激光塑料焊接优势

合集下载

激光焊接塑料原理

激光焊接塑料原理

激光焊接塑料原理
激光焊接是一种利用高能激光束来将塑料部件融合在一起的焊接过程。

它在工业制造和其他领域中得到广泛应用,特别是在需要高强度、高精度和无需添加任何填充物的情况下。

激光焊接塑料的原理涉及以下关键步骤:
1.吸收激光能量:塑料通常是透明或半透明的材料,因此必须使用适合它们的特定激光波长。

通常采用二氧化碳(CO2)激光或固体激光器(如Nd:YAG)来提供高能量、高功率的激光束。

2.吸收热能:当激光束照射到塑料表面时,塑料会吸收激光光能并转化为热能。

这会导致塑料表面温度升高,达到融化点以上。

3.熔融:当塑料表面温度升高到融化点时,它会形成一小池熔融塑料。

这个熔融池是焊接的关键部分。

4.扩散混合:激光束的功率足够高,可以使两个塑料部件的表面熔融,并迅速将它们相互接触。

这使得两个部件的熔融塑料相互混合并扩散在一起。

5.结合:在激光束停止照射后,熔融塑料开始冷却和固化。

此过程中,塑料分子链重新结合,形成一个坚固的焊接接头。

激光焊接塑料的优势包括焊接速度快、热影响区小、焊接接头强度高、无需额外填充材料以及适用于复杂形状的部件。

不过,也要注意激光焊接的一些局限性,比如塑料的选择受到限制,不同类型的塑料可能需要不同的激光参数,并且透明或辐射性很强的塑料难以焊接。

因此,在实际应用中,需要根据具体要求选择合适的激光器和参数来进行塑料的焊接。

激光焊接应用

激光焊接应用

激光焊接应用在塑料材料在医疗器械领域广泛应用的今天,新型的塑料生产及加工工艺层出不穷,激光焊接作为其中的一种,受到行业的广泛关注。

本文介绍塑料激光焊接的原理、工艺及在医疗器械行业的应用。

塑料焊接原理在热塑性塑料的焊接过程中,两个待焊塑料零件用夹紧夹具夹在一起,其中的一个塑料件能使激光穿透,而另一个塑料件能吸收激光的能量。

激光束通过上层的透光材料到达焊接平面,然后被下层材料吸收。

激光能量被吸收使得下层材料温度升高,熔化上层和下层的塑料,最后凝固成牢固的焊缝。

焊接原理图塑料激光焊接的优点在于,它是一种非接触式的焊接方法,激光的能量只是作用于非常小的焊接区域,极大地减小了工件的热应力及振动对工件的破坏。

塑料激光焊接的方法主要有:轮廓焊接、同步焊接、准同步焊接、放射状焊接及Globol焊接等。

轮廓焊接顾名思义,轮廓焊接就是使激光沿着工件的焊接线移动,将需要焊接的塑料层熔化并粘结在一起;有些时候,也可以固定激光的位置,移动或旋转工件来达到焊接目的。

同步焊接同步焊接首先根据焊接区域形状定制相应的激光头,要求焊接区域形状一般都是对称的,比如圆形。

同步焊接的激光束来源于多个二极管激光束,它们同时作用于焊接区域的轮廓线上熔化焊接区域达到焊接效果。

同步焊接的缺陷在于它的镜头必须要根据工件的焊接区域形状进行定制。

掩模焊接掩模焊接需要制作一个可以反射或者吸收激光的模板。

模板用来定位焊接区域,激光透过模板熔化焊接区域达到焊接效果。

掩模焊接的优点在于它的灵活性,模板可以根据焊接区域的形状进行更改,同时,这种焊接方法也适用于高精密焊接,其精密度可以达到微米级。

