5平面连杆机构及其设计总结
《机械原理》第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
判断下列机构是否具有急回特性:
双曲柄机构和对心曲柄滑块机构适 当组合后,也可能产生急回特性。
机械原理
小结:
第四章 平面连杆机构及其设计
2. 急回特性和行程速比系数
1)急回特性的作用:节省空回行程的时间,提高劳动生产 率。 2)急回特性具有方向性,当原动件的回转方向改变时,急 回的行程也跟着改变。 3)对于有急回运动要求的机械,先确定K,再求θ。
∆DB1C1 中 : a + d ≤ b + c ∆DB2C 2 中 : b ≤ (d-a ) + c
(a ) 即 a+b≤c+d 即 a+c ≤ b+d
c ≤ (d-a ) + b (a ) + (b ),得 a ≤ c (a ) + (c ),得 a ≤ b
(b ) + (c ),得 a ≤ d
手摇唧筒
固定滑块3成为唧筒外壳,导杆4的下端固结着汲水活塞,在 唧筒3的内部上下移动,实现汲水的目的。
机械原理
2 . 平面四杆机构的演化形式 ( ) 运动副元素的逆换 4
第四章 平面连杆机构及其设计
将移动副两元素的包容关系进行逆换,并不影响两构件 之间的相对运动,但却能演化成不同的机构。
构件2 包容 构件3 导杆机构
4-2
平面四杆机构的类型和应用
1. 平面四杆机构的基本形式 2. 平面四杆机构的演化形式
机械原理
第四章 平面连杆机构及其设计
铰链四杆机构 1. 平面四杆机构的基本形式:
机架:固定不动的构件,如AD 杆 连杆:不直接与机架相连的构件,如BC杆 连架杆:直接与机架相连的构件,如AB、CD 杆 曲柄:能作整周转动的连架杆,如AB 杆 摇杆:不能作整周转动的连架杆,如CD 杆
《平面连杆机构》课件
减小机构的整体尺寸,使其更 加紧凑。
重量优化
降低机构的重量,以实现轻量 化设计。
成本优化
通过优化设计降低制造成本。
优化方法
数学建模
建立平面连杆机构的数学模型,以便进行数 值分析。
优化算法
采用遗传算法、粒子群算法等智能优化算法 对机构进行优化。
有限元分析
利用有限元方法对机构进行应力、应变和振 动分析。
实例二:搅拌机
总结词
搅拌机利用平面连杆机构实现搅拌叶片的周期性摆动,促进物料在容器内均匀混 合。
详细描述
搅拌机中的四连杆机构将原动件的运动传递到搅拌叶片,使叶片在容器内做周期 性的摆动,通过调整连杆的长度和角度,可以改变搅拌叶片的摆动幅度和频率, 以满足不同的搅拌需求。
实例三:飞机起落架
总结词
飞机起落架中的收放机构采用了平面连杆机构,通过连杆的 传动实现起落架的收放功能。
。
设计步骤
概念设计
根据需求,构思连杆机构的大 致结构。
仿真与优化
利用计算机仿真技术对设计进 行验证和优化。
需求分析
明确机构需要实现的功能,分 析输入和输出参数。
详细设计
对连杆机构进行详细的尺寸和 运动学分析,确定各部件的精 确尺寸。
制造与测试
制造出样机,进行实际测试, 根据测试结果进行必要的修改 。
实验验证
通过实验验证优化结果的可行性和有效性。
优化实例
曲柄摇杆机构优化
通过调整曲柄长度和摇杆摆角,实现 机构的优化设计。
双曲柄机构优化
通过改变双曲柄的相对长度和转动顺 序,提高机构的运动性能。
平面四杆机构优化
通过调整四根杆的长度和连接方式, 实现机构的轻量化和高性能。
机械原理 平面连杆机构及设计
机械原理平面连杆机构及设计平面连杆机构是机械原理中最经典也是最重要的一种机构类型之一。
这种机构由多个刚性杆件组成,每个杆件都能在平面内移动,它们通过连接点(铰链/球头)相互连接。
平面连杆机构在机械工程领域中有着广泛的应用,能够实现很多不同的机械运动和工作原理。
平面连杆机构中最重要的构件是连杆,也就是连接各个零件的关键杆件,如果连杆设计不合适可能导致机构性能的下降。
