第六章 平面连杆机构的运动分析和设计2

合集下载

平面连杆机构

平面连杆机构
平面四杆机构具有整转副 则可能存在曲柄。
设l1 < l4,连架杆若能整周回 转,必有两次与机架共线。
由△B2C2D可得:
由△B1C1D可得:
l3≤(l4 –l1) + l2 l2≤(l4– l1) + l3
l1+l4≤ l2 + l3
l1+ l3 ≤ l2 + l4 l1+l2 ≤ l3 + l4
当满足杆长条件时,其 最短杆上的转动副都是 整转副。
此时,铰链A、B均为 整转副。
同理,若 l1 > l4,可得:
l4≤ l1 , l4≤ l2 , l4≤ l3
即: AD为最短杆
▲最长杆与最短杆的长度之和 > 其他两杆长度之和, 双摇杆机构。
曲柄存在的条件:(Grashof 定理) ▲最长杆与最短杆的长度之和 ≤ 其他两杆长度之和
曲柄滑块机构的急回特性分析
应用:节省回程时间,提高生产率。
导杆机构的急回特性
称为杆长条件。
▲连架杆之一为最短杆,曲柄摇杆机构。 ▲机架为最短杆,双曲柄机构。 ▲最短杆对边为机架,双摇杆机构。
2.压力角和传动角 压力角:作用在从动 件上的驱动力F与力 作用点绝对速度之间 所夹锐角α。
切向分力 Ft= Fcosα = Fsinγ
法向分力 Fn= Fcosγ γ↑ Ft↑ 对传动有利。 γ是α的余角。 常用γ的大小来表示机构传力性能的好坏, 称γ为传动角。
K = V2 = C1C2 V1 C1C2
t2 t1
= t1 t2
=180°+θ 180°- θ
只要极位夹角θ ≠ 0 , 就有 K>1。
而且θ越大,K值越大,机构的急回性质越明显。

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。

本文将对平面连杆机构进行介绍,并探讨其设计原理。

平面连杆机构是由至少一个定点和至少三个连杆组成的机构。

定点为固定参考点,连杆是由铰链连接的刚性杆件。

连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。

平面连杆机构的运动由这些连杆的位置和相互连接方式决定。

平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。

运动类型可以是旋转、平移、摆动、滑动等。

通过运动分析,可以确定连杆的长度和相互连接的方式。

2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。

例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。

3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。

静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。

4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。

运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。

5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。

通过运动分解,可以确定每个连杆的运动规律,从而进行设计。

当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。

具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。

2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。

根据机构的运动要求和外力作用,确定连杆的长度。

3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。

4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。

5.结构设计:根据上述分析和计算结果,进行结构设计。

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案—平面连杆机构及其分析与设计

机械原理课程教案一平面连杆机构及其分析与设计一、教学目标及基本要求1掌握平面连杆机构的基本类型,掌握其演化方法。

2,掌握平面连杆机构的运动特性,包括具有整转副和存在曲柄的条件、急回运动、机构的行程、极限位置、运动的连续性等;3.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转换为可用计算机解决的问题。

4.掌握连杆机构的传力特性,包括压力角和传动角、死点位置、机械增益等;正确理解自锁的概念,掌握确定自锁条件的方法。

5,了解平面连杆机构设计的基本问题,掌握根据具体设计条件及实际需要,选择合适的机构型式;学会按2~3个刚体位置设计刚体导引机构、按2~3个连架杆对应位置设计函数生成机构及按K值设计四杆机构;对机构分析与设计的现代解析法有清楚的了解。

二、教学内容及学时分配第一节概述(2学时)第二节平面连杆机构的基本特性及运动分析(4.5学时)第三节平面连杆机构的运动学尺寸设计(3.5学时)三、教学内容的重点和难点重点:1.平面四杆机构的基本型式及其演化方法。

2.平面连杆机构的运动特性,包括存在整转副的条件、从动件的急回运动及运动的连续性;平面连杆机构的传力特性,包括压力角、传动角、死点位置、机械增益。

3.平面连杆机构运动分析的瞬心法、相对运动图解法和杆组法。

4.按给定2~3个位置设计刚体导引机构,按给定的2~3个对应位置设计函数生成机构,按K值设计四杆机构。

难点:1.平面连杆机构运动分析的相对运动图解法求机构的加速度。

2.按给定连架杆的2~3个对应位置设计函数生成机构。

四、教学内容的深化与拓宽平面连杆机构的优化设计。

五、教学方式与手段及教学过程中应注意的问题充分利用多媒体教学手段,围绕教学基本要求进行教学。

在教学中应注意要求学生对基本概念的掌握,如整转副、摆转副、连杆、连架杆、曲柄、摇杆、滑块、低副运动的可逆性、压力角、传动角、极位夹角、行程速度变化系数、死点、自锁、速度影像、加速度影像、装配模式等;基本理论和方法的应用,如影像法在机构的速度分析和加速度分析中的应用、连杆机构设计的刚化一反转法等。

