)12(2)22()233412222g g g n n n n n ∴+++<-+-++-=-<++++++ 14.〔2023·吉林吉林·高三期末〔理〕〕已知函数.()21ln 2f x x x =+-高考材料高考材料〔1〕求函数在区间上的最值;()f x 1,44⎡⎤⎢⎥⎣⎦〔2〕求证:且.2222*2222ln1ln 2ln 3ln 13(12312n n n N n n +++⋅⋅⋅+<+-∈+2)n ≥(答案)〔1〕,;〔2〕见解析 ()min 2f x =()max 93ln 2f x =-(解析) (分析)(1)对f (x )求导,然后推断f (x )的单调性,再求出f (x )在区间上的最值即可;1,44⎡⎤⎢⎥⎣⎦(2)依据(1)可得,然后令,可得,再利用放缩法证明不等式ln 11x x x ≤-()2*x n n N =∈()2*22ln 11n n N n n≤-∈成马上可. 22222222ln1ln 2ln 3ln 1312312n n n n +++⋅⋅⋅+<+-+(详解)解:(1)∵,∴, ()21ln 2(0)f x x x x =+->()121'2x f x x x-=-=令,得;令,得, ()'0f x >12x >()'0f x <102x <<∴在上单调递减,在上单调递增,()f x 10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭∴在上单调递减,在上单调递增,()f x 11,42⎡⎤⎢⎥⎣⎦1,42⎡⎤⎢⎥⎣⎦∴当时,,1,44x ⎡⎤∈⎢⎥⎣⎦()min 122f x f ⎛⎫== ⎪⎝⎭又,,13ln 242f ⎛⎫=+ ⎪⎝⎭()493ln 2f =-∴,()13493ln 2ln 242f f ⎛⎫⎛⎫-=--+ ⎪ ⎪⎝⎭⎝⎭154ln 22=-15412>-⨯0>∴,∴当时,,()144f f ⎛⎫> ⎪⎝⎭1,44x ⎡⎤∈⎢⎥⎣⎦()()max 493ln 2f x f ==-∴在区间上的最小值为2,最大值为.()f x 1,44⎡⎤⎢⎥⎣⎦93ln 2-(2)由(1)知,,∴,当且仅当时等号成立,21ln 22x x +-≥ln 221x x ≤-12x =∴,当且仅当时等号成立,即. ln 1≤-x x 1x =ln 11x x x≤-令,得,()2*x n n N =∈()2*22ln 11n n N n n≤-∈∴,,,…,, 222ln11111≤-222ln 21122≤-222ln 31133≤-222ln 11n n n ≤-∴ 222222222222ln1ln 2ln 3ln 11111111123123n n n +++⋅⋅⋅+≤-+-+-+⋅⋅⋅+- 222111123n n ⎛⎫=--++⋅⋅⋅+ ⎪⎝⎭()111123341n n n ⎡⎤<--++⋅⋅⋅+⎢⎥⨯⨯+⎣⎦111111123341n n n ⎛⎫=---+-+⋅⋅⋅+- ⎪+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭ 1312n n =+-+即且2222*2222ln1ln 2ln 3ln 13(12312n n n N n n +++⋅⋅⋅+<+-∈+2)n ≥15.〔2023·天津市宝坻区第—中学三模〔理〕〕已知函数〔为自然对数的底数〕. ()e 1x f x ax =--e 〔1〕求函数的单调区间;()f x 〔2〕当时,假设对任意的恒成立,求实数的值;0a >()0f x ≥R x ∈a 〔3〕求证:. 22222232323ln 1ln 1...ln 12(31)(31)(31)n n ⎡⎤⎡⎤⎡⎤⨯⨯⨯++++++<⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦(答案)〔Ⅰ〕答案见解析;〔Ⅱ〕;〔Ⅲ〕证明见解析. 1a =(解析)(分析)〔1〕由题设,, ()e '=-x f x a 当时,在上单调递增;0a ≤()0f x '>()f x R 当时,时,单调递减,0a >(,ln )x a ∈-∞()0f x '<()f x 时,单调递增.(ln ,)x a ∈+∞()0f x '>()f x 〔2〕由〔1〕知:时, 0a >min ()(ln )f x f a =所以,即恒成立,(ln )0f a ≥ln 10--≥a a a 记,则, ()ln 1(0)g a a a a a =-->()1(ln 1)ln g a a a '=-+=-所以在上,在上,(0,1)()0g a '>(1,)+∞()0g a '<所以在上递增,在上递减,则, ()g a (0,1)(1,)+∞()(1)0g a g ≤=所以,即.()0g a =1a =〔3〕时,, 1n =22332(31)2n n⨯=<-时,,2n ≥121123232311(31)(31)(33)(31)(31)3131n n n n n n n n n n ---⨯⨯⨯<==--------所以. 2133112(31)2231k nk nk =<+-<--∑2n ≥由〔2〕知:,即,则时,e 1x x ≥+ln(1)(1)x x x +≤>-0x >ln(1)x x +<综上,,即原不等式成立. 22222212323233ln[1]ln[1]ln[1]2(31)(31)(31)(31)n knn k k =⨯⨯⨯++++⋅⋅⋅++<<----∑高考材料高考材料。
高考数学专题:导数大题专练含答案
高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <. 3.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <4.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围.5.已知函数1()(1)(0)x f x x e x x=+->,()ln ()x g x xe a x a R =+∈,且1()0f x = (1)若1a =,且0()0g x =,试比较0x 与1x 的大小关系,并说明理由; (2)若1a =-,且222(1)()()x f x g x +=,证明: (i )25593x e <<; (ii )12213232x x x ex -->-.(参考数据:1ln3 1.098,ln5 1.609,0.368e≈≈≈) 6.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程;(2)令()()f x g x x=,求()g x a ≥在4⎤⎦恒成立,求a 的取值范围 7.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值.8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围. 9.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .10.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=>由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x <<令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+-则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=>即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <3.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞(2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x=-<<, 则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 4.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 5.