Globo焊接瑞士莱丹(Leister)公司专利的焊接工艺。

Globo焊接是沿着产品的轮廓线进行焊接的。

激光束经由气垫式,可无摩擦任意滚动的玻璃球点状式的聚焦于焊接界面,该玻璃球不仅仅进行聚焦而且也充当机械夹紧夹具。

当该球在表面上滚动时,为接合面提供了持续压力。

这就确保了在激光加热材料的同时有压力夹紧。

塑料激光焊接工艺设计

塑料激光焊接工艺设计

塑料激光焊接工艺设计塑料激光焊接工艺设计一、焊接方法选择1、选择激光焊接是因为它可以满足塑料焊接中的若干要求:(1)焊接效果好:激光焊接采用集中的高能量热源,可以有效控制焊接深度,焊接缝又平整,同时,焊接部位比较小,焊接外观又美观;(2)焊接快捷:激光焊接采用激光可以达到瞬间焊接,且可以快速的焊接出适当的焊接缝,不需要热源的缓慢移动;(3)焊接热敏度:激光焊接热源可以瞬间到达最高温度,可以有效控制焊接温度,防止焊接处及其周围的塑料材料受热过度而发生变形;(4)焊接稳定:激光焊接工艺不仅具有较高的焊接速度,而且还具有较高的焊接精度,因此在焊接的过程中,可以有效保证焊接部位的稳定性;(5)节约成本:激光焊接采用激光热源,可以有效地控制焊接深度,提高焊接效率,从而降低焊接材料成本,节省人工成本等。

2、焊接激光器的选择:激光焊接工艺一般选择采用有线激光器,也可选用离线激光器,具体针对不同的环境条件进行如下参数选择:(1)激光输出能量:激光焊接装置的输出能量要求根据所焊接的塑料材料种类和焊接处的厚度决定,一般激光输出能量越大,焊接质量越好;(2)激光线宽:激光焊接工艺中的激光线宽取决于所焊接的塑料材料及其焊接处的厚度,一般线宽一般为1mm;(3)激光功率:激光焊接功率一般介于500W ~ 3000W之间,较大的功率可以提高焊接效率,但也会带来更高的能耗。

二、工艺参数的选择1、焊接深度控制:在焊接过程中,焊接深度是指激光热源在焊接过程中热源沿着焊缝的深度,激光焊接深度一般是0.5-1.5mm,焊接深度过小或过大都会影响焊接质量。

2、焊接温度控制:激光焊接过程中的温度由激光功率、焊接速度以及焊接部位温度三个参数共同决定,以保证焊接部位能够达到最佳的熔接状态,一般激光焊接的温度控制在230℃-270℃之间即可。

3、焊接速度控制:激光焊接的速度一般介于500mm~3000mm/min之间,具体取决于所焊接的塑料材料性能、焊接处的厚度以及激光热源的稳定性等,需要根据实际情况对焊接速度进行可靠的设置。

激光热熔焊接技术

激光热熔焊接技术

激光热熔焊接技术激光热熔焊接技术是一种高效、精确的焊接方法,广泛应用于各个领域。

本文将介绍激光热熔焊接技术的原理、优势以及应用领域。

一、原理激光热熔焊接技术利用激光束的高能量密度,在焊接接头上产生强烈的热能,使接头材料瞬间熔化并形成焊缝。

激光热熔焊接过程中,激光束通过光纤或光导器聚焦到工件焊接接头上,产生的热量迅速传递给接头材料,使其达到熔化温度。

通过控制激光束的功率、聚焦方式和焊接速度,可以实现对焊接接头的精确控制和高质量焊接。

二、优势激光热熔焊接技术相比传统焊接方法具有以下优势:1. 高能密度:激光束的高能量密度使焊接过程能够在极短的时间内完成,减少了热影响区域,避免了材料变形和热裂纹的产生。