《平面连杆机构设计》课件

《平面连杆机构设计》课件
定义:平面连杆机构是由一系列刚性杆件通过转动副或移 动副相互连接,并按照预定的顺序或模式进行运动传递的 机构。
在此添加您的文本16字
特点
在此添加您的文本16字
结构简单,易于设计和制造。
在此添加您的文本16字
具有较大的传递力矩的能力。
在此添加您的文本16字
运动形式和运动轨迹相对固定,易于实现精确控制。
平面连杆机构的运动分析
运动分析的基本概念
平面连杆机构定义
平面连杆机构是由若干个刚性构件通 过低副(铰链或滑块)连接而成的机 构,构件之间的相对运动都在同一平 面或相互平行平面内。
运动分析目的
通过分析平面连杆机构的运动特性, 确定各构件之间的相对位置、相对速 度和相对加速度,为机构设计、优化 和性能评估提供依据。
在此添加您的文本16字
适用于多种类型的运动转换和传递,如转动、摆动、移动 等。
平面连杆机构的应用
农业机械
如收割机、拖拉机等,利用平面连杆机构实 现谷物、饲料的收割和运输。
轻工机械
如包装机、印刷机等,利用平面连杆机构实 现纸张、塑料薄膜等的传送和加工。
矿山机械
如挖掘机、装载机等,利用平面连杆机构实 现土石的挖掘、装载和运输。
发展趋势:随着科技的进步和应用需求 的多样化,平面连杆机构的设计和制造 技术也在不断发展和创新。
数字化设计和仿真技术的运用,提高了 设计效率和准确性。
PART 02
平面连杆机构的基本类型
曲柄摇杆机构
曲柄摇杆机构是一种常见的平面 连杆机构,由曲柄、摇杆和连杆
组成。
曲柄作为主动件,匀速转动,带 动连杆摆动,摇杆作为从动件,
运动分析的实例
四杆机构
以曲柄摇杆机构为例,通过解析 法分析曲柄的转速、摇杆的摆角 以及各构件之间的相对速度和加

平面六杆机构的运动分析

平面六杆机构的运动分析

平面六杆机构的运动分析
1.确定机构的几何特性:首先,需要根据机构的构件和铰链的几何特
性确定机构的几何特性。

这包括确定构件的长度、铰链的位置和角度。

2.建立机构的运动方程:根据机构的几何特性,可以建立机构的运动
方程。

运动方程描述了机构各构件之间的运动关系,可以通过几何关系和
运动链法建立运动方程。

3.解决运动方程:通过求解运动方程,可以得到机构各构件的位置、
速度和加速度。

这可以通过数值方法或解析方法来完成。

4.分析机构的运动特性:根据机构的运动方程和解决的结果,可以分
析机构的运动特性。

这包括机构的平稳性、运动范围、速度和加速度的变
化等。

5.优化机构的设计:根据分析的结果,可以对机构的设计进行优化。

例如,可以调整构件的长度、角度和铰链的位置,以改善机构的运动性能。

总之,平面六杆机构的运动分析是研究和设计机械系统的重要步骤。

通过分析机构的运动特性,可以优化机构的设计,提高机械系统的性能和
效率。

因此,对平面六杆机构的运动分析有着重要的理论和实际意义。

机械原理-平面连杆机构的运动分析和设计

机械原理-平面连杆机构的运动分析和设计

平面连杆机构的设计流程和方法
在这个部分中,我们将深入探讨平面连杆机构的设计,介绍流程和方法,提供实际案例分析,帮助您了解如何设 计成功的机械。
1.
需求分析
将客户的需求转化为机械设计
目标。
2.
构思和设计
基于机械原理构思和设计机械
装备支撑结构,并采用 CAD 软
件实施初始的草图或模型。
3.
材料选择
选择合适的材料和工艺,确保
结构和类型
平面连杆机构通常由零件精细制 造而成,以满足工业和商业目的 的要求。
工程应用
机械工程师们可以使用平面连杆 机构来完成各种复杂的任务,如 发动机和自动化流水线等。
日常应用
平面连杆机构可以进一步应用在 日常用品中,如钟表、洗衣机和 自动售货机等。
平面连杆机构的运动分析方法
在这个部分中,我们将探索平面连杆机构的运动学和动力学,介绍运动方程和速度方程,以及如何用数学 公式计算不同零件的运动和速度。
1 平衡条件
平衡是指物理系统中所有力和运动之间所需达到的状态,这是机械工程师需要考虑的重 要问题。
2 稳定性
稳定性是一个重要的物理学概念,涉及动量、速度和质量,能够帮助工程师在设计平面 连杆机构时考虑不同零件的状态和取向。
3 应用场景
平面连杆机构无处不在,具有开发良好设计的潜力,是自动化流水线的核心,也是钟表、 汽车和机器人的重要部分。
1
运动学
运动学研究物体运动的规律和运动参数,如位移、速度、加速度等。
2
动力学
动力学研究物体的运动状态和运动参数之间的关系,如动量、力和功等。
3
数值模拟
数字计算能够预测机械零件的运动,利用计算机模拟机械过程,提高设计效率。