(1)01x x >,理由见解析(2)(i )证明见解析;(ii )证明见解析 【解析】 【分析】(1)由0x →时,(),()0f x g x →,1()02f >,1()02>g 可得011,(0,)2x x ∈,构造1()ln (0)1m x x x x =+>+,求导分析单调性,由1112()()()ln 2023g x m x m =<=-<,故10()()g x g x <,分析即得解;(2)(i )由题意,22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=,先证明1x e x ≥+,代入分析可得22ln 0x x +=,构造()ln (0)x x x x ϕ=+>,求导分析单调性,结合而5()09ϕ<,5()03eϕ>即得解; (ii )构造1()(1)(2)t x x x x e=---,可得21(1)()f x f x -<,再构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,分析即得解(1)对函数()f x ,()g x 求导得:21()(2)0x f x x e x '=++>,1()(1)0xg x x e x'=++> 当0x →时,(),()0f x g x →.而1()22f ,1()ln 22g .由21.5e >,13ln 2ln1644=<知1()02f >,1()02>g因此0x ,1x 唯一且011,(0,)2x x ∈ 由1111(1)0x x ex +-=知1111(1)x e x x =+,1111()ln 1g x x x =++. 构造1()ln (0)1m x x x x =+>+,则221()0(1)x x m x x x ++'=>+. 故()m x 在(0,)+∞单调递增;因此1112()()()ln 223g x m x m =<=-,由12ln 2ln833=>知1()0g x <. 故10()()g x g x <,结合()g x 单调性知01x x >. (2)(i )证明:由题意得22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=.构造()1x r x e x =--,则'()1x r x e =-,()(0)0r x r ≥=. 因此1x e x ≥+.因此22ln 22222222220(1)(1)(ln )(1)(ln )x x x x e x x x x x x +=++-++≥++.故22ln 0x x +≤.因此2222ln ln 2222222220(1)(1)(ln )(1)(1)x x x x x x e x x x x x e ++=++-++≥++-故22ln 0x x +≥.因此22ln 0x x +=.构造()ln (0)x x x x ϕ=+>,则1()10x x ϕ'=+>. 而55()ln52ln3099ϕ=+-<,55()ln5ln31033e e ϕ=+-->,因此25593x e<<. (ii )由22ln 0x x +=知221xe x =. 因此222222221(1)(2)(2)1(1)1(1)xx x x e x e f x e x e x -----=-=--.构造1()(1)(2)t x x x x e=---,则2()362t x x x '=-+. 因此()t x在(1上单调递减. 因此251()()0.3609t x t e<<-<,故2(1)0f x -<.因此21(1)()f x f x -<,结合()f x 单调性知211x x -<,故211x x >-. 构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,则()(12)x h x x e '=-. 因此()h x 在1(0,)2上单调增,1(,1)2上单调减.而当102x <≤时,1()(12)()0x x H x x e e -'=--≤,()H x 单调减. 因此11()()02H x H >>,11()(1)h x h x >-.而121112x x <-<<,因此21()(1)h x h x <-,因此12()()h x h x >. 因此12213232x x x ex --<-.6.(1)1ey x =; (2)4e 4a ≤. 【解析】 【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t , 因为()1f x x '=,则()1k f t t'==所以切线方程为()1ln y t x t t-=-即1ln 1y x t t =+-由题得ln 10t -=则e t = ∴切线l 的方程为1ey x =. (2) 解:()21ln xg x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g =,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 7.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值. (1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1. ∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =,从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增,又1522g ⎛⎫= ⎪⎝⎭,()1033g =, ∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =. 8.(1)()3232f x x x =+-(2)()2,2-【解析】【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围. (1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-. 当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值.因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减,则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-.9.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2ea a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩ 【解析】【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=, 所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增. ()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+.(2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a a f x x a x x --=+-+=, 当1,22aa ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--. 当1e,22e 2a a <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减; 在区间()',e ,02a f x ⎛⎫> ⎪⎝⎭,()f x 递增. 所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭. 当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2e f a a a =+-+=-+-.所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 10.(1)答案见解析(2)e π--【解析】【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.(2)由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10x x h x x eπ-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点.()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 42x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.。
高考数学真题导数专题及答案
所以m的最小值为3.