因此,平面连杆机构的设计要受到重视,需要考虑以下几个因素。
一、长度比例连杆不同长度比例的设置,对整个机构的运动特性和反应速度有着很大的影响。
在设计平面连杆机构时,需要根据机构所要完成的任务,选择恰当的连杆长度比例,保证机构的平衡性和可靠性,以及使机构的工作效率更高。
二、铰链/球头的位置铰链/球头是平面连杆机构中的关键组成部分。
在设计平面连杆机构时,需要合理选择铰链/球头的位置,以达到机构所要完成的特定任务。
如果铰链/球头设置不当,或者位置过分集中,会使机构不平衡或失效。
因此,设计者需要考虑连杆的长度、位置、形状和角度等因素。
三、材质选择平面连杆机构的设计材料非常重要,它将直接影响到机构的质量和强度。
不同材料的连接部分,对于平面连杆机构的工作效率和稳定性有着非凡的意义。
因此,在设计时,应本着安全、可靠、实用的原则,选用优质、耐用的材料,确保机构长期稳定、可靠的工作。
以汽车减震器为例,汽车减震器中使用的是多连杆机构原理,作为一种基于平面连杆机构的机构类型,它通过几个连杆的特定结构和布局,使得整个减震器能够更好地适应路况,缓解车辆的震动和冲击。
汽车减震器的设计考虑了多个因素,包括结构的稳定性和可靠性,杆件的材质和尺寸比例等。
总结来说,平面连杆机构是机械原理中非常重要的一种机构类型,广泛应用于机械和工程领域,需要经过仔细的设计和考虑,才能达到最好的运转效果。
设计者需要从多个维度进行考虑,包括长度比例、铰链/球头的位置、材质选择等等。
这些因素的合理应用,能够使平面连杆机构能够更好地适应不同的任务需求,达到最高的技术性能和质量水平。
机械原理课件第5章 连杆机构设计
第五章 平面连杆机构及其设计 §5-1平面连杆机构的应用及传动特点§5-2平面四杆机构的类型和应用§5-3平面四杆机构的一些共性问题§5-4 平面四杆机构的设计1)低副便于加工、润滑;构件间压强小、磨损小、承载能力大、寿长;2)连杆机构型式多样,可实现转动、移动、摆动、平面复合运动等运动形式间的转换。
如:锻压机肘杆机构,单侧曲线槽导杆机构,汽车空气泵,可变行程滑块机构,等。
一、平面连杆机构的优点和应用平面连杆机构:各构件全部用低副联接而成的平面机构(低副机构).例如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、汽车刮水器、缝纫机踏板机构、仪表指示机构等。
曲柄滑块机构摆动导杆机构常见平面连杆机构:铰链四杆机构(雷达天线,飞剪,搅拌机)锻压机肘杆机构可变行程滑块机构3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘机等。
4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构,鹤式起重机等。
挖掘机搅拌机构鹤式起重机二、平面连杆机构的缺点1)运动副中的间隙会造成较大累积误差,运动精度较低。
2)多杆机构设计复杂,效率低。
3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。
多杆机构大都是四杆机构组合或扩展的结果。
本章介绍四杆机构的分析和设计。
六杆机构及六杆机构的实际应用一、 铰链四杆机构的基本型式和应用铰链四杆机构:全部用回转副联接而成的四杆机构。
连架杆——与机架相联的构件;周转副——组成转动副的两个构件作整周相对转动的转动副;曲柄1——作整周定轴回转的构件;摇杆3——作定轴摆动的构件;转动副摆转副(C、D)周转副(A、B)铰链四杆机构分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。
1.曲柄摇杆机构铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。
