脂肪族减水剂文献检索报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脂肪族减水剂文献检索报告

姓名:张琪

专业:土木二班

学号:201423250660

脂肪族减水剂的制备与性能检测

摘要

本文主要介绍了脂肪族减水剂的发展前景,作用原理。以及对正交化实验设计作了简要介绍,并通过正交化实验方法设计出合成脂肪族减水剂的方案,在此基础上进行实验。在合成阶段主要介绍了正交化三因素三水平的分等对反应的影响,以及选取四组实验做简要介绍。性能检测方面,主要考察了坍落度,净浆流动度,泌水率,减水率等四因素。混凝土的配合比,水泥净浆的配合比也是实验的关键。

1.前言

1.1脂肪族减水剂概况

1.1.1混凝土减水剂的发展

近代混凝土减水剂的发展已有60多年的历史。20世纪30年代初,美国、英国、日本等已经在公路、隧道、地下工程中使用木质素磺酸盐类减水剂。到60年代,混凝土减水剂得到了较快发展。外加剂尤其是高效减水剂作为混凝土的重要组分之一在混凝土材料中具有极为重要的作用。目前在国内减水剂的应用中存在着以萘系高效减水剂为主流以蜜胺树脂、氨基磺酸盐、脂肪族和改性木质素等高效减水剂并同发展以聚羧酸高性能减水剂逐步深入研究和初步应用为方向的趋势,各类高效减水剂在应用中尚存在不少问题萘系减水剂除了含碱量高和它的加入致使新拌混凝上易产生泌水和离析分层而影响硬化混凝土的耐久性问题外还对人类和野生生物具有潜在的毒性且其副产品短链的萘磺酸盐和单体萘不能完并能向水中迁移而造成水资源污染还因其主要原材料萘来源于石油产品、合成过程需要140℃以上的高温等原因存在能源问题。蜜胺树脂稳定性不佳。改性木质素过度缓凝且损失大。氨基磺酸盐泌水量大对掺量敏感,而聚羧酸高性能减水剂的价格一直随石油价格的上涨而猛涨。相比而言,脂肪族高效减水剂除了存在易渗色等少部分缺点外, 由于其具有原材料来源广、价格低、掺量小、减水率高、与水泥适应性好、无污染和性价比优于萘系产品等优点, 正正越来越受

到社会的青赖。脂肪族减水剂是以羰基化合物为主要原料,在碱性条件下通过碳负离子的生产而缩合得到的一种脂肪族高分子链,并且通过亚硫酸盐对羰基的加成从而在分子链上引进亲水的磺酸基团,使得分子形成具有表面活性的一种高分子减水剂。

1.1.

2.减水剂的分类

按功能分类

(1)按塑化效果分类:分为普通减水剂(减水率在5%以上)和高效减水剂(减水率在12%以上)。

(2)按引气量分类:分为引气减水剂(含气量3.5—5.5%)和非引气减水剂(含气量<3%,一般在2%左右)。

(3)按混凝土的凝结时间和早期强度分类:分为标准型、缓凝型和早强型减水剂。标准型可以使混凝土的初凝及终凝时间缩短不大于1h,延长不超过2h;早强型兼具减水和提高混凝土的早期强度的作用。缓凝型初凝时间延长至少1h,但不小于3.5h;终凝时间延长不超过3.5h。

按化学成分分类:

(1)木质素磺酸盐类:应用较普遍的为木质素磺酸钙,它是阴离子表面活剂。其掺量为水泥质量的0.2—0.3%,减水率为5—15%,28d抗压强度提高10—15%,在水泥用量不变,强度相近条件下,可节约水泥5—1帆。适用于日最低气温十5Y以上的各种预制及现浇混凝土、钢筋混凝土及预应力混凝土、大体积混凝土、泵送混凝土、防水泥凝土、大模板施工用混凝土及滑模施工用混凝土,但不宜用于蒸养混凝土。

(2)聚烷基芳族磺酸盐类:为阴离子高效减水剂。国内现生产的有MF(β—.荼

磺酸甲醛缩合物的钠盐)、MF(甲基荼磺酸甲醛缩合物钠盐)及FDN、JN、UNF、SN 一2等均属此类。常用量为水泥质量的0.5—1%,减水率为10—25%;28d抗压强度提高15—50%。