机械设计基础-平面连杆机构

机械设计基础-平面连杆机构

平面连杆机构的运动分析
运动分析是设计平面连杆机构中的重要步骤,通过分析各部件的运动规律和 约束关系,可以确定机构的性能和工作范围。
实例与案例分析
案例一
设计一个机械手臂,使其能够在不同位置和角度进 行精确定位。
案例二
设计一个车门开闭机构,使其能够平稳地打开和关 闭。
机械设计基础-平面连杆机构
这个幻灯片将介绍平面连杆机构的基本知识,包括组成、作用、种类、设计 要点、运动分析以及实例与案例分析。
平面连杆机构简介
平面连杆机构是一种常见而重要的机械传动机构,它由连杆、铰链和机构连接件组成,用于将旋转运动转化为 直线运动或相反。
平面连杆机构的组成
连杆
起支撑作用,将旋转运动转化为直线运动。
由滑块和曲杆组成,常用于发动 机的活塞连杆传动。
四连杆机构
由四个连杆组成,常见于机械手 臂和门的开闭机构。
平面伸缩杆机构
通过类似电车接触网的结构实现 伸缩变形。
平面连杆机构的设计要点
1
连杆比例设计
确定连杆的比例关系以实现所需的运动。
铰链选型
2
选择合适的铰链类型和尺寸以满足设计
要求。
3
机构连接方式
选择适当的机构连接件和连接方式以保 证机构的稳定性。
铰链
连接连杆和机构连接件,使其能够相对运动。
机构连接件
固定在机构上,用于连接铰链和机构化为直线运动或相反。
2 传递力量
通过连杆将动力从一个地方传递到另一个地方。
3 控制位置
通过调整连杆的长度和角度来控制机构的位置。
平面连杆机构的种类
滑块曲杆机构

平面连杆机构设计分析及运动分析综合实验

平面连杆机构设计分析及运动分析综合实验

实验二平面连杆机构设计分析及运动分析综合实验一、实验目的:1、掌握机构运动参数测试的原理和方法。

了解利用测试结果,重新调整、设计机构的原理。

2、体验机构的结构参数及几何参数对机构运动性能的影响,进一步了解机构运动学和机构的真实运动规律。

3、熟悉计算机多媒体的交互式设计方法,实验台操作及虚拟仿真。

独立自主地进行实验内容的选择,学会综合分析能力及独立解决工程实际问题的能力,了解现代实验设备和现代测试手段。

二、实验内容1、曲柄滑块机构及曲柄摇杆机构类型的选取。

2、机构设计,既各杆长度的选取。

(包括数据的填写和调整好与“填写的数据”相对应的试验台上的杆机构的各杆长度。

)3、动分析(包括动态仿真和实际测试)。

4、分析动态仿真和实测的结果,重新调整数据最后完成设计。

三、实验设备:平面机构动态分析和设计分析综合实验台,包括:曲柄滑块机构实验台、曲柄摇杆机构实验台,测试控制箱,配套的测试分析及运动仿真软件,计算机。

四、实验原理和内容:1、曲柄摇杆机构综合试验台①曲柄摇杆机构动态参数测试分析:该机构活动构件杆长可调、平衡质量及位置可调。

该机构的动态参数测试包括:用角速度传感器采集曲柄及摇杆的运动参数,用加速度传感器采集整机振动参数,并通过A/D板进行数据处理和传输,最后输入计算机绘制各实测动态参数曲线。

可清楚地了解该机构的结构参数及几何参数对机构运动及动力性能的影响。

②曲柄摇杆机构真实运动仿真分析:本试验台配置的计算机软件,通过建模可对该机构进行运动模拟,对曲柄摇杆及整机进行运动仿真,并做出相应的动态参数曲线,可与实测曲线进行比较分析,同时得出速度波动调节的飞轮转动惯量及平衡质量,从而使学生对机械运动学和动力学,机构真实运动规律,速度波动调节有一个完整的认识。

③曲柄摇杆机构的设计分析:本试验台配置的计算机软件,还可用三种不同的设计方法,根据基本要求,设计符合预定运动性能和动力性能要求的曲柄摇杆机构。

另外还提供了连杆运动轨迹仿真,可做出不同杆长,连杆上不同点的运动轨迹,为平面连杆机构按运动轨迹设计提供了方便快捷的虚拟实验方法。

机械原理课程设计--六杆机构运动与动力分析

机械原理课程设计--六杆机构运动与动力分析

目录第一部分:六杆机构运动与动力分析一.机构分析分析类题目 3 1分析题目 32.分析内容 3 二.分析过程 4 1机构的结构分析 42.平面连杆机构运动分析和动态静力分析 53机构的运动分析8 4机构的动态静力分析18 三.参考文献21第二部分:齿轮传动设计一、设计题目22二、全部原始数据22三、设计方法及原理221传动的类型及选择22 2变位因数的选择22四、设计及计算过程241.选取两轮齿数242传动比要求24 3变位因数选择244.计算几何尺寸25 五.齿轮参数列表26 六.计算结果分析说明28 七.参考文献28第三部分:体会心得29一.机构分析类题目3(方案三)1.分析题目对如图1所示六杆机构进行运动与动力分析。

各构件长度、构件3、4绕质心的转动惯量如表1所示,构件1的转动惯量忽略不计。

构件1、3、4、5的质量G1、G3、G4、G5,作用在构件5上的阻力P工作、P空程,不均匀系数δ的已知数值如表2所示。

构件3、4的质心位置在杆长中点处。

2.分析内容(1)对机构进行结构分析;(2)绘制滑块F的运动线图(即位移、速度和加速度线图);(3)绘制构件3角速度和角加速度线图(即角位移、角速度和角加速度线图);(4)各运动副中的反力;(5)加在原动件1上的平衡力矩;(6)确定安装在轴A上的飞轮转动惯量。

