2平面连杆机构讲解
第2章 平面连杆机构解读
定义:全部用转动副相连的平面四杆机构。
机架
组成: 连架杆
连杆
分类:
整转副 机架 曲柄
摆动副
摇杆
三种基本型式:曲柄摇杆机构、双曲柄机构、 双摇杆机构
3
2020/11/17
第2章 平面连杆机构
§2-1 平面四杆机构的基本类型及其应用 1. 曲柄摇杆机构
定义:在两连架杆中,一个为曲柄,另一个为摇杆。
运动特点:
2020/11/17
两个特性 :
①两曲柄同速同向转动;
②连杆作平动。
12
第2章 平面连杆机构
§2-1 平面四杆机构的基本类型及其应用
反平行四边形机构—两个曲柄 反向回转。
应用实例:车门启闭机构
反平行四边形机构
平行四边形机构在四杆
(或铰链)共线位置出现运
动不确定。
13
2020/11/17
第2章 平面连杆机构
风扇摇头机构
汽车转向机构
B’ C’
B
C
A
D
2020/11/17
C 电机
蜗轮 BBA
D D
A
D 蜗杆
C C
风扇座
第2章 平面连杆机构
A A E E B B
17
§2-1 平面四杆机构的基本类型及其应用 铰链四杆机构的演化
演化常用的方式: ①改变运动副类型; ②选不同构件作机架; ③改变相对杆长。
2020/11/17
2020/11/17
第2章 平面连杆机构
24
§2-1 平面四杆机构的基本类型及其应用
② 双滑块机构:椭圆仪机构(延长点的运动轨迹为椭圆)
2 1 4
3
椭圆仪机构
2平面连杆机构
分类:
四杆机构
多杆机构
2 连杆机构 2
基本型式 (全为转动副)-铰链四杆机构 演化形式 (含有移动副)
2.1 平面四杆机构基本型式及其演化
一、铰链四杆机构
1. 组成 机架4 构件 连架杆1、3 连杆2 曲柄:相对机架作整周转 摇杆:相对机架不作整周转
转动副
整转副 (周转副 ):组成转动副的两构件能整周相对转动 摆动副(摆转副 ) :不能作整周相对转动的转动副
2. 三种类型 曲柄摇杆机构 如雷达俯仰机构、 缝纫机踏板机构, 其它 双曲柄机构 如机车车轮联动机构、 惯性振动筛 双摇杆机构 如飞机起落架机构、 造型机翻转机构, 其它
2 连杆机构 3
2.1 平面四杆机构基本型式及其演化
一、铰链四杆机构
3. 有整转副的条件 分析: 构件AB要为曲柄,则转动副A应为整转副; 因此AB杆应能占据与AD共线的位置AB'及 AB''。 由△DB'C', l1 + l4 ≤ l2 + l3
2 连杆机构 21
一、 按给定的行程速比系数K设计四杆机构
已知摇杆的长度CD、摆角φ及行程速比系数K,要求设计曲柄摇杆机构。
2 连杆机构 22Biblioteka 2.3 平面四杆机构的设计
二、 按给定连杆位置设计四杆机构
1. 给定两个连杆位置 已知连杆长度及两预定位置B1C1、B2C2,要求设计四杆机构。 b12 B1 B2 C1 c12
第2章 平面连杆机构
定义:若干构件用低副(转动副或移动副)连接组成的平面机构。
2 连杆机构 1
第2章 平面连杆机构
传动特点:
优点:
(1) 连杆机构为低副机构, 运动副为面接触, 压强小, 承载能力大, 耐冲击;
第2章 平面连杆机构
起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄
机械设计教程-二、平面连杆机构-工程
机械设计教程-二、平面连杆机构-工程第二章平面连杆机构一、定义:若干构件通过低副(转动副或移动副)联接所组成的机构称作连杆机构,。
动副)联接所组成的机构称作连杆机构。
连杆机构中各构件的相对运动是平面运动还是空间运动,连杆机构又可以分为平面连杆机构和空间连杆机构。
