2平面连杆机构

合集下载

第2章 平面连杆机构

第2章 平面连杆机构

起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

第2章平面连杆机构

第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)

机械设计基础(专科)第2章平面连杆机构

机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3

2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。

02平面连杆机构的设计计算

02平面连杆机构的设计计算
行程速度变化系数: =
180°+
180°−
= 3.17 ;
摇杆摆角: = ∠ ′ − ∠ " = 90.07° 。
例 2-3 设计一曲柄摇杆机构。已知摇杆长度3 = 100,摆
角 = 30°,摇杆的行程速度变化系数 = 1.2。
(1)用图解法确定其
余三杆的尺寸;
(2)用式(2-6)和式(2-7)确定机构最小传动角(若
第2章
平面四杆机构的设计计算
1、铰链四杆机构有整转副的条件:(1)符合杆长条件:最短杆
与最长杆长度之和小于或等于其余两杆长度之和;
(2)整转副是由最
短杆与其相邻杆组成的。
2、铰链四杆机构符合杆长条件时:(1)取最短杆为机架时,双
曲柄机构;
(2)取最短杆的邻边为机架时,曲柄摇杆机构;
(3)取最
短杆的对边为机架时,双摇杆机构。
位置如题 2-13 图所示,
1 = 45°,
1 = 52°10′;2 = 90°,
2 = 82°10′;
3 = 135°,2 = 112°10′,机架长度 = 50 ,试用解析法求其
余三杆长度。
2-13 解:已知:
1 + 2 = 50 + 3
(b) 最短杆与最长杆长度之和= 45 + 120 = 165
其余两杆长度之和= 100 + 70 = 170
①满足杆长条件:最短杆与最长杆长度之和≤其余两杆长度之和;
②最短杆的邻边为机架;
所以此铰链四杆机构为曲柄摇杆机构。
(c) 最短杆与最长杆长度之和= 60 + 100 = 160
其余两杆长度之和= 70 + 62 = 132

第2章 平面连杆机构

第2章 平面连杆机构

第2章平面连杆机构平面连杆机构是由若干构件通过低副联接而成的平面机构,也称平面低副机构。

平面连杆机构广泛应用于各种机械和仪表中,其主要优点是:(1)由于运动副是低副,面接触,传力时压强小,磨损较轻,承载能力较高;(2)构件的形状简单,易于加工,构件之间的接触由构件本身的几何约束来保持,故工作可靠;(3)可实现多种运动形式及其转换,满足多种运动规律的要求;(4)利用平面连杆机构中的连杆可满足多种运动轨迹的要求。

主要缺点有:(1)由于低副中存在间隙,机构不可避免地存在着运动误差,精度不高,(2)主动构件匀速运动时,从动件通常为变速运动,故存在惯性力,不适用于高速场合。

平面机构常以其组成的构件(杆)数来命名,如由四个构件通过低副联接而成的机构称为四杆机构,而五杆或五杆以上的平面连杆机构称为多杆机构。

四个机构是平面连杆机构中最常见的形式,也是多杆机构的基础。

1.1 四杆机构的基本形式及其演化1.1.1 四杆机构的基本形式构件间的运动副均为转动副联接的四杆机构,是四杆机构的基本形式,称为铰链四杆机构,如图1-1所示。

由三个活动构件和一个固定构件(即机架)组成。

其中,AD杆是机架,与机架相对的杆(BC杆)称为连杆,与机架相联的构件(AB杆和CD杆)称为连架杆,能绕机架作360°回转的连架杆称为曲柄,只能在小图1-1于360°范围内摆动的连架杆称为摇杆。