2. 高精度:激光束的聚焦能力非常强,可以实现微小焊缝、复杂形状的焊接,满足各种高精度焊接需求。

3. 无接触:激光热熔焊接不需要接触焊接材料,避免了传统焊接中可能产生的污染和损伤。

4. 自动化程度高:激光焊接设备可以与机器人、自动化生产线等设备配合使用,实现自动化生产,提高生产效率。

5. 适用性广:激光热熔焊接技术适用于多种材料的焊接,包括金属材料、塑料、陶瓷等,具有很大的应用潜力。

三、应用领域激光热熔焊接技术在各个领域都有广泛的应用,下面列举几个典型的应用领域:1. 汽车制造:激光热熔焊接技术可以用于汽车车身焊接、发动机零部件的焊接等,提高焊接质量和生产效率。

2. 电子设备制造:激光热熔焊接技术可以用于电子器件的封装焊接、电路板的连接等,提高电子设备的可靠性和稳定性。

3. 航空航天:激光热熔焊接技术可以用于航空航天领域的航空发动机、航天器结构的焊接,确保焊接接头的高强度和可靠性。

4. 医疗器械制造:激光热熔焊接技术可以用于医疗器械的零部件连接、手术器械的组装等,提高医疗器械的卫生性和安全性。

5. 光电通信:激光热熔焊接技术可以用于光纤的连接、光器件的封装等,提高光通信设备的性能和可靠性。

激光热熔焊接技术作为一种高效、精确的焊接方法,具有广泛的应用前景。

激光焊接塑料原理

激光焊接塑料原理

激光焊接塑料原理激光焊接是一种高效、精确的塑料焊接技术,它利用激光束的热能来将塑料材料熔接在一起。

激光焊接塑料的原理可以分为吸收和传导两个过程。

激光束照射到塑料表面时,塑料会吸收激光的能量。

激光束的能量主要被吸收在材料的表面层,通过吸收能量,塑料表面层的温度迅速升高。

当温度超过塑料的熔点时,塑料开始熔化。

熔化的塑料会通过传导热量的方式将能量传递到焊接接头的相邻部分。

传导过程中,塑料的熔点附近的分子开始振动,将能量传递给周围的分子。

这样一来,焊接接头的相邻部分也会被加热并开始熔化。

在激光束停止照射后,焊接接头的熔融部分开始冷却固化。

冷却过程中,熔融的塑料会重新结晶,并与周围的塑料形成一体化的焊缝。

由于激光焊接的热影响区非常小,因此焊接接头周围的塑料几乎没有受到热影响,焊缝的质量较高,接头的强度也较高。

激光焊接塑料的原理中,激光束的特性对焊接结果有重要影响。

激光束的功率、聚焦方式、焦点直径和激光束的扫描速度等参数都会影响焊接的质量。

较高的功率可以提供足够的能量来使塑料熔化,但过高的功率可能导致熔融池过深或产生过多的气泡。

适当的聚焦方式和焦点直径可以使激光束的能量集中在焊接接头上,从而提高焊接的精确度和效率。

而激光束的扫描速度则会影响焊接接头的形状和质量。

塑料的种类也会影响激光焊接的效果。

不同种类的塑料对激光的吸收率和熔点都有所不同,因此需要根据具体材料的特性来选择合适的激光参数和焊接条件。

同时,塑料的热导率也会影响焊接过程中热量的传导速度,进而影响焊接接头的形成和质量。

激光焊接塑料具有许多优点。

首先,激光焊接的热影响区非常小,可以避免或减少塑料的变形和损伤。

其次,激光焊接速度快,可以实现高效的生产。

此外,激光焊接可以实现无接触焊接,避免了传统焊接方法中可能引入的外部杂质。

最后,激光焊接具有较高的焊接强度和密封性,适用于多种塑料材料的焊接。

总结起来,激光焊接塑料的原理是利用激光束的热能来实现塑料材料的熔接。

激光焊接解决方案

激光焊接解决方案

激光焊接解决方案激光焊接是一种高精度、高效率的焊接技术,广泛应用于汽车、航空航天、电子、医疗器械等领域。

本文将详细介绍激光焊接的原理、优势、应用领域以及解决方案。

一、激光焊接原理激光焊接利用高能量密度的激光束瞬间加热工件表面,使其局部区域熔化并迅速冷却,从而实现焊接。

激光束的能量密度高、焦点小,能够实现高精度的焊接,并且不会对周围区域产生热影响。

二、激光焊接的优势1. 高精度:激光束的焦点小,能够实现弱小焊点的精确定位,适合于对焊接质量要求高的应用场景。

2. 高效率:激光焊接速度快,焊接时间短,能够提高生产效率。

3. 无接触:激光焊接不需要直接接触工件表面,避免了传统焊接中可能浮现的磨损和污染问题。

4. 适应性强:激光焊接适合于各种材料的焊接,包括金属、塑料、陶瓷等,具有广泛的应用领域。

三、激光焊接的应用领域1. 汽车创造:激光焊接被广泛应用于汽车创造中的车身焊接、发动机焊接等环节,能够提高焊接质量和生产效率。

2. 航空航天:激光焊接在航空航天领域中的应用包括航空发动机部件、飞机结构等,能够提高零部件的强度和耐久性。

3. 电子创造:激光焊接在电子创造中的应用包括电路板焊接、电子元件连接等,能够实现高精度的焊接,提高产品的可靠性。

4. 医疗器械:激光焊接在医疗器械创造中的应用包括人工关节、牙科器械等,能够实现精细焊接,提高产品的质量和可靠性。

四、激光焊接解决方案针对不同行业和应用领域的激光焊接需求,我们提供以下解决方案:1. 设备选择:根据客户需求和焊接要求,提供适合的激光焊接设备,包括激光器、光纤传输系统、焊接头等。