平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
§2.1平面四杆机构的类型及应用2.1平面四杆机构的类型及应用在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。
在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。
一、铰链四杆机构基本类型根据机构中有无曲柄和有几个曲柄,铰链四杆机构又有三种基本形式:1.曲柄摇杆机构:两连架杆中一个为曲柄而另一个为摇杆的机构。
雷达调整机构缝纫机踏板机构当曲柄为原动件时,可将曲柄的连续转动转变为摇杆的往复摆动,如图中的雷达天线机构;反之,当摇杆为原动件时,可将摇杆的往复摆动转变为曲柄的整周转动,如图所示的缝纫机踏板。
2.双曲柄机构:两连架杆均为曲柄的四杆机构。
可将原动曲柄的等速转动转换成从动曲柄的等速或变速转动,如图所示的惯性筛驱动机构;构的相对两杆平行且相等时,则成为平行四边形机构,如图所示。
注意:平行四边形机构在运动过程中,当两曲柄与机架共线时,在原动件转向不变、转速恒定的条件下,从动曲柄会出现运动不确定现象。
可以在机构中添加飞轮或使用两组相同机构错位排列。
3.双摇杆机构.双摇杆机构:两连架杆都是摇杆的机构,如图所示的鹤式起重机构,保证货物水平移动。
二、机构的演化机构的演化方法有三种:1)通过改变构件的形状和相对尺寸进行演化,如图2—8的演化;2)通过改变运动副尺寸进行演化;3)通过选用不同构件作为机架进行演化。
1.滑块机构如图所示,当构件1能整周回转成为曲柄时,该机构称为曲柄滑块机构;否则该机构称为摆杆滑块机构。
第2章平面连杆机构
把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)
机械设计基础(专科)第2章平面连杆机构
缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3
2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。
《机械设计基础》第2章_平面连杆机构解析
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:
第2章 平面连杆机构
曲 柄 摇 杆 机 构
急回特性 摇杆在空回行程中的平均速度大于工作行程的 平均速度的特性。 平均速度的特性。 行程速度变化系数K(或称行程速比系数) 行程速度变化系数 (或称行程速比系数) 从动件在空回行程中的平均速度与工作行程中 的平均速度之比值。 的平均速度之比值。
K −1 θ = 180 K +1
缝纫机踏板机构
2.双曲柄机构 双曲柄机构
具有两个曲柄的铰链四杆机构称为双曲柄机构。 具有两个曲柄的铰链四杆机构称为双曲柄机构。 两个曲柄的铰链四杆机构称为双曲柄机构
原动件: 原动件 匀速转动) 主动曲柄 (匀速转动 匀速转动 从动件: 从动件 变速转动) 从动曲柄 (变速转动 变速转动
应用实例: 应用实例
当以最短杆的相邻杆为机架时, 当以最短杆的相邻杆为机架时,必为曲柄摇 杆机构; 杆机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆的对面杆为机架( 当以最短杆的对面杆为机架(最短杆为连 必为双摇杆机构。 杆) 时,必为双摇杆机构。
实验与思考
平面四杆机构的演化
死点
消除死点位置的不利影响的措施 安装飞轮,加大从动件惯性; 安装飞轮,加大从动件惯性; 采用错列机构。 采用错列机构。
飞 轮
错列机构
死点