图1 六杆机构方案号L DF(mm)L CE(mm)L CD(mm)L AB(mm)L AC(mm)n1r/minJ S3kg.m2J S4kg.m23 510 575 170 140 375 80 0.22 0.16方案号G1(kg)G3(kg)G4(kg)G5(kg)P工作(N)P空程(N)δ3 14 75 55 80 1400 140 1/40二.分析过程:通过CAD制图软件制作的六杆机构运动简图:图2 六杆机构CAD所做的图是严格按照题所给数据进行绘制的。

并机构运动简图中活动构件的序号从1开始标注,机架的构件序号为0。

02平面连杆机构的设计计算

02平面连杆机构的设计计算

02平面连杆机构的设计计算设计计算是指根据设计要求和机构参数进行计算,以确定机构的尺寸、材料和工作性能等技术指标的过程。

本文将介绍02平面连杆机构的设计计算,包括机构类型选择、杆件尺寸设计和运动性能分析等。

一、机构类型选择1.传动比要求:根据实际需要确定机构的传动比,即输入与输出杆件的运动比值。

2.运动要求:根据机构所需完成的运动类型和精度要求,选择适合的机构类型。

3.结构紧凑度:考虑机构安装空间、结构合理性和制造工艺等因素,选择紧凑、易制造的机构类型。

二、杆件尺寸设计杆件尺寸设计是机构设计的关键环节,决定着机构的强度、刚度和运动特性。

具体步骤如下:1.确定负荷:根据使用条件和设计要求,确定机构的负荷、转矩和速度等参数。

2.计算受力:根据杆件的位置和受力情况,计算杆件的拉压应力和弯矩等。

3.材料选择:根据受力情况和材料性能,选择合适的材料,如碳钢、合金钢等。

4.尺寸计算:根据受力计算结果,计算杆件的截面尺寸、直径和长度等。

5.强度校核:根据材料强度和尺寸,进行强度校核,确保杆件在工作条件下不发生破坏。

6.刚度分析:根据杆件尺寸和连接方式,计算机构的刚度和变形情况,确保机构的工作精度。

三、运动性能分析运动性能分析是对机构运动特性进行计算和评估的过程,对于确定机构的工作性能和优化设计具有重要意义。

具体步骤如下:1.运动解析:根据机构的运动模式和约束条件,进行运动解析,得到机构的运动方程和转角速度等。

2.运动参数计算:根据机构的运动方程和参数,计算机构的位移、速度、加速度和滑动速度等。

3.动力学分析:对机构的动力学特性进行计算和分析,包括惯性力、弹性力和粘性力等。

4.稳定性分析:对机构的稳定性进行分析,确保机构的运动平稳和可靠性。

5.优化设计:根据运动性能分析结果,对机构的参数和结构进行优化设计,提高机构的工作效率和精度。

总结:02平面连杆机构的设计计算是通过选择合适的机构类型、进行杆件尺寸设计和运动性能分析,来确定机构的尺寸、材料和工作性能等指标。

机械基础-平面连杆机构

机械基础-平面连杆机构

化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。

平面机构的运动分析

平面机构的运动分析
瞬心Pij表示构件i与构件j的瞬心 相对速度为零的重合点; 绝对速度相同的重合点
2、机构中瞬心的数目
因为每两个构件就有一个瞬心所以由N个构件 含机架组成的机构总的瞬心数K为
k = NN-1 / 2
N----机构中的构件含机架数
构件数 4 瞬心数 6
56
8
10 15 28
2.2.2 速度瞬心的求法
举例:求曲柄滑块机构的速度瞬心
解:瞬心数为:N=nn-1/2=6 n=4
1.作瞬心多边形圆
2.直接观察求瞬心
3.三心定律求瞬心
P13
1

4
2
P24 P23
3
P14
3
P12
2
P34 4
1
铰链四杆机构曲柄摇杆机构 已知:各杆长度及ω1;
求:所有瞬心及ω3..
解:K=6 即 P12、P13、P14、P23、P24、P34 其中 P12、P14、P23、P34由定义求得;
由定义瞬心P12应是构件1和2上的绝对速度相同大 小相等、方向相同的等速重合点故瞬心P12必不在K 点
只有当P12位于P13、P23的连线上时构件1及2的重合点 的速度方向才能一致
故P12与P13 P23必在同一 直线上即第三个瞬心P12 应与P13 P23共线
2.2.3 速度瞬心在机构速度分析中的应用
2.3 用矢量方程解析法作平面机构速度和加速度分析
矢量方程图解法的基本原理和作法
矢量方程图解 相对运动图解法
依据的原理 理论力学中的 运动合成原理
基本作法
1. 根据运动合成原理列机构运动的矢量方程 2. 根据按矢量方程图解条件作图求解
机构运动 分析两种 常见情况
◆同一构件上两点间速度及加速度的关系