2. 工艺优化:根据客户提供的工件材料和要求,优化焊接工艺参数,确保焊接质量和效率。

3. 自动化集成:根据客户的生产线布局和工艺要求,提供自动化激光焊接系统,实现自动化生产。

4. 售后服务:提供设备安装调试、操作培训等售后服务,确保客户能够顺利使用激光焊接设备。

总结:激光焊接作为一种高精度、高效率的焊接技术,在汽车、航空航天、电子、医疗器械等领域有着广泛的应用。

激光焊接塑料原理

激光焊接塑料原理

激光焊接塑料原理激光焊接塑料是一种常用的塑料焊接方法,它利用高能量密度的激光束对塑料进行局部加热,然后通过高温融化的塑料形成焊缝,最终实现塑料的焊接。

激光焊接塑料的原理可以分为两个主要步骤:吸收和传导。

首先,激光束照射到塑料表面时,激光束的能量会被塑料吸收。

塑料的吸收特性取决于激光的波长和塑料的种类。

通常情况下,红外激光在大部分塑料中可以很好地吸收。

当激光束被吸收后,能量会被转化为热能,使得焊接区域的温度迅速升高。

其次,热能在塑料中的传导会导致塑料局部融化。

当塑料达到其熔化温度时,它会形成焊缝。

在这个过程中,激光束可以通过在塑料内部反复循环吸收和传导来形成更深的焊接区域。

激光焊接过程中,焊接区域的温度和固化速度由激光功率、焊接速度和焊接深度等参数控制。

激光焊接塑料的优势主要体现在以下几个方面:1.高质量焊接:激光焊接塑料可以实现高质量的焊接,焊缝区域无气孔或夹杂物,焊接强度高,焊接缝的外观也较为美观。

2.高焊接速度:激光束可以快速局部加热塑料,使其迅速融化,因此激光焊接速度较快,适用于高效、大批量生产。

3.非接触式焊接:激光焊接是一种非接触式的焊接方法,激光束直接作用于塑料表面,不会引起物理变形或畸变。

4.较小的热影响区域:激光焊接塑料的热影响区域相对较小,可以避免高温对塑料周围区域的损伤,减少塑料零件的变形。

然而,激光焊接塑料也存在一些限制和挑战。

首先,激光焊接设备的成本相对较高,这限制了其在一些应用范围内的推广。

其次,激光焊接对于塑料的选择有一定的要求,不同的塑料对激光的吸收特性和热导率不同,因此需要针对不同的塑料选择合适的激光参数。

此外,塑料零件的形状和尺寸也会对激光焊接的可行性产生影响,需要考虑激光束的照射角度和零件的固定方式。

总之,激光焊接塑料是一种高效、高质量的塑料焊接方法,具有广泛的应用前景。

随着激光技术的不断发展和创新,激光焊接塑料将在各个领域中得到更广泛的应用。

干货塑胶件紧固工艺之五:激光焊接

干货塑胶件紧固工艺之五:激光焊接