4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求b关于a的函数关系式,并写出定义域;
3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.
(1)若f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.
【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,
所以f′(x)=1﹣ = ,且f(1)=0.
所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;
所以ln(1+ )< ,k∈N*.
一方面,ln(1+ )+ln(1+ )+…+ln(1+ )< + +…+ =1﹣ <1,
即(1+ )(1+ )…(1+ )<e;
另一方面,(1+ )(1+ )…(1+ )>(1+ )(1+ )(1+ )= >2;
从而当n≥3时,(1+ )(1+ )…(1+ )∈(2,e),
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用导数的运算1. 几种常见的函数导数: ①、c '= (c 为常数); ②、n(x)'= (R n ∈); ③、)(sin 'x = ;④、)(cos 'x = ; ⑤、x (a )'= ; ⑥、x (e )'= ; ⑦、a (log x )'= ; ⑧、(ln x )'= .2. 求导数的四则运算法则:()u v u v '''±=±;v u v u uv '+'=')(;2)(v v u v u v u '-'=' )0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u注:① v u ,必须是可导函数. 3. 复合函数的求导法则: )()())((x u f x f x ϕϕ'•'=' 或 '•'='x u x u y y一、求曲线的切线(导数几何意义)导数几何意义:0()f x '表示函数()y f x =在点(0x ,0()f x )处切线L 的斜率;函数()y f x =在点(0x ,0()f x )处切线L 方程为000()()()y f x f x x x '-=-1.曲线在点处的切线方程为( )。
A:B:C:D:答案详解B 正确率: 69%, 易错项: C解析:本题主要考查导数的几何意义、导数的计算以及直线方程的求解。
对求导得,代入得即为切线的斜率,切点为,所以切线方程为即。
故本题正确答案为B 。
2.变式一:3.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12-4.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A.21y x =-B.y x =C.32y x =-D.23y x =-+变式二:5.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .6.设曲线1*()n y xn N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++L 的值为 .7.已知点P 在曲线y =41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 A 、[0,4π) B 、[,)42ππ C 、3(,]24ππ D 、3[,)4ππ变式三:8. 已知直线y =x +1与曲线y ln()x a =+相切,则α的值为( )A.1B. 2C.-1D.-29.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64 D .74-或710.若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =A 、64B 、32C 、16D 、811.(本小题满分13分) 设1()(0)xxf x ae b a ae =++>.(I )求()f x 在[0,)+∞上的最小值; (II )设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值.12.若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 .二、求单调性或单调区间1、利用导数判定函数单调性的方法:设函数)(x f y =在某个区间D 内可导, 如果)(x f '>0,则)(x f y =在区间D 上为增函数; 如果)(x f '<0,则)(x f y =在区间D 上为减函数; 如果)(x f '=0恒成立,则)(x f y =在区间D 上为常数.2、利用导数求函数单调区间的方法:不等式)(x f '>0的解集与函数)(x f y =定义域的交集,就是)(x f y =的增区间;不等式)(x f '<0的解集与函数)(x f y =定义域的交集,就是)(x f y =的减区间. 1、函数xe x xf )3()(-=的单调递增区间是( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞2.函数32()15336f x x x x =--+的单调减区间为 .3.已知函数,,讨论的单调性。
答案详解由题意,的定义域是,所以有。
设,二次方程的的判别式 。
当,即时, 对一切都有。
此时,在上是增函数; 当时,,此时在上也是增函数;当,,即时,方程有两个不同的实根,,,。