根据两连架杆的运动形式的不同,铰链四杆机构可分为三种基本形式并以其连架杆的名称组合来命名。

(1)曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的四杆机构,称为曲柄摇杆机构。

曲柄摇杆机构中,当以曲柄为原动件时,可将曲柄的匀速转动变为从动件的摆动。

如图1-2所示的雷达天线机构,当原动件曲柄1转动时,通过连杆2,使与摇杆3固结的抛物面天线作一定角度的摆动,以调整天线的俯仰角度。

图1-3为汽车前窗的刮雨器,当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

第2章 平面连杆机构

第2章 平面连杆机构

曲 柄 摇 杆 机 构
急回特性 摇杆在空回行程中的平均速度大于工作行程的 平均速度的特性。 平均速度的特性。 行程速度变化系数K(或称行程速比系数) 行程速度变化系数 (或称行程速比系数) 从动件在空回行程中的平均速度与工作行程中 的平均速度之比值。 的平均速度之比值。
K −1 θ = 180 K +1
缝纫机踏板机构
2.双曲柄机构 双曲柄机构
具有两个曲柄的铰链四杆机构称为双曲柄机构。 具有两个曲柄的铰链四杆机构称为双曲柄机构。 两个曲柄的铰链四杆机构称为双曲柄机构
原动件: 原动件 匀速转动) 主动曲柄 (匀速转动 匀速转动 从动件: 从动件 变速转动) 从动曲柄 (变速转动 变速转动
应用实例: 应用实例
当以最短杆的相邻杆为机架时, 当以最短杆的相邻杆为机架时,必为曲柄摇 杆机构; 杆机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆的对面杆为机架( 当以最短杆的对面杆为机架(最短杆为连 必为双摇杆机构。 杆) 时,必为双摇杆机构。
实验与思考
平面四杆机构的演化
死点
消除死点位置的不利影响的措施 安装飞轮,加大从动件惯性; 安装飞轮,加大从动件惯性; 采用错列机构。 采用错列机构。
飞 轮
错列机构
死点
死点位置的利用
飞机起落架机构
2.4 平面四杆机构的运动设计
两类基本问题 按给定从动件的运动规律设计四杆机构 按给定运动轨迹设计四杆机构 三种设计方法 图解法 实验法 解析法
曲柄移动导杆机构
双滑块机构
曲柄移动导杆机构(正弦机构) 曲柄移动导杆机构(正弦机构)的演化 (2)双滑块机构 (2)双滑块机构 应用实例
椭 圆 仪

第2章 平面连杆机构02——自由度

第2章 平面连杆机构02——自由度

性桁架,因而不能成为机构。
5)超静定桁架
n=3 PL=5 PH=0 F=3n-2PL-PH=3×3-2×5-0=-1 表明该运动链由于约束过多,已成为超静定桁架 了,也不能成为机构。
计算实例 实例1: 解:n = 3, PL = 4, PH = 0 F = 3n - 2PL - PH =3×3 - 2×4 - 0
3ቤተ መጻሕፍቲ ባይዱ
2 1 4
n=3 PL=4 PH=0
F=3n-2PL-PH=3×3-2×4-0=1 2)五杆机构: n=4 PL=5 PH=0 F=3n-2PL-PH=3×4-2×5-0=2 3)凸轮机构: n=2 PL=2 PH=1 F=3n-2PL-PH=1
4 3
2
1 5
4)刚性桁架
n=2 PL=3 PH=0 F=3n-2PL-PH=3×2-2×3-0=0 表明该运动链中各构件间已无相对运动,只构成了一个刚
2、约束
但当这些构件之间以一定的方式联接起来成为构件系 统时,各个构件不再是自由构件。——自由度减少。
这种对构件独立运动所施加的限制称为约束。
3、自由度和约束的关系 运动副每引入一个约束,构件就失去一个自由度。 运动副既限制了两构件的某些相对运动,又允许构件 间有一定的相对运动。
二、平面机构的自由度计算
惯性筛机构
F=3n-2PL-PH
=3×5-2×7-0
=1
2.局部自由度
个别构件所具有的,不影响整个机构运动的自由度称为 局部自由度。 典型例子:滚子的转动自由度并不影响整个机构的运 动,属局部自由度。 计入局部自由度时 n = 3, PL = 3, PH = 1 F =3×3 - 2×3- 1 =2 与实际不符
=1
实例2: n =5, PL = 7, PH = 0 解: F = 3n – 2PL – PH = 3×5 – 2×7 – 0

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析机械设计基础第2章介绍了平面连杆机构的解析方法,本文将详细探讨平面连杆机构的基本概念以及运动规律,并通过实例分析解算过程。