干货塑胶件紧固工艺之五:激光焊接关注上方公众号“降本设计”获取更多产品设计知识!1. 塑料激光焊接1.1 塑料激光焊接的原理塑料激光焊接的视频如下所示:激光焊接的原理是两个塑胶件在较低压力下被夹紧在一起,将激光束聚焦于两个塑胶件至上,其中上层塑胶件对于红外激光是穿透的,下层塑胶件吸收激光,吸收激光能量的塑胶件将光能转化为热能,在塑胶件的接触面熔化,同时热也传导到上层塑胶件,形成熔化区。

在夹紧力的作用下,熔化区域产生分子间的混合,冷却后形成焊缝,从而把两个塑胶件紧固成一体。

1.2 激光焊接的光源塑料激光焊接工艺中,一般采用YAG或者CO2激光作为光源。

随着半导体材料工业的快速发展,半导体激光作为光源也渐渐得到了应用。

CO2激光:特点:波长为10.6微米,最小聚焦直径约0.2-0.7毫米;优点:塑料对此波长的激光吸收好;缺点:不能用光纤传输,激光头的操作性差;适合场合:焊接塑料时热作用区较深,适合需要焊接较厚的塑料材料;YAG激光:特点:波长1.06微米,属近红外区波长,最小聚焦直径0.1-0.5mm;优点:聚焦区域小,可通过光纤传输来构建光路,可将激光头装到机器人手臂上,实现焊接过程的数控和精密自动化;适合场合:较好的透过上层待焊塑料,到达下层待焊接材料或中间层而被吸收,从而实现焊接,汽车车灯的激光焊接常用此光源;半导体激光特点:波长0.8-1.0微米,最小聚焦直径为0.5mm;优点:能量转换效率高,易于实现激光器的小型化和便携化;缺点:输出功率小;适合场合:适用于焊接激光功率要求较低的场合1.3 激光焊接的方法常见的激光焊接的方法包括以下几种:轮廓焊接轮廓焊接是最简单,目前使用最广的焊接流程。

在焊接时激光束通过光学系统和振镜在被焊接的物体上移动或者激光束静止而被焊接物体移动。

激光与被焊接物体之间的相互作用时间取决于光束焦点尺寸和移动速度,既而影响焊接时间和效果。

轮廓焊接是一种非常灵活的焊接流程,可实现复杂的三维焊接,在包装行业里有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑料激光焊接工艺1.激光的波长在金属材料的激光焊接工艺中,一般采用YAG或者CO2激光作为光源,塑料焊接也不例外。

随着半导体材料工业的快速发展,半导体激光作为光源也渐渐得到了应用。

三者之中,由于易于获得较大功率,前两者在传统的材料加工工业中的使用较为普遍;而由于塑料激光焊接对光源功率大小要求不高,但对可控性和易操作性要求较高,因此半导体激光在塑料焊接中也很有用武之地。