死点位置的利用
飞机起落架机构
2.4 平面四杆机构的运动设计
两类基本问题 按给定从动件的运动规律设计四杆机构 按给定运动轨迹设计四杆机构 三种设计方法 图解法 实验法 解析法
曲柄移动导杆机构
双滑块机构
曲柄移动导杆机构(正弦机构) 曲柄移动导杆机构(正弦机构)的演化 (2)双滑块机构 (2)双滑块机构 应用实例
椭 圆 仪
第2章 平面连杆机构02——自由度
性桁架,因而不能成为机构。
5)超静定桁架
n=3 PL=5 PH=0 F=3n-2PL-PH=3×3-2×5-0=-1 表明该运动链由于约束过多,已成为超静定桁架 了,也不能成为机构。
计算实例 实例1: 解:n = 3, PL = 4, PH = 0 F = 3n - 2PL - PH =3×3 - 2×4 - 0
3ቤተ መጻሕፍቲ ባይዱ
2 1 4
n=3 PL=4 PH=0
F=3n-2PL-PH=3×3-2×4-0=1 2)五杆机构: n=4 PL=5 PH=0 F=3n-2PL-PH=3×4-2×5-0=2 3)凸轮机构: n=2 PL=2 PH=1 F=3n-2PL-PH=1
4 3
2
1 5
4)刚性桁架
n=2 PL=3 PH=0 F=3n-2PL-PH=3×2-2×3-0=0 表明该运动链中各构件间已无相对运动,只构成了一个刚
2、约束
但当这些构件之间以一定的方式联接起来成为构件系 统时,各个构件不再是自由构件。——自由度减少。
这种对构件独立运动所施加的限制称为约束。
3、自由度和约束的关系 运动副每引入一个约束,构件就失去一个自由度。 运动副既限制了两构件的某些相对运动,又允许构件 间有一定的相对运动。
二、平面机构的自由度计算
惯性筛机构
F=3n-2PL-PH
=3×5-2×7-0
=1
2.局部自由度
个别构件所具有的,不影响整个机构运动的自由度称为 局部自由度。 典型例子:滚子的转动自由度并不影响整个机构的运 动,属局部自由度。 计入局部自由度时 n = 3, PL = 3, PH = 1 F =3×3 - 2×3- 1 =2 与实际不符
=1
实例2: n =5, PL = 7, PH = 0 解: F = 3n – 2PL – PH = 3×5 – 2×7 – 0
平面连杆机构
曲柄——能绕机架上的转动副作整周 回转的连架杆。
摇 杆 —— 只 能 在 某 一 角 度 范 围 ( 小 于
360°)内摆动的连架杆。
一、铰链四杆机构的基本型式
铰链四杆机构按照连架杆是曲柄还是 摇杆分为曲柄摇杆机构、双曲柄机构、 双摇杆机构三种基本型式 。
(一)、转动副转化成移动副
1、铰链四杆机构中一个转动副转化为移 动副
对心曲柄滑块机构 偏置曲柄滑块机构
曲柄存在条件: 对心曲柄滑块机构:L1<L2 行程 S=2L1 偏置曲柄滑块机构:L1+e<L2
2、铰链四杆机构中两个转动副转化为移动副
由于此机构当主 动件1等速回转时, 从动到导杆3的位 移为y=Labsinα , 故又称正弦机构
第2章 平面连杆机构
§2-1 平 面 四 杆 机 构 的 基 本 型 式 和 特 征 §2-2 铰 链 四 杆 机 构 有 整 转 副 的 条 件 §2-3 铰链四杆机构的演化 §2-4 平面四杆机构的设计
§2-1 平 面 四 杆 机 构 的 基本型式和特征
平面连杆机构——由若干个构件通过平 面低副(转动副和移动副)联接而构成的平 面机构,也叫平面低副机构。
曲柄是连架杆,只有整转副处于机架
上才能形成曲柄。当铰链四杆机构满足
整转副条件时,机构中最短杆的两端转
动副一定为整转副。 因此可以得出铰链四杆机构存在曲柄
的条件: ⑴最短杆与最长杆长度之和小于或