平面连杆机构是由几个连杆和连接件组成的机械装置,常见于各种机械设备和机器人中,具有重要的机械传动功能。

解析平面连杆机构的目的是求解机构中各个连杆的位置、速度和加速度等运动参数,在设计和优化机构的过程中起到关键作用。

首先,我们需要了解平面连杆机构的基本构件和运动方式。

平面连杆机构包括刚性连杆、铰链、曲轴和悬臂等,在运动过程中,这些构件之间通过铰链连接,可以实现不同形式的运动传动。

平面连杆机构中常见的运动有转动运动、直线运动和复合运动。

其次,我们需要了解平面连杆机构的运动规律。

平面连杆机构的运动规律可以通过几何方法或者代数方法进行求解。

几何方法主要是通过建立连杆的几何关系来求解连杆的位置和速度,而代数方法则是通过建立连杆的运动学方程来求解连杆的加速度。

几何方法中常用的解析方法有正弦定理和余弦定理。

通过应用这些定理,可以获得连杆的长度和角度关系,从而求解出连杆的位置和速度。

例如,在一个平面连杆机构中,已知一根连杆的长度和角度,可以利用余弦定理求解出另一根连杆的长度和角度。

代数方法中常用的解析方法有速度、加速度和加加速度分析法。

这些方法是通过建立连杆的运动学方程,并对方程进行求导得到速度、加速度和加加速度的表达式。

例如,在一个平面连杆机构中,已知连杆的运动学方程,可以对其进行求导,得到连杆的速度和加速度表达式。

最后,我们通过一个实例来详细解析平面连杆机构的运动规律。

假设我们有一个平面连杆机构,包括两根等长的连杆和一个铰链。

已知一根连杆的长度为L,角度为θ,我们希望求解另一根连杆的位置、速度和加速度。

首先,利用余弦定理求解另一根连杆的长度。

根据余弦定理,可以得到连杆的长度与角度的关系式。

然后,利用连杆长度与角度的关系式,可以求解出连杆的长度。

接下来,利用几何方法求解连杆的速度。

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)第一篇:第2章平面连杆机构教案第2章平面连杆机构平面连杆机构——由若干个构件通过平面低副(转动副和移动副)联接而构成的平面机构,也叫平面低副机构平面连杆机构具有承载能力大、结构简单、制造方便等优点,用它可以实现多种运动规律和运动轨迹,但只能近似地实现所要求的运动。

最简单的平面连杆机构由四个构件组成,简称平面四杆机构。

是组成多杆机构的基础只介绍四杆机构§2-1 平面四杆机构的基本类型及其应用一,铰链四杆机构铰链四杆机构——全部由回转副组成的平面四杆机构,它是平面四杆机构最基本的形态。

如图2-1a所示,铰链四杆机构由机架4、连架杆(与机架相连的 1、3两杆)和连杆(与机架不相联的中间杆2)组成。

如图所示曲柄——能绕机架上的转动副作整周回转的连架杆。

摇杆——只能在某一角度范围(小于360°)内摆动的连架杆。

铰链四杆机构按照连架杆是曲柄还是摇杆分为曲柄摇杆机构、双曲柄机构、双摇杆机构三种基本型式。

1、曲柄摇杆机构曲柄摇杆机构——两连架杆中一个是曲柄,一个是摇杆的铰链四杆机构。

当曲柄为原动件时,可将曲柄的连续转动,转变为摇杆的往复摆动。

应用:雷达调整机构2、双曲柄机构两连架杆均为曲柄的铰链四杆机构称为双曲柄机构。

当原动曲柄连续转动时,从动曲柄也作连续转动如图所示在双曲柄机构中,若其相对两杆相互平行如右图所示,则成为或平行四边形机构(平行双曲柄机构)。

如图所示当平行四边形机构的四个铰链中心处于同一条直线上时,将出现运动不确定状态,一般采用相同机构错位排列的方法,来消除这种运动不确定状态。

如图所示应用:在机车车轮联动机构中,则是利用第三个平行曲柄来消除平行四边形机构在这种死点位置的运动不确定性。

3、双摇杆机构两连架杆均为摇杆的铰链四杆机构称为双摇杆机构应用:飞机起落架通过用移动副取代转动副、变更杆件长度、变更机架和扩大转动副等途径,可以得到铰链四杆机构的其他演化型式二,含一个移动副的四杆机构 1,曲柄滑块机构通过将摇杆改变为滑块,摇杆长度增至无穷大,可得到曲柄滑块机构,如图所示对心曲柄滑块机构与偏置曲柄滑块机构曲柄滑块机构应用于活塞式内燃机2、导杆机构在图所示曲柄滑块机构中,若改取杆1为固定构件,即得导杆机构。