机械原理 平面连杆机构及设计课件

机械原理 平面连杆机构及设计课件

仿真分析
利用计算机仿真软件对机构进行模拟分析, 评估其性能。
实验测试
通过实际测试机构的性能,与理论分析进行 对比验证。
优化算法
采用遗传算法、粒子群算法等智能优化算法 ,对机构参数进行优化。
04
平面连杆机构的运 动分析
机构运动的基本方程
01
平面连杆机构的基本运动方程是 根据机构的运动学和动力学特性 建立的,它描述了机构中各构件 之间的相对运动关系。
刚度对机构性能的影响
刚度不足会导致机构运动失 真、振动等问题,影响其正 常工作。
06
平面连杆机构的实 例分析
曲柄摇杆机构的实例分析
曲柄摇杆机构是一种常见的平面连杆机构,它由曲柄、摇杆、连杆和机架组成。 曲柄旋转,通过连杆传递运动给摇杆,使摇杆在一定范围内摆动。
实例:缝纫机脚踏板机构。缝纫机脚踏板机构就是一个典型的曲柄摇杆机构的应 用。当脚踏板转动时,通过连杆将运动传递给摇杆,使机头上下摆动,完成缝纫 工作。
应力分析
通过计算机构各构件在工作状态下的应力分布,评估其强度是否 满足设计要求。
疲劳强度
考虑机构在循环载荷作用下的疲劳强度,预测其使用寿命。
可靠性分析
基于概率论和统计学方法,评估机构在各种工作条件下的可靠性。
机构的刚度分析
刚度定义
刚度表示机构抵抗变形的能 力。
刚度分析方法
通过有限元分析、实验测试 等方法,评估机构的刚度性 能。
双曲柄机构的实例分析
双曲柄机构由两个曲柄、连杆和机架组成。两个曲柄同时旋 转,通过连杆传递运动,使另一个曲柄产生相对的旋转运动 。
实例:飞机起落架机构。飞机起落架机构中的前轮转向机构 就是一个双曲柄机构的应用。当飞机滑行时,双曲柄机构使 前轮左右摆动,实现飞机的前轮转向。

平面连杆机构的运动分析和设计实用教案

平面连杆机构的运动分析和设计实用教案
其 中 Lmin :最短杆长度 L m ax :最长杆长度
P, Q: 其余两杆的长度
Grashof机构(jīgòu) : 满足条件 Lmin + Lmax ≤ P +Q的机构(jīgòu)。
第15页/共57页
第十六页,共57页。
平面(píngmiàn)四杆机构存在曲柄的条 件
Lmin + Lmax ≤ P +Q 最短杆为机架或连架杆
动画链接(liàn jiē)
第23页/共57页
第二十四页,共57页。
讨论:机构(jīgòu)的初始装配状态与
可行域
在 机构的运动过程中是不会发生变化的原因
第24页/共57页
第二十五页,共57页。
急回运动
当曲柄等速回转的情况下,通常 (tōngcháng)把从动件往复运动速度快慢 不同的运动称为急回运动。
a21x1 a22 x2 ...... a2n xn b2
...........
an1x1 an2 x2 ...... ann xn bn
x , x ,..... x 其中
为 待求变量。
12
n
方 程组可以简写为
( 5---5´)
Ax b
则 方程组的解为
(5---6)
x A1b
第38页/共57页
c (d a) b
acd b
两 两相加
动画演示
ac ab ad
最短杆与最长杆之和小于等于其它两杆长度之和
a最短
第14页/共57页
第十五页,共57页。
补充:Grashof曲柄存在(cúnzài)条

Lmin + Lmax ≤ P +Q 则最短杆两端的转动(zhuàn dòng)副均为周转副;其余转 动(zhuàn dòng)副为摆转副。

机械设计基础项目一 任务3 平面连杆机构分析与设计

机械设计基础项目一 任务3 平面连杆机构分析与设计

为0 °(转向点),从动曲柄可能向正反两个方向
转动,机构运动不确定,平行四边形机构可能变成 反平行四边形机构。
B 2 C 1 A 4 3 D
双摇杆机构,也有死 点位置,在实际设计中常 采用限制摆杆的角度来避 免死点位置。
克服的方法: 安装飞轮,利用惯性克服死点(例如:内燃机、
缝纫机)
例:缝纫机借助于带轮
△ B′C′D和△ B〞C〞D成立
由△B〞C〞D得 a+d≤b+c (1) 由△B′C′D得 或 b≤(d-a)+c c≤(d-a)+b a+b≤d+c a+c≤b+d (2) (3)
由式(1)、(2)、(3)得
a≤c a≤b a≤d a为最短杆
整转副存在条件
四杆长度满足杆长条件:最短杆与最长杆长度之和
知极为夹角θ为:
k 1 180 k 1
四杆机构有无急回运动,取决于曲柄与连杆共
线位置的夹角,即有无极位夹角,不论是何种机构,
只要机构在运行过程中具有极位夹角,则该机构就
具有急回作用。
角越大,则K 值越大,说明急回运动的性质也 越显著。
曲柄滑块机构
B
l1
A
l2
B2
e
C
工作行程 aθ b B1 l 1 l C C1 2 A A e e
缺点: 连杆机构一殷具有较长的运动链,各构件的尺寸误 差和运动副中的间隙将使连杆机构产生较大的积累
误差,也使机械效率降低。
连杆及滑块作变速运动,其惯性力难于平衡,会增
加机构的动载荷,一般不宜用于高速传动。
设计过程却十分繁难,在多数情况下一般只能近似 地得以满足。
四杆机构:由四个构件组成的平面连杆机构