此时在上单调递增,在上单调递减,在上单调递增。
解析:本题主要考查导数在研究函数中的应用。
本题的难点在于参数分类的讨论,如何做到不重不漏。
首先在定义域的情况下,对函数求导,在求极值的过程中,会涉及到二次方程的根个数问题,要针对判别式进行分类讨论,在极值为两个的情况下,讨论其与定义域的关系,并根据导数与函数增减性的关系,列表求得函数增减性。
4.已知函数。
(Ⅰ)当时,求曲线在点处的切线的斜率;(Ⅱ)当时,求函数的单调区间与极值。
答案详解(Ⅰ)当时,,,故。
所以曲线在点处的切线的斜率为。
(Ⅱ)。
令,解得或,由知,。
以下分两种情况讨论:(1)若,则。
当变化时,的变化情况如下表:所以在内是增函数,在内是减函数;函数在处取得极大值, 且;函数在处取得极小值,且。
(2)若,则。
当变化时,的变化情况如下表:所以在内是增函数,在内是减函数;函数在处取得极大值,且;函数在处取得极小值,且。
解析:本题主要考查利用导数判断函数单调性。
(Ⅰ)求出这种情况下,函数在处的导数,即为切线斜率。
(Ⅱ)首先求解出极值,然后对参数进行分类讨论,使用列表法,对函数和导数列表,列出函数的单调区间和极值。
三、求函数的极值与最值1、极值的判别方法:当函数)(x f 在点0x 处连续时,① 如果在0x 附近的左侧)(x f '>0,右侧)(x f '<0,那么)(0x f 是极大值; ② 如果在0x 附近的左侧)(x f '<0,右侧)(x f '>0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件为0x 点两侧导数异号,而不是)(x f '=0.2、最值的求法:求f (x )在[a ,b ]上的最大值与最小值的步骤如下: (1) 求 f (x ) 在区间 (a ,b ) 内的极值(极大值或极小值);(2) 将 y = f (x ) 的各极值与端点处的函数值 f (a )、f (b ) 比较,其中最大的一个为最大值,最小的一个最小值.注:极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 1.设函数()xf x xe =,则( )A. 1x =为()f x 的极大值点B.1x =为()f x 的极小值点C. 1x =-为()f x 的极大值点D. 1x =-为()f x 的极小值点答案详解D 正确率: 53%, 易错项: B 解析:本题主要考查函数极值的计算。
令导函数求得,且在上小于零,在上大于零,则在上单调递减,在上单调递增,为的极小值点。
2.函数32()31f x x x =-+在x = 处取得极小值.3.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.) 设13()ln 1,22f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;(Ⅱ)求函数()f x 的极值.4. (本小题满分13分) 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x <6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (I )求a 的值.(II )若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.5.请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D 四个点重合与图中的点P,正好形成一个正四棱柱形状的包装盒.E,F 在AB 上,是被切去的一个等腰直角三角形斜 边的两个端点,设)(cm x FB AE ==.(1)某广告商要求包装盒的侧面积S )(2cm 最大,试问x 应取何值? (2)某厂商要求包装盒的容积V )(3cm 最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.答案详解(1),所以时侧面积最大。
(2),所以。
当时,递增,当时,递减,所以,当时,最大。
此时,包装盒的高与底面边长的比值为。
解析:本题主要考查函数和配方法求函数最值的方法。
(1)由图写出侧面积的函数表达式,再对表达式化简、配方,即可求得取最大值对应的值。
(2)由图写出容积的函数表达式,再通过对函数求导,判断函数的单调性,从而求得取最大值对应的值,再求解高与底面边长的比值即可。
四、判断函数的零点1.函数f(x )=23xx +的零点所在的一个区间是A.(-2,-1);B.(-1,0);C.(0,1);D.(1,2)答案详解B 正确率: 64%, 易错项: C 解析:本题主要考查连续函数的性质。
由于是连续函数,且在上单调递增,根据零点附近函数值符号相反,可采用代入排除的方法求解。
A 项,故A 项错误; B 项,,则零点定理知有零点在区间上,故B 项正确; C 项,故C 项错误;D 项,故D 项错误。
综上所述:符合题意的是B 项。
故本题正确答案为B 。
2.设函数1()ln (0),3f x x x x =->则()y f x =( )A.在区间1(,1),(1,)e e 内均有零点;B.在区间1(,1),(1,)e e 内均无零点;C.在区间1(,1)e 内有零点,在区间(1,)e 内无零点;D.在区间1(,1)e内无零点,在区间(1,)e 内有零点.答案详解D正确率: 33%, 易错项: C解析:本题主要考查导数的应用。
定义域为,先对求导,,解得在单调递减,单调递增。
讨论上,在其上单调,,,故在上无零点;讨论上,在其上单调,,,故在上有零点。