第2章 平面连杆机构

第2章 平面连杆机构

设计:潘存云
特例:等腰梯形机构-汽车转向机构
ω P
作者:潘存云教授
铰链四杆机构 (1)曲柄摇杆机构 (2)双曲柄机构 (3)曲柄摇杆机构 (4)双摇杆机构
曲柄滑块机构
• (a)曲柄滑块机构; • (b)导杆机构; • (c) 摇块机构; • (d) 直动滑杆机构(定
块机构)。
本章重点: 四杆机构的基本形式及其应用
应用实例: 内燃机、鹤式吊、火车轮、手动冲床、牛头刨床、椭圆 仪、机械手爪、开窗户支撑、公共汽车开关门、折叠伞、 折叠床、 单车制动操作机构等。
常以构件数命名: 四杆机构、六杆机构。
§2-1 平面连杆机构的类型和应用
一. 铰链四杆机构:全部是转动副
名词解释:
连杆
曲柄—作整周定轴回转的构件; 曲柄 连杆—作平面运动的构件;
天平
C
B
C
B
设计:潘存云
A
D
AB = CD BC = AD
A BB
设计:潘存云
D C
耕地
料斗
设计:潘存云
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构 、风扇摇头机构、起重吊车、
钻床夹具
C' B'
B
设计:潘存云
C
A
DA
D 蜗蜗杆杆
风风扇扇座座
摇杆—作定轴摆动的构件;
连架杆—与机架相联的构件;
周转副—能作360度相对回转的运动副;
摆转副—只能作有限角度摆动的运动副。
铰链四杆机构三种基本型式:
(1)曲柄摇杆机构
(2)双曲柄机构
(3)双摇杆机构
摇杆
三种基本型式: (1)曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。

02平面连杆机构的设计计算

02平面连杆机构的设计计算

02平面连杆机构的设计计算设计计算是指根据设计要求和机构参数进行计算,以确定机构的尺寸、材料和工作性能等技术指标的过程。

本文将介绍02平面连杆机构的设计计算,包括机构类型选择、杆件尺寸设计和运动性能分析等。

一、机构类型选择1.传动比要求:根据实际需要确定机构的传动比,即输入与输出杆件的运动比值。

2.运动要求:根据机构所需完成的运动类型和精度要求,选择适合的机构类型。

3.结构紧凑度:考虑机构安装空间、结构合理性和制造工艺等因素,选择紧凑、易制造的机构类型。

二、杆件尺寸设计杆件尺寸设计是机构设计的关键环节,决定着机构的强度、刚度和运动特性。

具体步骤如下:1.确定负荷:根据使用条件和设计要求,确定机构的负荷、转矩和速度等参数。

2.计算受力:根据杆件的位置和受力情况,计算杆件的拉压应力和弯矩等。

3.材料选择:根据受力情况和材料性能,选择合适的材料,如碳钢、合金钢等。

4.尺寸计算:根据受力计算结果,计算杆件的截面尺寸、直径和长度等。

5.强度校核:根据材料强度和尺寸,进行强度校核,确保杆件在工作条件下不发生破坏。

6.刚度分析:根据杆件尺寸和连接方式,计算机构的刚度和变形情况,确保机构的工作精度。

三、运动性能分析运动性能分析是对机构运动特性进行计算和评估的过程,对于确定机构的工作性能和优化设计具有重要意义。

具体步骤如下:1.运动解析:根据机构的运动模式和约束条件,进行运动解析,得到机构的运动方程和转角速度等。

2.运动参数计算:根据机构的运动方程和参数,计算机构的位移、速度、加速度和滑动速度等。

3.动力学分析:对机构的动力学特性进行计算和分析,包括惯性力、弹性力和粘性力等。

4.稳定性分析:对机构的稳定性进行分析,确保机构的运动平稳和可靠性。

5.优化设计:根据运动性能分析结果,对机构的参数和结构进行优化设计,提高机构的工作效率和精度。

总结:02平面连杆机构的设计计算是通过选择合适的机构类型、进行杆件尺寸设计和运动性能分析,来确定机构的尺寸、材料和工作性能等指标。

机械设计基础第2章平面连杆机构比赛

机械设计基础第2章平面连杆机构比赛

参赛机构应符合规定的尺寸和材料要求,
并能够完成指定的任务。
3
安全要求
比赛期间,参赛机构和参赛队员应遵守 安全规定,确保比赛过程安全。
参赛队伍的组成
团队人数
每个参赛队伍由3-5名队员组成。
角色分工
队员可以担任不同的角色,包括设计师、制造工程师和测试员等。
团队合作
参赛队伍需要紧密合作,共同解决设计和制造过程中的挑战。
评分标准和奖项设置
评分标准
评分考虑机构设计、性能、创新 性以及制造质量等因素。
奖项设置
荣誉和认可
比赛设有冠军、亚军和季军奖项, 并颁发优秀设计奖和创新奖等。
获奖者将受到学校和行业的认可, 并获得参赛经验和荣誉。
比赛流程和时间安排
1
报名阶段
参赛队伍需要在指定时间内完成报名,并提交机构设计方案。
2
设计和制造阶段
1 促进学习
通过比赛,学生可以深入了解平面连杆机构的原理和应用,提高机械设计的能力。
2 激发创新
比赛鼓励参赛者设计和构建创新的平面连杆机构,推动技术的进步。
3 培养团队合作
参赛队伍需要合作,共同解决问题,培养团队协作和沟通能力。比赛规则和要求 Nhomakorabea1
参赛资格
比赛面向机械设计相关专业的学生,并
机构要求
2
需报名参赛。
机械设计基础第2章平面 连杆机构比赛
本章介绍平面连杆机构比赛的相关内容,包括定义、分类、目的、规则和要 求、参赛队伍的组成、评分标准和奖项设置以及比赛流程和时间安排。
平面连杆机构的定义
什么是平面连杆机 构?
平面连杆机构由一组连接在 一起的刚性杆件组成,用于 转换运动和传递力和能量。