等于其余两杆长度 之和; ⑵连架杆和机架中,必有一个是最
短杆。
结论: 若铰链四杆机构满足上述整转副条件,
缝纫机
第二章平面连杆机构
§2-1 平面四杆机构的基本类型
a曲柄摇杆机构 b双曲柄机构
c曲柄摇杆机构 d双摇杆机构
曲柄摇杆机构 平面四杆机构基本型式: 双曲柄机构
双摇杆机构
§2-1 平面四杆机构的基本类型
(一)曲柄摇杆机构(a、c图) 两连架杆中,一个为曲柄,而另一个为摇杆。
曲柄摇杆机构
例:牛头刨床横向进给机构1
§2-1 平面四杆机构的基本类型
回转式油泵
曲柄滑块泵
简易冲床
双滑块机构
摆动式油缸
刨床机构
§2-1 平面四杆机构的基本类型
一、铰链四杆机构基本类型
连接两连 架杆的杆
与机架相 连的杆
固定不动 的杆
曲柄—能绕机架整周回转的连架杆;
摇杆—只能在一定角度范围内绕机架摆动的连架杆;
周转副(整转副)—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。
搅拌器1
剖光机
刮雨器
C 2 3 B1 4 D A
缝纫机脚踏板机构1
飞剪
雷达调整机构
§2-1 平面四杆机构的基本类型
(二)双曲柄机构(b图)
两连架杆均为曲柄。
双曲柄机构
平行双曲柄机构
反平行四边形机构
§2-1 平面四杆机构的基本类型
例:旋转式水泵
机车驱动联动机构1 3
公共汽车车门启闭机构
惯性筛
§2-1 平面四杆机构的基本类型
四、死点
C1 F A C2 D
F B1 γ=0
B2
γ=0
曲柄摇杆机构中,以摇杆为原动件,摇杆处在 两极限位置时(当曲柄与连杆共线时),γ=0,这 时通过连杆传给从动件曲柄的力恰好通过其回转中 心,使机构出现“顶死”现象。该位置称死点位置。
第 2章 平面连杆机构解读
双曲柄机构
两连架杆都作整周转动的铰链 四杆机构称为双曲柄机构。通 常,主动曲柄匀速转动,从动 曲柄变速转动。 无死点。 左图所示的转动翼板式水泵就 是典型应用。转动翼板式水泵 由相位依次相差90°的四个双 曲柄机构组成,当主动曲柄AB 顺时针匀速转动时,从动曲柄 CD作周期性变速转动,相邻两 个机构的从动曲柄所夹的角时 大时小,导致容积作周期性的 变化,从而起到吸水、泵水的 作用。
41
爬行机构由简单的曲柄滑块机构和上下两个自锁套组合而成。电动机与 曲柄固接,驱动装置运动,上下两个自锁套是实现爬杆的关键机构。当 自锁套有向下运动趋势时,锥套、钢球、圆杆之间会形成可靠的自锁, 使装置不能下滑,而上行时自锁解除。
爬 杆 机 器 人
42
作业
P43 2-6题中图a) (用作图法)
43
第 2章 平面连杆机构
铰链四杆机构 铰链四杆机构的基本型式及演化 平面四杆机构的基本特性
平面四杆机构的设计
平面连杆机构
平面 连杆机构 是构件全 部由平面 低副连接 而构成的 机构。
2பைடு நூலகம்
平面连杆机构的特点
优点 1. 低副是面接触,因此压强小、耐磨损。适用于载荷较大 的场合。 2. 低副的接触面通常是容易加工的平面或圆柱面,容易获 得较高的制造精度。 3. 低副的约束为几何约束(靠形状限制运动),无需附加约束 装置。 4. 连杆可做得很长,可较长距离传递运动。适合于操纵机 构。 5. 平面四杆机构运动时,其连杆通常作平面复杂运动,连杆 上每一点的轨迹曲线的形状随点在连杆上的位置和各杆相 对尺寸的不同而变化。可以利用连杆曲线的这种多样性来 实现我们需要的复杂轨迹。
15
平面连杆机构
②用三点定心 法确定两固定 铰链A、D。
B2 B3
A
C1 C2 C3
D
§2-4 平面四杆机构的设计
注意: 1)若连杆长度给定,已知三位置,有唯一解; 2)若已知两位置,有无穷多解; 3)若已知四位置, BC不能任意选定。但总可以在连杆上找到