实现转动和摆动的转换。
雷达天线俯仰机构缝纫机踏板机构应用(动画演示):雷达天线俯仰角调整机构,飞剪机构,搅拌机构,摄影机抓片机构、缝纫机踏板机构等。
课程设计连杆机构设计总结
课程设计连杆机构设计总结一、课程目标知识目标:1. 学生能理解连杆机构的基本原理,掌握连杆机构的分类、特点及应用场景。
2. 学生能掌握连杆机构的运动特性,如运动轨迹、速度、加速度等,并运用相关公式进行计算。
3. 学生能了解连杆机构的力学性能,如力的大小、方向和作用点,并能分析其在工程中的应用。
技能目标:1. 学生能运用图示法和解析法设计简单的连杆机构,具备一定的创新设计能力。
2. 学生能运用计算机辅助设计软件(如CAD等)进行连杆机构的绘制和仿真,提高实际操作能力。
3. 学生能通过团队合作,完成连杆机构的设计、制作和调试,提高沟通与协作能力。
情感态度价值观目标:1. 学生通过学习连杆机构设计,培养对机械设计及制造的兴趣和热情,激发创新意识。
2. 学生在学习过程中,养成严谨、细致、务实的工作态度,提高自我管理和解决问题的能力。
3. 学生能够关注连杆机构在生活中的应用,认识到科学技术对生活和社会发展的作用,培养社会责任感和使命感。
本课程针对高中年级学生,结合课本内容,注重理论与实践相结合,培养学生掌握连杆机构设计的基本知识和技能,同时注重培养学生的情感态度价值观,使他们在学习过程中形成积极的学习态度和价值观。
通过具体的学习成果分解,为后续教学设计和评估提供依据。
二、教学内容本章节教学内容主要包括以下几部分:1. 连杆机构基本原理:介绍连杆机构的定义、分类和特点,结合教材第二章相关内容,使学生掌握连杆机构的基本知识。
2. 连杆机构的运动分析:讲解连杆机构的运动轨迹、速度、加速度等运动特性,运用教材第三章公式进行计算,提高学生的实际应用能力。
3. 连杆机构的力学性能分析:分析连杆机构中的力的大小、方向和作用点,结合教材第四章内容,使学生了解力学性能在工程中的应用。
4. 连杆机构设计方法:教授图示法和解析法设计连杆机构,引导学生运用教材第五章知识进行创新设计。
5. 计算机辅助设计软件应用:介绍CAD等软件在连杆机构设计中的应用,结合教材第六章,让学生掌握实际操作技巧。
连杆机构类型及应用分析 平面连杆机构设计
点击D点演示设计过程
三、 按给定连杆位置设计
1. 按连杆的两个给定位置设计
三、 按给定连杆位置设计
2. 按连杆的三个给定位置设计
点击B点演示设计过程
设计举例
举例:设计一振实造型机的反转机构, 要求反转台位于位置Ⅰ(实线位置) 时,在砂箱内填砂造型振实,反转台 转至位置Ⅱ(虚线线位置)时起模, 已知连杆BC长0.5m和两个位置B1C1、 B2C2.。要求固定铰链中心A、D在同 一水平线上并且AD=BC。自己可以 试着在纸上按比例作出图形,再求 出各杆长度。
四、 按给定点的运动轨迹设计
设计四杆机构使其连杆上某点实现 给定的任意轨迹,是十分复杂的。为 了便于设计,工程上常常利用已出版 的《四连杆机构分析图谱》,从中找 出一条相似的连杆曲线,直接查出该 机构各杆尺寸这种方法称为图谱法。
Q
&
A
一、平面连杆机构设计的基本问题
主要任务:根据机构的工作要求、运动特性和设计条件选定 机构形式,并确定出各构件的尺寸参数。
(1)实现给定从动件的运动规律 连杆机构设计两类问题:
(2)实现给定的运动轨迹
图解法
平面四杆机构的设计方法
Hale Waihona Puke 解析法实验法二、 按给定的行程速比因数设计
1.设计曲柄摇杆机构 已知 曲柄机构摇杆L3的长度及摇杆
点击B点演示设计过程
四、 按给定点的运动轨迹设计
连杆曲线 四杆机构运转时,其连杆作平面
运动,连杆上任一点都描绘出一条封闭 曲线称为连杆曲线。 连杆曲线的形状随连杆上点的位置以及 各杆相对尺寸不同而变化。由于连杆曲 线的多样性,使它被广泛地应用于实现 某种运动轨迹的机械上。 如搅拌机就是应用连杆曲线的实例。