CO2、Nd:YAG和半导体激光三种光源的波长、最大功率、最小聚焦直径等参数的典型值如下所列:1.CO2激光:波长较长,为10.6微米,属远红外波段,一般情况下塑料材料对这一波长的吸收情况好。

目前最大输出功率达50kW,转化效率约10%,最小聚焦直径约0.2~0.7mm。

焊接塑料时热作用区深度较深,适合于需要焊接较厚的塑料材料。

CO2激光不能用光纤传输,只能$&* 透镜反射镜组成的光学系统来构建刚性传输光路,从而影响激光头的操作性。

2.Nd:YAG激光:波长较短,为1.06微米,属近红外区波长,不易被塑料吸收。

最大输出功率6kW,转化效率为3%,最小聚焦直径0.1~0.5mm。

Nd:YAG激光的特点是聚焦区域小,可以方便地通过光纤传输来构建光路,可将激光头装到机器人手臂上,实现焊接过程的数控和精密自动化;另一方面可以较好地透过上层的待焊接材料,到达下层待焊接材料或者中间层而被吸收,从而实现焊接。

3.半导体激光:波长0.8~1.0微米,最大输出功率6kW,转化效率30%,最小聚焦直径0.5mm。

由于其输出输出功率较小,适用于焊接激光功率要求较低的场合,如小型塑料器件的精密焊接。

半导体激光能量转化效率高,易于实现激光器的小型化和便携化。

2.塑料材料能够被激光焊接的塑料均属于热塑性塑料。

理论上,所有热塑性塑料都能够被激光焊接。

塑料激光焊接技术对被焊接塑料的要求为:在热作用区内的材料,要求对激光光波的吸收性好;不属于热作用区部分的材料,则要求对光波的透过性好,尤其在对两件薄塑料件进行叠焊时更是如此。

一般向热作用区塑料中添加吸收剂可以达到目的。

目前能够使用激光焊接的单种成分塑料包括:PMMA――聚甲基丙烯酸甲脂(有机玻璃),PC塑料,ABS塑料, LDPE-低密度聚乙烯塑料,HDPE-高密度聚乙烯塑料,PVC-聚氯乙稀塑料,Nylon 6-尼龙6,Nylon 66-尼龙66,PS-PS树脂,等等。

上述各种塑料制成的塑料件,如模制的塑料品、塑料板、薄膜、人造橡胶、纤维甚至纺织物都可以作为被焊接的对象。

由于激光焊接具有传统焊接不具备的热作用区小、控制精确容易的特点,因此上述各种单体材料之间也可以进行焊接。

3.吸收剂吸收剂的应用是塑料激光焊接工艺中非常重要的工艺。

如前所述,塑料激光焊接的本质是将热作用区的待焊接塑料融化,随后冷却自然实现塑料件的接合。

让塑料融化需要使塑料件吸收足够的激光能量。

塑料自身能够以较高吸收率吸收激光能量自然最好,但一般在不添加吸收剂的情况下,塑料对光波的吸收性不是很好,吸收效率很低,融化效率不理想。

通常理想的吸收剂是碳黑,碳黑能够将红外波长的激光能量基本全部吸收,从而大大提高塑料的热吸收效果,使得热作用区的材料融化更快、效果更好。

一些其他颜色的染料也能够起到相同的吸收光波的效果。

英国焊接学会(TWI,The Welding Institute)研制出了一种对可见光透明的染料。

用这种染料做吸收剂,可以得到透明的塑料焊缝。

碳黑在吸收红外波段的激光光波的同时,也吸收可见光波,这也是碳黑看起来为黑色的原因,用碳黑作吸收剂会使激光焊接焊缝颜色变深,与母材颜色不同。

TWI研制出的对可见光透明的染料只吸收红外波段的电磁波,不吸收可见光,因此看起来焊缝仍然是透明的。

很多情况下,塑料焊接要求成品美观、精致,因此相比碳黑,对可见光透明的染料吸收剂非常受青睐。

添加吸收剂的方法有3种:一是直接向待焊接材料中渗入吸收剂,这样应该将渗过吸收剂的塑料件放在下面,而把没有渗吸收剂的塑料件放在上面,让激光光波通过;二是向塑料件待焊接的表面渗吸收剂,这样只有被渗透了吸收剂的一部分塑料将成为热作用区而被融化;三是在两块待焊接塑料件的接触处喷涂上或者印刷上吸收剂。