机械原理之平面连杆机构

机械原理之平面连杆机构
机械原理之平面连杆机构
平面连杆机构是一种常见的机械原理,应用广泛。本 presentation 将介绍平面 连杆机构的构成、运动规律、设计方法、应用案例等内容,帮助您深入了解 这一重要机构。
什么是平面连杆机构
平面连杆机构是由杆件和连接点组成的机械系统,可以实现直线运动、旋转运动和复杂的机构运动。
平面连杆机构的应用范围
4 活动副
平面连杆机构中杆件间的连接关系,包括铰 接、滑动等。
平面连杆机构的种类
单曲柄平面四杆机构
使用一个曲柄连接四个连杆, 常用于某些简单的转换运动。
双曲柄平面四杆机构
使用两个曲柄连接四个连杆, 比单曲柄机构更复杂,能实现 更灵活的变换运动。
六杆机构
由六个连杆组成的机构,具有 更多自由度,可以实现复杂的 机械运动。
打印机
打印机中的平面连杆机构控制打印头的移动, 实现文字和图像的打印。
机器人
机器人的运动分部中使用平面连杆机构来实现 腿部或手臂的运动。
平面连杆机构的未来发展趋势
1
智能化
随着科技的进步,平面连杆机构将更加智能化,实现自动化无人操作。
2
材料创新
新型材料的应用将提升平面连杆机构的强度和耐用性,推动机械工程的发展。
代数法
使用代数方程描述平面连杆机 构的位置、速度和加速度,刻 画机构的运动规律。
图像法
通过绘制机构运动的示意图, 直观展示连杆机构的运动特性。
平面连杆机构的应用案例
发动机
汽车发动机中的连杆机构将活塞运动转化为曲 轴旋转,提供动力。
摇滚机
摇滚机利用平面连杆机构的运动来实现摇摆, 并供儿童嬉戏和休闲。
平面连杆机构广泛应用于机械工程、汽车工业、航空航天、机器人等领域, 用于传输功率、转换运动、控制位置等。

平面连杆机构

平面连杆机构

【结论】曲柄存在的条件是:
①最长杆与最短杆的长度之和≤其他两杆长度之和。
②连架杆或机架之一为最短杆。
C
铰链四杆机构类型的判断: B
B
(1)若最短杆+最长杆≤其他两杆之和 A
①若选最短杆的相邻杆做机架——曲柄摇杆机构。
DA
②若选最短杆做机架——双曲柄机构。
B
③若选最短杆的对面的杆做机架——双摇杆机构。
利用死点实现某些功能。
钻床夹具
飞机起落架
3.3 平面四杆机构的运动设计
一、目的 根据给定的运动条件、动力条件、位置条件等,确
定机构运动简图的尺寸参数。 二、两类设计问题
1.实现给定点的运动轨迹的设计 2. 实现给定从动件的运动规律的设计; 三、设计方法 1. 解析法。便于得到精确的结果,但计算量大, 目前多采用计算机辅助优化设计; 2. 作图法。直观、简单。 3. 实验法。连杆曲线图谱设计。
θD
④作△P C1C2的外接圆,则A点必在此圆上;
P
⑤选定A,设曲柄为a ,连杆长为b ,则:
A C1= a+b ,A C2= b-a => a =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得:
a =EC1/ 2 b = A C1-EC1/ 2
(2) 曲柄滑块机构 设计步骤如下:
(2)若最短杆+最长杆>其他两杆之和
A
——双摇杆机构(无论何杆做机架)
B
A
C
D C
D C
D
铰链四杆机构类型的判断:


lmax+lmin ≤ l余1+l余2
不存在曲柄
双摇杆机构
可能有曲柄 固定件

机械原理大作业平面连杆机构的运动分析

机械原理大作业平面连杆机构的运动分析

机械原理大作业1报告名称平面连杆机构的运动分析学院机电学院专业机械设计制造及其自动化班级 05021001学号 2010301173姓名覃福铁同组人员勾阳采用数据第一组(1-A)平面六杆机构1.题目要求2.题目分析(1)建立封闭图形: L 1 + L 2= L 3+ L 4L 1 + L 2= L 5+ L 6+AG(2) 机构运动分析 a 、角位移分析由图形封闭性得:⎪⎪⎩⎪⎪⎨⎧⋅-⋅+=+-⋅-⋅+⋅⋅-⋅+=+-⋅-⋅+⋅⋅=⋅+⋅+⋅=⋅+⋅55662'2221155662'222113322114332211sin sin )sin(sin sin cos cos )cos(cos cos sin sin sin cos cos cos θθθαπθθθθθαπθθθθθθθθL L y L L L L L x L L L L L L L L L L G G 将上式化简可得:⎪⎪⎩⎪⎪⎨⎧=⋅-⋅+-⋅+⋅-=⋅-⋅+-⋅+⋅⋅-=⋅-⋅⋅-=⋅-⋅G G y L L L L L x L L L L L L L L L L L 66552'233466552'2331133221143322sin sin )sin(sin cos cos )cos(cos sin sin sin cos cos cos θθαθθθθαθθθθθθθθb 、角速度分析上式对时间求一阶导数,可得速度方程:⎪⎪⎩⎪⎪⎨⎧=⋅⋅-⋅⋅+⋅-⋅+⋅⋅=⋅⋅+⋅⋅-⋅-⋅-⋅⋅-⋅⋅-=⋅⋅-⋅⋅⋅⋅=⋅⋅+⋅⋅-0cos cos )cos(cos 0sin sin )sin(sin cos cos cos sin sin sin 66655522'233366655522'2333111333222111333222ωθωθωαθωθωθωθωαθωθωθωθωθωθωθωθL L L L L L L L L L L L L L 化为矩阵形式为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-⋅⋅=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-⋅⋅-⋅⋅⋅-⋅--⋅-⋅-⋅⋅⋅-00cos sin cos cos cos )cos(sin sin sin )sin(00cos cos 00sin sin 1111165326655332'26655332'233223322θθωωωωωθθθαθθθθαθθθθθL L L L L L L L L L L L L L c 、角加速度分析:矩阵对时间求一阶导数,可得加速度矩阵为:2233222333'223355665'22335566622332233'22sin sin 0cos cos 00sin()sin sin sin cos()cos cos cos cos cos 00sin sin 00cos(L L L L L L L L L L L L L L L L L θθεθθεθαθθθεθαθθθεθθθθθα-⋅⋅⎡⎤⎡⎤⎢⎥⎢⎥⋅-⋅⎢⎥⎢⎥⋅=⎢⎥⎢⎥-⋅--⋅-⋅⋅⎢⎥⎢⎥⋅-⋅⋅-⋅⎣⎦⎣⎦-⋅⋅-⋅⋅⋅-211221123123355665'2223355666cos sin )cos cos cos 0sin()sin sin sin 0L L L L L L L L L θωθωωθθθωθαθθθω⎡⎤⋅⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⋅⎢⎥⎢⎥⎢⎥⋅+⋅⎢⎥⎢⎥⎢⎥⋅⋅-⋅⎢⎥⎢⎥⎢⎥⋅-⋅⋅-⋅⎢⎥⎣⎦⎣⎦⎣⎦d 、E 点的运动状态位移:⎩⎨⎧⋅-⋅+=⋅-⋅+=55665566sin sin cos cos θθθθL L y y L L x x G EG E速度:⎪⎩⎪⎨⎧⋅⋅-⋅⋅=⋅⋅+⋅⋅-=555666555666cos cos sin sin ωθωθωθωθL L v L L v yx E E 加速度:⎪⎩⎪⎨⎧⋅⋅-⋅⋅+⋅⋅+⋅⋅-=⋅⋅+⋅⋅+⋅⋅-⋅⋅-=5552555666266655525556662666cos sin cos sin sin cos sin cos εθωθεθωθεθωθεθωθL L L L a L L L L a y x E E3.用solideworks 开发4.装备体动画截图5.计算结果 (1):各杆角位移(2):各杆角速度(3)各杆角加速度(4)E点位移(5)E点速度(6)E点加速度(7)E点轨迹6.本次大作业的心得体会:作为一名机械设计制造专业的学生,学好机械原理是非常重要的,而这次通过做机械原理大作业使我受益匪浅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可得: PiBi =
1i =i - 1
XBi – XPi YBi – YPi
P1 O
; P1B1 =
B1 Pi
1
XB1 – XP1 YB1 – YP1
Bi
i
x
分析二:讨论一般性
已知P点的位置,求解B点; 建立B1与Bi之间的关系。
Bi
XB1 = XP1 + LPB cos 1
y (1′)
B1 Pi
i
YB1 = YP1 + LPB sin 1
XBi = XPi + LPB cos i
P1 (2′)
1
YBi = YPi + LPB sin i
O
x
将 1i =i - 1 代入上式(2’):
XBi = XPi + LPB cos (1i + 1 ) YBi = YPi + LPB sin (1i + 1 )
分析过程:
❖ 机构类型:铰链四杆机构
曲柄摇杆机构:最短杆为连架杆
C
b2 B
1 a 1
A
c
3
d D
4
❖ 机构中各个构件的运动尺寸设计
已知:摇杆的长度
CD、摆角φ及行程速 比系数K
问题:设计曲柄摇
杆机构,求杆长、固 定铰链点位置。其中, 最短杆为连架杆
动画链接
作图过程
设计步骤 过程回放 结果校验
思考一下
1 i C1
A
C2 C3
D
x
XB1 = XA + LAB cos 1 YB1 = YA + LAB sin 1
(2)
XBi = XA + LAB cos i
(3)
YBi = YA + LAB sin i
假设:1i =i - 1
XBi = XA + LAB cos i = XA + LAB cos (1i + 1 )
x
XBi =XA + LAB (cos1i cos 1-sin 1i sin 1 )
(6)
YBi =YA + LAB (sin1i cos 1+cos1i sin 1 )
得:
XBi YBi
=
XA
YA
+
cos1i sin1i
-sin 1i +cos1i
LAB cos 1 LAB sin 1
(7)
或: XBi – XA YBi – YA
D
根据上式一般取:A、D、B1、C1为未知数。 一般取第一个位置为未知数,即B1、C1
❖ (5) B1、 B2、 B3之间的关系?
位移矩阵法:求B1、B2、B3之间的关系
求B1与B的其他位置的关系
令: B1为:XB1、 YB1
y B1
Bi为:XBi 、 YBi
A为:XA 、 YA
分析一
O
Bi
B2 B3
平面连杆机构设计内容:
❖ 机构的类型选择。 ❖ 机构中各个构件的运动尺寸设计
1、机构的类型选择
多自由度机构 单自由度机构
多杆机构(六杆或八杆)
铰链四杆机构 四杆机构
带移动副的机构
2、机构中各个构件的运动尺寸设计
机构的运动尺寸:
是指对机构的运动有影响的尺寸 运动副之间的距离(如杆长) 固定铰链点的位置 滑块导路的方向
6.6.2平面连杆机构运动设计的位移矩阵法
位移矩阵法
❖ 是解析法的一种; ❖ 基本思想:根据给定机构运动设计要求,
建立机构设计的数学模型,即设计方程, 再利用计算机进行求解;
❖ 设计关键:建立设计方程,求解运动参
数。
讨论:如何建立设计方程?
讨论:如何建立设计方程?
确定未知数、建立未知数之间的关系
+ cos1i -sin 1i sin1i +cos1i
得刚体运动位移矩阵方程:
XB1 – XP1 YB1 – YP1
XP1
YP1
XB1 YB1
XBi
cos1i -sin1i XPi –XP1cos1i +YP1sin1i XB1
YBi = sin1i +cos1i YPi –XP1sin1i –YP1cos1i YB1
1
0
0
1
1
(8′) (6-32)
cos1i -sin1i XPi –XP1cos1i +YP1sin1i 令 D1i = sin1i +cos1i YPi –XP1sin1i –YP1cos1i
=
cos1i sin1i
-sin 1i +con1i
LAB cos 1 LAB sin 1
(8)
y B1 Bi
由式(2)得:
B2
LAB cos 1 = XB1 - XA LAB cos 1 = YB1 - YA
(9)
B3 1 i C1
将式(9)代入(8)得: O
A
XBi – XA YBi – YA
D
❖连杆上P、Q与铰链点A、B、C、D之间的
关系
已知:连杆的三个精确位置P1Q1、P2Q2、
P3Q3。
Q
C
P
B
C
b2 B 1 a1
A
c
3
d 4
D
P、Q、B、C 为同一个构件上的点,无相对运动。
Q1
P1
B1
C1
求解过程:
假设:铰链B、C
图解法求解过程:
Q1
D
P1
B1
C1
A
求解结果:四杆机构:A B1C1 D
-sin 1i +cos1i
XB1 - XA YB1 - YA
❖怎样求连杆位置之间的的关系?
(10)
y B1 Bi B2 B3
1 i C1
A
O
C2 C3
B1 Bi B2
D
B3
x
连杆位置关系
C2 C3
分析二:讨论一般性
❖1. 刚体运动的位移矩阵方程 y
假设:
B1为:XB1、 YB1 Bi为:XBi 、 YBi P1为:XP1、 YP1 Pi为:XPi 、 YPi
ABi =
XBi – XA YBi – YA
可得:
; AB1 =
XB1 – XA YB1 – YA
ABi = RΘ1i AB1
(12) (6-31′)
(10) C2
C3
D
x
小 节:
❖矢量旋转方程式(10)给出了连架杆位置 i与
位置1之间的关系;
XBi – XA YBi – YA
=
cos1i sin1i
Burmester理论
当给定刚体三个位置,刚体平面上任意一点都
为圆点
当给定刚体四个位置时,圆点和圆心点为三次曲
线,称为Burmester曲线
当给定刚体五个位置时,设计问题的解是确定
的:圆点可能有4个、或者2个,或者没有解!
结论:
铰链四杆机构最多可实现五个连杆精确位置,即:铰 链四杆机构实现连杆精确位置的最大数目为 5
杆长不变!
(xBi-xA)2+(yBi-yA)2=(xB1-xA)2+(yB1-yA)2 (i=2,3,...,n) (1)
(xCi-xD)2+(yCi-yD)2=(xC1-xD)2+(yC1-yD)2
讨论:
B1
B2
C2
C3
B1、 B2、B3哪个之间的关系?
C1
A
∠B1P12A=∠ C1P12D= 12 /2 连杆BC与机架AD对转动极P12所张的角度相等:
∠B1P12C1=∠ AP12D
比较:图解法与半角转动法
❖图解法(解法一):优点是比较直观简
单,但在给定圆心点A、D的位置的情况 下确定圆点B、C就比较困难;
❖半角转动法(解法二):无论是在哪一
种情况下作图都比较简单。
12 2
半角转动法
转动极: 转动极P12 就是a12和d12的交