平面连杆机构及其分析与设计
平面连杆机构及其分析与设计平面连杆机构是由连杆和连接点组成的机械结构,广泛应用于各种机械设备中。
它的功能是将输入的旋转运动转化为输出的直线运动或者将输入的直线运动转化为输出的旋转运动。
本文将对平面连杆机构的分析与设计进行介绍。
首先,对平面连杆机构进行分析。
平面连杆机构的主要组成部分是连杆和连接点。
连杆是连接点之间的刚性杆件,可以是直杆、曲杆或者具有其他特殊形状的杆件。
连接点是连杆的两个端点或者连杆与其他机构的连接点,可以是支点、铰链等。
平面连杆机构的运动可以分为三种基本类型:平动、转动和复动。
平动是指连杆的一端保持固定,另一端进行直线运动;转动是指连杆的一端保持固定,另一端进行旋转运动;复动是指连杆的一端进行直线运动,另一端同时进行旋转运动。
进行平面连杆机构的设计时,需要考虑以下几个要点。
首先,确定机构的类型和功能。
根据机构的动作要求和功能要求,选择适合的连杆类型和连接点类型。
其次,进行机构的运动分析。
根据机构的运动要求,确定连杆的长度和连接点的位置,使连杆能够实现所需的运动。
然后,进行机构的力学分析。
根据机构的受力情况,确定连杆的截面尺寸和材料,保证机构的刚度和强度。
最后,进行机构的优化设计。
考虑机构的性能要求和制造要求,对机构进行优化设计,提高机构的工作效率和使用寿命。
在平面连杆机构的设计中,还需要考虑机构的动力学问题。
机构的动力学分析包括静力学分析和动力学分析两个方面。
静力学分析是指在机构静止或静力平衡状态下,对机构受力和力矩进行分析。
动力学分析是指在机构进行运动时,对机构的加速度、速度和位移进行分析。
通过对机构的动力学分析,可以确定机构的惯性力和惯性矩,从而确定机构的动态特性和振动特性。
总之,平面连杆机构的分析与设计是一项复杂而重要的工作。
在进行分析与设计时,需要考虑机构的类型和功能,进行运动分析和力学分析,优化设计和动力学分析。
通过合理的分析与设计,可以使机构具有较好的工作性能和使用寿命,满足各种工程应用的要求。
机械原理-平面连杆机构及设计
平面连杆机构的运动分析
1
位置分析
通过几何和三角学的方法,确定各个连
速度分析
2
杆和转轴的位置。
计算各个部件的速度,了解机构的运动
特性。
3
加速度分析
研究连杆的加速度,对机械系统的稳定 性和性能影响重大。
平面连杆机构的设计原则
力学平衡Biblioteka 确保各个连杆和转轴保持力学平衡,避免不必 要的应力。
优化尺寸
选择合适的尺寸和比例,以提高系统的性能和 耐久性。
机械原理-平面连杆机构及设计
探索机械原理中的平面连杆机构,深入了解其组成部分、运动分析、设计原 则、类型和应用领域。
什么是平面连杆机构
平面连杆机构是由连杆和旋转副组成的机械装置,用于转换直线运动和旋转运动。它被广泛应用在各种机械设 备和工具中。
平面连杆机构的组成部分
• 连接杆:用于连接各个部件并传递力和运动。 • 转轴:提供连杆的旋转运动。 • 摩擦面或球面:减小连杆关节的摩擦。 • 约束物:限制连杆的自由运动。
减小摩擦
使用适当的润滑和设计摩擦减小装置,提高效 率。
动态平衡
通过合理设计和调整质量分布,减少系统的振 动。
常见的平面连杆机构类型
滑块曲柄机构
由连接杆、连杆、中心轴和滑块 组成,广泛应用在汽车和机床。
钟摆式机构
采用钟摆原理,具有稳定的运动 轨迹,用于摆锤和钟表。
平行连杆机构
通过平行排列的连杆传递运动和 力,在工程和自动化领域有广泛 应用。
平面连杆机构的应用领域
1 工业生产设备
机械加工、装配线和工厂自动化。
3 家庭用具
打印机、洗衣机和电动工具。
2 交通运输工具
汽车、火车和航空器。
机械原理平面连杆机构及设计
机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