第二章平面连杆机构

第二章平面连杆机构

§2-1 平面四杆机构的基本类型
a曲柄摇杆机构 b双曲柄机构
c曲柄摇杆机构 d双摇杆机构
曲柄摇杆机构 平面四杆机构基本型式: 双曲柄机构
双摇杆机构
§2-1 平面四杆机构的基本类型
(一)曲柄摇杆机构(a、c图) 两连架杆中,一个为曲柄,而另一个为摇杆。
曲柄摇杆机构
例:牛头刨床横向进给机构1
§2-1 平面四杆机构的基本类型
回转式油泵
曲柄滑块泵
简易冲床
双滑块机构
摆动式油缸
刨床机构
§2-1 平面四杆机构的基本类型
一、铰链四杆机构基本类型
连接两连 架杆的杆
与机架相 连的杆
固定不动 的杆
曲柄—能绕机架整周回转的连架杆;
摇杆—只能在一定角度范围内绕机架摆动的连架杆;
周转副(整转副)—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。
搅拌器1
剖光机
刮雨器
C 2 3 B1 4 D A
缝纫机脚踏板机构1
飞剪
雷达调整机构
§2-1 平面四杆机构的基本类型
(二)双曲柄机构(b图)
两连架杆均为曲柄。
双曲柄机构
平行双曲柄机构
反平行四边形机构
§2-1 平面四杆机构的基本类型
例:旋转式水泵
机车驱动联动机构1 3
公共汽车车门启闭机构
惯性筛
§2-1 平面四杆机构的基本类型
四、死点
C1 F A C2 D
F B1 γ=0
B2
γ=0
曲柄摇杆机构中,以摇杆为原动件,摇杆处在 两极限位置时(当曲柄与连杆共线时),γ=0,这 时通过连杆传给从动件曲柄的力恰好通过其回转中 心,使机构出现“顶死”现象。该位置称死点位置。

第 2章 平面连杆机构解读

第 2章 平面连杆机构解读
§2-1 铰链四杆机构 14
双曲柄机构


两连架杆都作整周转动的铰链 四杆机构称为双曲柄机构。通 常,主动曲柄匀速转动,从动 曲柄变速转动。 无死点。 左图所示的转动翼板式水泵就 是典型应用。转动翼板式水泵 由相位依次相差90°的四个双 曲柄机构组成,当主动曲柄AB 顺时针匀速转动时,从动曲柄 CD作周期性变速转动,相邻两 个机构的从动曲柄所夹的角时 大时小,导致容积作周期性的 变化,从而起到吸水、泵水的 作用。
41
爬行机构由简单的曲柄滑块机构和上下两个自锁套组合而成。电动机与 曲柄固接,驱动装置运动,上下两个自锁套是实现爬杆的关键机构。当 自锁套有向下运动趋势时,锥套、钢球、圆杆之间会形成可靠的自锁, 使装置不能下滑,而上行时自锁解除。
爬 杆 机 器 人
42
作业
P43 2-6题中图a) (用作图法)
43
第 2章 平面连杆机构
铰链四杆机构 铰链四杆机构的基本型式及演化 平面四杆机构的基本特性
平面四杆机构的设计
平面连杆机构
平面 连杆机构 是构件全 部由平面 低副连接 而构成的 机构。
2பைடு நூலகம்
平面连杆机构的特点
优点 1. 低副是面接触,因此压强小、耐磨损。适用于载荷较大 的场合。 2. 低副的接触面通常是容易加工的平面或圆柱面,容易获 得较高的制造精度。 3. 低副的约束为几何约束(靠形状限制运动),无需附加约束 装置。 4. 连杆可做得很长,可较长距离传递运动。适合于操纵机 构。 5. 平面四杆机构运动时,其连杆通常作平面复杂运动,连杆 上每一点的轨迹曲线的形状随点在连杆上的位置和各杆相 对尺寸的不同而变化。可以利用连杆曲线的这种多样性来 实现我们需要的复杂轨迹。
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档