(3)三聚氰胺甲树脂磺酸盐类:属阴离子型,系早强、非引气型的高效减水剂。如国产SM减水剂,磺化三聚氰胺树脂(SM)。掺量为水泥质量的0.5—1.0%,减水率为10—27%,28d抗压强度提高30—50%。适用于蒸养混凝土、高强混凝土、早强混凝土及流态混凝土。

常用的还有糖蜜类和腐殖酸类减水剂。

1.1.3.减水剂的作用机理

由于水泥颗粒粒径绝大部分在7μm-80μm范围内,属于微细粒粉体颗粒范畴。对于水泥—水体系,水泥颗粒及水泥水化颗粒表面为极性表面,具有较强的亲水性。微细的水泥颗粒具有较大的比表面能(固液界面能),为了降低固液界面总能量,微细的水泥颗粒具有自发凝聚成絮团趋势,以降低体系界面能,使体系在热力学上保持稳定性。同时.在水泥水化初期,C3A颗粒表面带正电,而C3S 和C2S颗粒表面带负电,正负电荷的静电引力作用也促使水泥颗粒凝聚形成絮团结构(如图1所示)。

由于水泥颗粒的絮凝结构会使10%-30%的自由水包裹其中,从而严重降低了混凝土拌合物的流动性。减水剂掺入的主要作用就是破坏水泥颗粒的絮凝结构,使其保持分散状态,释放出包裹于絮团中的自由水,从而提高新拌混凝土的流动性。

作为水泥颗粒分散剂的减水剂,大部分是相对分子量较低的聚合物电解质,其相对分子量在1500一100000范围内。这些聚合物电解质的碳氢链上都带有许多极性基官能团,极性基团的种类通常有一SO3、一COO-及一OH等。这些极性基团与水泥颗粒或水化水泥颗粒的极性表面具有较强的亲合力。带电荷的减水剂(具有一SO3、一COO一等极性基的阴离子表面活性物质)通过范德华力或静电引力或化学键力吸附在水泥颗粒表面;带极性基(如一OH、一O-)的非离子减水剂也能通过范德华力和氢键的共同作用吸附在水泥颗粒表面。没有与水泥颗粒表面作用的极性基则随碳氢链伸入液相(见图1-1所示)。

图(1-1)减水剂作用机理示意图

水泥颗粒或水泥水化颗粒作为固体吸附剂,由于本身性质和结构的复杂性,使减水剂在其表面的吸附既有物理吸附,也有化学吸附。并且吸附作用可以发生在毛细孔、裂缝及气孔的所有表面上。减水剂在水泥颗粒表面的吸附过程要比一般的溶液吸附过程复杂得多。并且在水泥—水分散体系中,水泥粒子吸附减水剂的同时,还伴随着水泥的水化过程。

减水剂掺入新拌混凝土中,能够破坏水泥颗粒的絮凝结构,起到分散水泥顺位及水泥水化颗粒的作用,从而释放絮凝结构中的自由水,增大混凝土拌合物的流动性。虽然,减水剂的种类不同,其对水泥颗粒的分散作用机理也不尽相同,但是,概括起来,减水剂分散减水机理基本上包括以下五个方面。

(一)降低水泥颗粒固液界面能

减水剂通常为表面活性剂(异极性分子),性能优良的减水剂在水泥—水界面上具有很强的吸附能力。减水剂吸附在泥颗粒表面能够降低水泥颗粒固液界面能,降低水泥—水分散体系总能量,从而提高分散体系的热力学稳定性,这样有利于水泥颗粒的分散。因此,不但减水剂的极性基种类、数量影响其减水作用效果,而且减水剂的非极性基的结构特征,碳氢链长度也显著影响减水剂的性能。(二)静电斥力作用

新拌混凝土中掺入减水剂后,减水剂分子定向吸附在水泥颗粒表面,部分极性基团指向液相。由于亲水极性基团的电离作用,使得水泥颗粒表面带上电性相同的电荷,并且电荷量随减水剂浓度增大而增大直至饱和,从而使水泥颗粒之间

相关文档
最新文档