平面连杆机构设计与特性分析实验记录心得体会
平面连杆机构设计与特性分析实验记录心得体会
在进行平面连杆机构设计与特性分析实验时,我对该实验的内容和过程有了更深刻的理解和体会。
首先,在设计平面连杆机构时,我学会了根据要求选择适当的材料和构件,确保机构的稳定性和可靠性。
我注意到,合理的设计可以提高机构的工作效率和精度,同时减少能量损失。
其次,在特性分析过程中,我掌握了使用相关测试仪器和软件的方法。
通过对机构的运动学和动力学特性进行测量和分析,我能够准确地评估机构的性能和工作状态。
这对于优化机构设计和提升工作效率至关重要。
实验中,我还学会了合理规划实验过程,确保实验结果的准确性和可靠性。
我注意到,实验中的数据采集和记录对于后续的分析和比较是不可或缺的。
因此,我始终保持仔细和谨慎,避免任何可能引起误差的因素。
通过这次实验,我意识到平面连杆机构设计与特性分析是一项复杂而重要的工作。
只有通过深入的理论学习和实践探索,我们才能更好地理解和应用这些知识。
我深感自己在这方面还有很多需要学习和提升的空间,将继续努力进一步提高自己的专业能力。
机械原理第三章平面连杆机构及其设计
b12
C1
B
B2
B1
b. 设计 b12
c12
A
B2
C1
C2
B1
A点所在线
A
D点所在线
D
C C2
D
★ 已知连杆两位置
c23
——无穷解。要唯一解需另加条件 ★ 已知连杆三位置
b23 B3
c23
——唯一解 ★ 已知连杆四位置
——无解 B3
b12 B2 B1
C1 C2
C3
AD
B2 B1
分析图3-20
C2 C1 B4
反平行四边形
车门开闭机构
3)、双摇杆机构
若铰链四杆机构的两连架杆均为摇杆, 则此四杆机构称为双摇杆机构。
双摇杆机构
双摇杆机构的应用 鹤式起重机机构
鹤式起重机
倒置机构:通过更换机架而得到的机构称为原机构的倒置机构。
变化铰链四杆机构的机架
C
B
整转副
2
(<360°)
(0~360°)
3
1
(0~360°)
(1)、取最短构件为机架时,得双曲柄机构。 (2) 、取最短构件的任一相邻构件为机架时,均得曲柄
摇杆机构。 (3)、取最短构件的对面构件为机架时,得双摇杆机构。
判断:所有铰链四杆机构取不同构件为机架时,都能演化成带 曲柄的机构。
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构?
取最短杆相 邻的构件为 机架得曲柄 摇杆机构
最短杆为 机架得双 曲柄机构
取最短杆对 边为机架得 双摇杆机构
特殊情况:
如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。
平面连杆机构的特点及设计
C
C2
C
C1
b
B
c
A
D
B
a
1 A
q
B2
d
D
B1
2
从动杆往复运动的平均速度不等的现象称为机构的 急回特性.
极位夹角q0
对应从动杆的两个极.cn限中国位最大置的,资料主库下动载件两相应位置所夹锐角.
行程速比系数
K=
V快 V慢
= V回
V工
= C2C1 / t回 C1C2 / t工
=
180º+ q
=
1 180º- q
•
人不能把金钱带入坟墓,但金钱却可 以把人 带入坟 墓。。1 7:21:23 17:21:2 317:21 Wednes day, March 23, 2022
•
没有激流就称不上勇进,没有山峰则 谈不上 攀登。 。22.3.2 322.3.2 317:21: 2317:2 1:23Ma rch 23, 2022
③
R
S
q
正弦机构
双转块机构
正弦机构
双移块机构
S
q 正切机构
.cn中国最大的资料库下载
§3 平面四杆机构的基本知识
一、运动特性
1.平面四杆机构有曲柄的条件
(以曲柄摇杆机构为例) 设 AB 为曲柄, 且 a<d .