4.其他参数与金属焊接不同,塑料激光焊接需要的激光功率并不是越大越好。

焊接激光功率越大,塑料件上的热作用区就越大、越深,将导致材料过热、变形、甚至损坏。

应该根据需要融化的深度来选择激光功率。

塑料激光焊接的速度比较快,一般得到1mm厚焊缝的焊接速度可达20m/min;而采用高功率的CO2激光器焊接塑料薄膜,最高速度可以达到750m/min。

5.软件激光焊接系统中,计算机软件的作用是对激光头的运动轨迹和速度、激光功率等一般性的工艺参数进行数字化控制,以达到提高加工速度和精度、改善加工质量的目的,这些与传统的激光加工中的软件控制并没有什么不同,但由于塑料激光焊接中吸收剂的特殊作用,塑料激光焊接控制系统和加工系统又有其自身的特色。

英国TWI研究所结合其ClearWeld塑料焊接工艺,设计开发了计算预测吸收剂用量及用法的软件。

根据不同材料的厚度、颜色、吸收比率等,结合激光器的功率、光波透过率等参数,在焊接前用软件计算吸收剂的用量和添加方法,再根据预测的用量添加吸收剂。

提供给软件的输入数据包括:塑料材料特性:种类、厚度、颜色;焊接数据:焊接区域形状复杂程度、宽度、焊接速度;激光器特性:功率、红外光透过率等。

经过计算和筛选,软件给出的输出结果包括:吸收剂种类、用量及要求的添加方式的列表,焊接过程中激光光波在上层材料中的能量损失。

软件的计算结果与实际焊接测量的结果很接近,图6为焊接后生成的热影响区(HAZ)大小的计算值和实际测量值的对比,所用塑料材料为PMMA。

可见,软件计算结果与实测结果非常接近。

由于塑料激光焊接的规律性较强,有较好的可预测性,因此,采用软件计算筛选方法预测结果是非常有效和可行的。

塑料的激光焊接在汽车工业中,塑料的使用日益增加。

同样的,材料和元部件的整合意味着塑料的焊接方法日渐成为一项关键的技术。

已有的技术如超声波焊接,热板焊,以及粘合技术各有所长,但是这些技术存在不少局限性,如在加工过程,可焊接材料方面有限制,费用昂贵,或是需要使用专门工具。

然而,针对这些技术的限制,出现了一种新型技术。

高功率二极管激光器的商业化和传输焊接技术的发展从根本上改善塑料焊接的能力,它已发展到有可能促使激光焊接成为塑料加工的关键加工技术。

高功率二极管激光器高功率二极管激光器是基于固态技术而发展起来的,因此,它们可靠性好,典型的最少设计使用寿命在10,000工作时左右。

它们也对已有的激光器类型带来了进一步的显著改善,在结构紧凑性,光束尺寸,电光效率以及资本和运行费用方面。

例如,250W的激光头装置尺寸仅260×125 x 125mm,重5 kg。

辅助设备仅有一个小的控制面板和一个冷却装置。

组合控制系统与冷却装置的系统也可用。

激光头紧凑的结构使它可以被直接安装到机械手上,从而具有多轴加工能力。

如果需要的话,光束也可以通过光缆来传输。

二极管激光器的电光效率大于30%,相比于CO2和Nd:YAG激光器,各自的效率值分别为10%和4%。

目前现有的高功率二极管激光器输出功率大于6KW,这样的强度足以满足熔覆,焊接,以及金属的表面热处理。

然而,在汽车工业方面,激光焊接初始应用是在连接聚合物方面。

虽然热塑性塑料易于吸收远红外波段的辐射能,但是对于二极管激光器产生的近红外光却是透光的。