动画演示
等视角定理
等视角定理:铰链四杆机构 ABCD中,两连架杆AB、CD 对转动极P12所张的角度相等 (或互为补角),并等于连杆 转角的一半;连杆BC与机架 AD对转动极P12所张的角度相 等(或互为补角)。
如图:两连架杆AB、CD对转 动极P12所张的角度相等并等 于连杆转角的一半:
试设计一偏置曲柄滑块机构(如图
所示),设已知其滑块的行程速比系 数K=1.5,滑块的冲程H=40mm, 偏距e=15mm
设计步骤
例6-6 设计一个铰链四杆机构ABCD,实
现连杆的三个精确位置P1Q1、P2Q2、P3Q3。
分析过程
C
b2
c
❖机构的类型:
铰链四杆机构
B 1 a1
A
3
d 4
D
❖机构中各个构件的运动尺寸设计
y B1 Bi
1 i
A
O
= XA + LAB (cos1i cos 1-sin 1i sin 1 )
同理:
YBi =YA + LAB (sin1i cos 1+cos1i sin 1 )
x (4)
(5)
yB1 Bi
1
i
OA
x
由式(4)、(5)
y B1 Bi
B2 B3
1 i C1
A
O
C2 C3
D
第六章 平面连杆机构的运动分析和设计(2)
.
6.6 平面连杆机构的运动设计
设计要求通常用在输
出构件(连杆或连架杆) 上的点或直线的一系列有 序的位置来描述。这些点 或直线位置叫做精确点或 精确位置。
相关文档
最新文档