由 △BCD :
b+c>f 、 b+f >c 、 c+f >b 以 fmax = a + d , fmin = d - a 代入并整理得:
=
b2
c2
- 2b c cosd
b
cosd = b2 c 2 2 a d cos - a 2 - d 2
机械基础-平面连杆机构
化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。
机械原理 平面连杆机构及设计课件
仿真分析
利用计算机仿真软件对机构进行模拟分析, 评估其性能。
实验测试
通过实际测试机构的性能,与理论分析进行 对比验证。
优化算法
采用遗传算法、粒子群算法等智能优化算法 ,对机构参数进行优化。
04
平面连杆机构的运 动分析
机构运动的基本方程
01
平面连杆机构的基本运动方程是 根据机构的运动学和动力学特性 建立的,它描述了机构中各构件 之间的相对运动关系。
刚度对机构性能的影响
刚度不足会导致机构运动失 真、振动等问题,影响其正 常工作。
06
平面连杆机构的实 例分析
曲柄摇杆机构的实例分析
曲柄摇杆机构是一种常见的平面连杆机构,它由曲柄、摇杆、连杆和机架组成。 曲柄旋转,通过连杆传递运动给摇杆,使摇杆在一定范围内摆动。
实例:缝纫机脚踏板机构。缝纫机脚踏板机构就是一个典型的曲柄摇杆机构的应 用。当脚踏板转动时,通过连杆将运动传递给摇杆,使机头上下摆动,完成缝纫 工作。
应力分析
通过计算机构各构件在工作状态下的应力分布,评估其强度是否 满足设计要求。
疲劳强度
考虑机构在循环载荷作用下的疲劳强度,预测其使用寿命。
可靠性分析
基于概率论和统计学方法,评估机构在各种工作条件下的可靠性。
机构的刚度分析
刚度定义
刚度表示机构抵抗变形的能 力。
刚度分析方法
通过有限元分析、实验测试 等方法,评估机构的刚度性 能。
双曲柄机构的实例分析
双曲柄机构由两个曲柄、连杆和机架组成。两个曲柄同时旋 转,通过连杆传递运动,使另一个曲柄产生相对的旋转运动 。
实例:飞机起落架机构。飞机起落架机构中的前轮转向机构 就是一个双曲柄机构的应用。当飞机滑行时,双曲柄机构使 前轮左右摆动,实现飞机的前轮转向。
机械原理与设计平面连杆机构
机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。
平面连杆机构是其中最简单、常见的一种连杆机构。
本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。
一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。
平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。
平面连杆机构由连杆、铰链和主动副组成。
连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。
铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。
主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。
二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。
在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。
这种运动形式常见于内燃机的活塞连杆机构。
2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。
这种运动形式可以用来实现机械手臂等装置的运动。
3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。
这种运动形式常见于一些特殊装置的设计。
平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。
其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。
三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。
2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。
3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。
4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:潘存云教授
C C 电机
作者:潘存云教授
D D
蜗轮 B B B A A A 蜗杆 蜗杆
D
作者:潘存云教授
A E E B
A
C
风扇座
5.2.2 平面四杆机构的演化 1.改变构件的形状和运动尺寸(转动副化为移动副)
C B A D A B C
作者:潘存云教授
C B A D ↓ ∞
D
曲柄摇杆机构
3.选不同的构件为机架
B 1 2 3
B
1
A
2 4
3
C 摆动导杆机构 转动导杆机构
A
C 曲柄滑块机构
D
作者:潘存云教授
4
导杆机构
B
2
4
3 C C1 6
C
3
E 5
C2 1
1 4 作者:潘存云教授
2 B
A
D
牛头刨床
A
小型刨床
3.选不同的构件为机架
B 1 A 2 B 3 1 A
2
3
4 C 曲柄滑块机构 B 2 1 3 A 4 C