大部分能量不被聚合物吸收。

然而,可以通过有选择的加入添加剂如色素,填充剂,强化剂等来使塑料吸收激光能量。

传输焊接传输焊接技术利用了聚合物和添加剂的不同吸收和传输特性,采用了具有某种重叠的形态来实现焊接。

通过仔细的选择材料和添加剂,使得接点的上半部分可以透射激光而下半部分则被设计成可以吸收足够的激光能量,这样使得界面熔融,从而实现焊接目的。

在这方面的应用中,碳是很理想的添加剂,因为它易于吸收二极管激光器的能量。

激光传输焊接与现有的塑料焊接技术相比具有许多的优势。

与振动/超声焊接不同,激光传输焊接是非接触加工,这样比较不容易对敏感元件,比如含有电子线路的元件,造成损坏。

此外,它几乎不需要什么专门工具,而大部分振动/超声,热板焊接系统都需要许多专门的工具来对元件进行加工。

在激光加工过程中的关键因素包括:选择加入聚合物的添加剂,(即色素、增强剂、加工辅助剂),接缝设计,加工通路设计等。

英国Warwick Laser Systems公司(考文垂市)已研制出了一种塑料的激光传输焊接装置并且实现了商品化。

对一系列热塑性塑料的适用性评估已经确定了许多材料的焊接条件,这些材料包括了彩色材料,聚丙烯,聚乙烯,丙烯酸树脂,聚碳酸酯,玻璃填料和薄膜材料。

作为非接触技术,激光焊接避免了与其他传统技术有关的工具污染和产品放置的问题。

从二极管激光器系统射出的光束是高度可控的,而且输出稳定且可预先设定,并允许进行连续焊接。

激光器功率高,光束宽,因此可以进行大面积的焊接,事实上对于元件尺寸和结构没有任何限制。

而如果需要的话,光束的高度可控性和光束传输的准确性也能够确保十分精密的焊接操作。

汽车应用在食品包装,医疗设备,和科研设备等领域中都已很好的利用了激光传输焊接技术,而汽车工业仍是这项技术最主要的采用领域。

最近,英国Birkby's Plastics公司(西约克郡,利弗西奇)利用激光传输焊接技术来制造一种新型电控节气门(ETC)踏板用于机动车辆。

踏板如图1,它被制成玻璃填充尼龙模具,在汽车工业的用途很广。

新的ETC踏板特点是使用整合而非栓接的传感器,这使得它与其他踏板相比,具有集成,经济,且不易损坏特性。

当驾驶员踩踏板时,需求信号被传送到引擎控制系统,将它与点火图相比,可使燃料更精确地加到引擎中,保持高的燃烧效率,从而达到经济,性能的优化,和废气排放少的目的。

要将传感器整合在踏板里最重要的是将“电位计”精确焊接在正确位置。

由于电位计需要被准确的放置并且调零,所以若使用振动焊接技术在两个不同的塑料元件之间进行焊接是不现实的。

此外,因为使用的电位计和踏板用了两种不同级别的玻璃填充尼龙,它们的熔点不同,所以也无法使用热技术或者超声焊接技术来连接这两个元件。

Warwick Laser Systems公司的开发中心在成功的进行多次实验后,将二极管激光传输焊接系统直接合并到Birkby 公司特意建立的自动组装,焊接和测试生产线,来焊接电控节气门踏板组件中的两个玻璃填充尼龙元件(图2)。

该系统产生3mm宽的接缝并将电位计密封在踏板里。

图2:ETC激光焊接单元在这种情况下,激光器被安装在德国Kuka的机械手上,无需任何专门工具。

相关文档
最新文档