一些点,其四个位置在同一圆上,涉及布尔梅斯特尔理论。 4)若已知五位置,可能有解,也可能无解。
另一个位置的反向所夹的角度。0⁰<θ<180⁰
§2-3 平面四杆机构的基本知识
C2
B2
θ
Ψmax
C1
A
D B1
极位夹角>90
§2-3 平面四杆机构的基本知识
若ω1=常数
1 1800 2 1800
t1 t 2 , v1 v2
行程速比系数K
C
B 1
C1 v2
C2
B2
φ1 A
D
φ2
B1
K
v2 v1
作图法 3. 设计方法 解析法
实验法
§2-4 平面四杆机构的设计
实现预定的连杆位置
飞机起落架机构 要求实现机轮放下和收起两个位置。
铸造翻砂机构 要求实现两个翻转位置。
§2-4 平面四杆机构的设计
实现预定的从动件运动规律(位置、速度或加速度)
慢 快
车门开闭机构
要求实现车门两组对应位置, 及转向相反。
能作整周转动的连架杆
c
a
存在曲柄的充要条件是:
A
d
D
1)机架和连架杆中必有一杆是最短杆;
2)最短杆+最长杆≤其余两杆之和。
推论:
固定最短杆
双曲柄机构
固定最短杆的邻杆 最短杆+最长杆≤其余两杆之和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 2.2 2.3 2.4 平面四杆机构的基本形式 平面四杆机构的特性 其它形式的四杆机构 四杆机构的设计
1
第2章 平面连杆机构 平面连杆机构:由若干个刚性构件,用低副(转动副
或移动副)相互联接而组成的在同一平面或相互平行的 平面内运动的机构,也称为平面低副机构。 由四个构件通过低副联接而成的平面连杆机构称为
拉直共线
在B 1C 1D :
c
C1 B1
重叠
C2
AB 1 AD B 1C 1 C 1D
a
d
A 在△B1C1D中:
a+d≤b+c
D
A l B2 l4 l2 l3 1 D
AC D : 在△B2C在 2D中: 2 b ≤(d-a)+c l 即 a+b≤d+c 1 l2 l3 l
平面四杆机构。它的应用非常广泛,而且是组成多杆机 构的基础。
构件之间全部是用转动副联接的平面四连杆机构,
称为铰链四连杆机构。 它是平面四杆机构中最基本的形式, 其他形式的四杆 机构都是在它的基础上演化而成的。
2
2.1 平面四杆机构的基本形式 铰链四杆机构 基 机架-参考系(固定件) 连架杆 本 构 连架杆-与机架相联 件 连杆-不与机架相联
( 摇杆主动 )
5
2.1 平面四杆机构的基本形式
2、双曲柄机构
特征:两连架杆均为曲柄 ┌主动曲柄: 匀速转动 作用: └从动曲柄: 变速(或匀速)转动 应用:惯性筛
惯性筛
6
2.1 平面四杆机构的基本形式 平行四边形机构 —相对两杆平行且相等的双曲柄机构。
特性:▲两曲柄同速同向转动 ▲连杆作圆周平动
AB = CD
BC = AD
挖土机挖掘机构
摄影平台升降机构
机车车轮联动机构
7
2.1 平面四杆机构的基本形式
平行四边形机构在共线位置出现运动不确定;
B1
1
2 3
C1
C" 3 C2 ˊ C 3
A
B2
B3
D
措施:采用两组机构错开排列。
机车轮联动机构
8
2.1 平面四杆机构的基本形式 反平行四边形机构 —相对两杆相等但不平行的双曲柄机构。 特性:▲两曲柄转动方向相反 ▲且角速度不相等
门窗启闭机构
9
2.1 平面四杆机构的基本形式
3、双摇杆机构
特征:两连架杆均为摇杆 ┌主动摇杆: 摆动 作用: └从动摇杆: 摆动 应用:风扇摇头机构、起重机、飞机起落架
蜗轮 C C B B 电机 B A A A D 蜗杆 风扇座
车辆前轮转向机构
10