C 3
A 4 4
1
2
B
作者:潘存云教授
4 C 摇块机构
3 C
直动滑杆机构
手摇唧筒
这种通过选择不同构件作为机架以获得不同机构的 方法称为: 机构的倒置
实例:选择双滑块机构中的不同构件 作为机架可得不同的机构
2 1 3 正弦机构 缝纫机针头 4
2
作者:潘存云教授
1
4
3
椭圆仪机构
4.运动副元素的逆换 将低副两运动副元素的包容关系进行逆换,不影响两 构件之间的相对运动。
特点:▲采用低副。面接触、承载大、便于润滑、不 易磨损形状简单、易加工、容易获得较高的 制造精度。 ▲改变杆的相对长度,从动件运动规律不同。 ▲连杆曲线丰富,可满足不同要求。
缺点:▲构件和运动副多 累积误差大 运动精度低。 ▲机械效率低。 ▲产生动载荷(惯性力),不适合高速。 ▲设计复杂,难以实现精确的轨迹。 本章重点 分类 平面连杆机构 四杆机构 常以构件数命名
曲柄滑块机构
偏心曲柄滑块机构 s =l sin φ
B
B A C C
φ
A
B l
→∞ C
A
对心曲柄滑块机构
双滑块机构
正弦机构
2.改变运动副的尺寸(扩大转动副)
作者:潘存云教授
3.选不同的构件为机架
2 4 3 2 4
偏心
双曲柄机构 2 4 3 曲柄摇杆机构 1 2 4 3
1
双摇杆机构
E
B
C 2 3 1
4 D A
惯性筛机构
旋转式叶片泵
A
4 D 1 B 2 C 3
特例:平行四边形机构 特征:两连架杆等长且平行, 连杆作平动
B
B’ 作者:潘存云教授 A D
C C’
实例:火车轮 摄影平台 播种机料斗机构 天平
C
B
AB = CD BC = AD
A B B
作者:潘存云教授
B
C
作者:潘存云教授
C C 作者:潘存云教授 2 33
作者:潘存云教授
3
3 2
B 1
A
4
D
2
4 1
1
缝纫机踏板机构
雷达天线俯仰机构 曲柄主动 2. 双曲柄机构
摇杆主动 特征:两个曲柄 作用:将等速回转转变为等速或变速回转。
4
应用实例:如叶片泵、惯性筛等。
A B 1 作者:潘存云教授 D 2 C 3
作者:潘存云教授
6
第5章 平面连杆机构及其设计
5.1 平面连杆机构的应用及其设计的基本问题 5.2 平面四杆机构的基本形式和演化
5.3 平面四杆机构的基本知识
5.4 平面四杆机构的设计
5.1 平面连杆机的应用构及其设计的基本问题
应用实例:
内燃机、鹤式吊、火车轮、牛头刨床、椭圆仪、机械 手爪、揉面机、公共汽车开关门、四足机器人、剪板 机、开窗户支撑、折叠伞、折叠床、 牙膏筒拔管机、 单车制动操作机构等。 定义:由低副(转动、移动)连接组成的平面机构。 特征:至少有一个作平面运动的构件,称为连杆。
摇块机构
4 C 导杆机构
应用实例动画
C
3
4
2
A A 1 11 4 φ 4 A 1 4 A A 1 作者:潘存云教授 B 2 2 34 3 CC 3
B
1
A
自卸车举升机构录像
3.选不同的构件为机架
B 1 A B 2 3 1 2 3 A
4 C 曲柄滑块机构
B 2
A
1 A
3
4 C 导杆机构 A 1 B 4 2
C”
c
D
作者:潘存云教授
曲柄存在的条件: ▲最长杆与最短杆的长度之和应≤其他两杆长度之和 称为杆长条件。 ▲连架杆或机架之一为最短杆。 此时,铰链A为周转副。 若取BC为机架,则结论相同,可知铰链B也是周转副。 可知:当满足杆长条件时,其最短杆参与构成的转动 副都是周转副。 C b
B
A
a
1 1 4 3 2 4 导杆机构 2 摇块机构
3
5.3.1 平面四杆机构有曲柄的条件 平面四杆机构具有周转副可能存在曲柄。而且从该例可得以下结论 连架杆若能整周回转,必有两次与机架共线。设a<d
三角形任意两边之和大于第三边
5.3 平面四杆机构的基本知识
由△B’C’D 可得: a+ d ≤ b + c 这说明:若有整周 回转副,则最长杆 与最短杆的长度之 由△B”C”D可得: 和≤其他两杆长度 之和。 c≤(d –a)+ b a+ c ≤ b + d b≤(d – a)+ c a+ b ≤ c + d 将以上三式两两相加得: C’ b bc a≤ b a ≤c a ≤d AB为最短杆 Aa B’ 若设a>d,同理有: a B” d d≤a, d≤b, d≤c d -a d +a AD为最短杆 连架杆a或机架d中必有一个是最短杆
作者:潘存云教授
D C 料斗
A
D
耕地
平行四边形机构在共线位置出现运 动不确定。采用两组机构错开排列。
B’ A’ E’ F’ D’ C’ G’
作者:潘存云教授
火车轮
A B
E F
D C
G
反平行四边形机构 ——车门开闭机构
作者:潘存云教授 作者:潘存云教授
反向
3. 双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构 、风扇摇头机构 特例:等腰梯形机构——汽车转向机构
空间连杆机构
多杆机构
5.2 平面四杆机构的基本形式和演化
5.2.1 平面四杆机构的基本型式 基本型式 —— 铰链四杆机构,其它四杆机构都是由 它演变得到的。 连杆 机架——固定不动的构件; 连架杆——与机架相联的构件; 曲柄 连架杆 曲柄——作整周定轴回转的构件; 摇杆——作定轴摆动的构件; 连杆——作平面运动的构件; 周转副——能作360˚相对回转的运动副; 机架 摇杆 摆转副——只能作有限角度摆动的运动副。 共有三种基本型式: 1.曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。 如雷达天线。