2.1 平面四杆机构的基本形式 2.1.2 曲柄存在的条件 b
2.2 平面四杆机构的特性 2.2.2 压力角与传动角
压力角:从动件受力点受
C”
l3 3 B 2 B” l2 A 1
Fn
C
F
C’
Ft
vc
力方向与速度方向之间所夹 之锐角。
l4
4
D B’ l1 1
作用在从动件受力点的力为F, Ft F cos 有效分力 分解: F F sin 无效分力 n 传动角:压力角的余角。即: =900 -。 常用来检验传力性能。愈大,机构传力性能愈好。
曲柄摇杆机构
双曲柄机构
双摇杆机构
一曲一摇
二曲
二摇
4
2.1 平面四杆机构的基本形式
1、曲柄摇杆机构
特征:曲柄+摇杆 ┌曲柄→(一般)原动件→圆周转动(匀速) 作用: └摇杆→(一般)从动件→往复摆动(变速)
应用: 雷达天线、搅拌机、缝纫机、刮雨器、 破碎机
雷达天线俯仰机构
搅拌机构
缝纫机踏板机构
( 曲柄主动 )
传力要求 min 400~500。
15
2.2 平面四杆机构的特性 2.2.3 死点位置(主动件条件)
当摇杆为主动件,,,机构的这种位置 死点位置 。
当摇杆为主动件,连杆和曲柄共线时(传动角 =00 ),过 铰链中心A的力,对A点不产生力矩,不能使曲柄转动,机构的这
1
A
B2
Dห้องสมุดไป่ตู้
2 ∵ φ1= 180°+θ ; φ2= 180°-θ B1 即φ 1> φ 2 , ∴ t1>t2 ⌒ 铰链C的平均速度:v1 =C1C2/t1 ∴v1<v2 ⌒ v2 =C1C2/t2 行程速比系数K:
当曲柄等速转动时,摇 杆来回摆动的速度是不 同,返程的速度较大。
机构的这种运动特性称 为急回运动特性。
c≤(d-a)+b 即 a+c≤d+b 将上式两两相加,可得:
a≤d,a≤b,a≤c
l1 l 2
l1 l3 l1
即AB杆为最短杆。
11
2.1 平面四杆机构的基本形式
由上述关系可推出在铰链四杆机构中,存在曲柄的条件: (1)最短杆与最长杆之和小于或等于其余两杆长度之和; (2)最短杆或其相邻杆为机架。 根据曲柄存在的条件,推论: (1)在最短杆与最长杆之和小于或等于其余两杆长度之和条件 下: a、取最短杆为机架时,两连架杆同时成为曲柄,则得双曲柄 机构。 b、取最短杆相邻的杆件为机架,两连架杆中一个为曲柄,另 一个为摇杆,则得曲柄摇杆机构。 c、取与最短杆相对的杆件为机架,两连架杆都不能整周回转, 则得双摇杆机构。 (2)在最短杆与最长杆之和大于其余两杆长度之和条件下,该 12 机构只能是双摇杆机构。
B
1 2 连杆 C 3 4 D 机架
连架杆
A
连接架中能够相对于机架做360°整圆周运动的构件;
称为曲柄;
连架杆中不能够相对于机架做360 °整圆运动,而只能 在小于360 °的范围内做往复摆动的构件, 称为摇杆。
3
2.1 平面四杆机构的基本形式 2.1.1 铰链四杆机构的基本类型和应用
铰链四杆机构
C 1C 2 / t2 t1 1 / 1 180 K 1 C 1C 2 / t1 t2 2 / 2 180
只要θ ≠ 0 ,就有K>1; 且θ越大,K值越大,急回性质越明显。 14 K 1 180 设计新机械时,往往先给定K值,于是: K 1
2.1 平面四杆机构的基本形式
e.g.1 如图,当分别取1、2、3、4为机架各获得何种机构?
13
2.2 平面四杆机构的特性 2.2.1 急回运动特性
摇杆摆角ψ:摇杆CD两极限位置间的夹角。 极位夹角 :此时曲柄AB对应位置所夹的锐角。
曲 柄 摇 杆 B 工作行程 B1→B2 (φ1,t1) C1→C2 (ψ,t1) 空回行程 B2→B1 (φ2,t2) C2→C1 (ψ,t2) C C1 C2