结构化学基础第六章
结构化学-Ch6-复习习题-杨媛

5Es 0
3.分裂能(△o 或10Dq)(P186): 金属原子或离子的5个d轨道在球形场作用 下分裂成2个高能级eg轨道和3个低能级t2g 轨道,高能的d轨道与低能的d轨道的能量 之差即是分裂能。
Eeg=6Dq(或0.6Δ0) Et2g=-4Dq(或-0.4Δ0)
eg
6 q D
CFSE1-CFSE2=4Dq-(24Dq-2P)=-20Dq+2P
=2(-Δ0+P )<0 (Δ0 > P) ∴Co3+采用t2g6 的排布方式,低自旋,没有未 配对电子,反磁性。
P203-8. 试判断下列两组配位化合物顺磁性大小的次序: (1) A. [Co(NH3)6]3+ B. [Co(NH3)6]2+ C. [Co(NO2)6]3D. [Co(CN)6]4 A. NH3为中场配体,Co3+(d6)为强场离子,总体上 [Co(NH3)6]3+属强场配合物,d电子处于低自旋,组态为 t2g6eg0,没有未配对电子。 B. NH3为中场配体,Co2+(d7)为弱场离子,总体上 [Co(NH3)6]2+属弱场配合物,d电子处于高自旋,组态为 t2g5eg2,有3个未配对电子。 C.NO2-属于强场配体, [Co(NO2)6]3- 属强场配合物,d电 子处于低自旋,组态为t2g6eg0,没有未配对电子。 D. CN-属于强场配体, [Co(CN)6]4-属强场配合物,d电 子处于低自旋,组态为t2g6eg1,有1个未配对电子。 ∴顺磁性大小:B>D>A=C
P202-7. 已知[Co(NH3)6]2+的Δ0 < P,而[Co(NH3)6]3+的 Δ0 > P ,试解释此区别的原因,并用稳定化能推算出 二者的d电子构型和磁性。 解:Co3+比Co2+价态高,ΔCo3+ > ΔCo2+ 电子成对能不变,所以出现题目中出现情况。 [Co(NH3)6]2+中 Co2+的d7有两种排布方式: ①t2g5eg2 ② t2g6eg1 ①CFSE=-[5(-4Dq)+26Dq]=8Dq ②CFSE=-[6(-4Dq)+16Dq+3P-2P]=18Dq-P
结构化学课件第六章

显然,同前述结果一致
6.2 配体的群轨道
利用Oh群特征标表可知,
6L 6,0,0,2,2
A1g Eg T1u
令 x,y,z 正向的L是σ 1、σ 2、σ 3 ,负向为σ 4、σ 5、σ 6
A1g
1 6
1
2
3
4
5
6
Eg
1 2
1
4F 4Cl 4Br 4NH3 4F
为193,2F 227pm 为230,2Cl 295pm 为240,2Br 318pm 为207, 2NH3 262pm 为208, 2F 195pm
L'
L
L
Cu
L
L
L'
各种对称性场中 d 能级分裂
配
d d 位 场对称性
x2-y2
z2 dxy
dyz
dxz
注
数
2 直 线 形 - 0.628 3 正 三 角 形 0.545 4 正四面体形 - 0.267 4 平面正方形 1.228 6 正八面体形 0.600 5 三角双锥形 - 0.082 5 四 方 锥 形 0.914 7 五角双锥形 0.282
1.028 - 0.628 0.114 - 0.321 0.546 - 0.386 - 0.267 0.178 0.178 - 0.428 0.228 - 0.514 0.600 - 0.400 - 0.400 0.707 - 0.082 - 0.272 0.086 - 0.086 - 0.457 0.493 0.282 - 0.528
1
3
结构化学第六章..

二、d轨道的能级分裂
配体所形成的负电场对中心d电子起作用,消除d轨道的简并。
分裂的根源:(1)d轨道具有明显的角度分布。
(2)d轨道所在的配位场不是球形对称的。
1、正八面体配位场(Oh):
在正八面体配合物中,金属离子位于八面体中心,六 个配位体分别沿着三个坐标轴正负方向接近中央离子。
z y 3 2 4 5 6 1 x
四碘合汞(ll)酸 六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬 (III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III) 四硫氰根· 二氨合铬(Ⅲ)酸铵
五、配合物和配体的分类
MLn 称单核配合物
中心原子(离子)M: MmLn 称多核配合物
M—M 称原子簇合物
配位数 5--三角双锥或四方锥形
配位数 6--八面体或三棱柱
表6.1
配位化合物 配位数 [Hg(NH3)2]2+ [Au(CN)2] [CuCN3]2Ni(CO)4 [Zn(NH3)4]2 [Ni(CN)4]2[PtCl4]2Os(CO)5
-
若干配位化合物所采取的几何构型
几何构型 直线型 直线型 平面三角形 四面体 四面体 平面正方形 平面正方形 三角双锥 对称性 配位化合物 配位数 几何构型 对称性 Dh Dh D3h Td Td D4h D4h D3h [Ni(CN)5]3[SbF5]2[CoF6]3- [Fe(CN)6]3Cr(CO)6 [ZrF7]3Re(S2C2Ph2)3 [Mo(CN)8]45 5 6 6 6 7 6 8 三角双锥 四方锥 八面体 八面体 八面体 五角双锥 三棱柱 十二面体 D3h C4v Oh Oh Oh D5h D3h D2d
结构化学第六章配位化合物结构

结构化学第六章配位化合物结构6001试述正八而体场中,中心离子d轨道的分裂方式6002试用分子轨逍理论阐明X , NH3和CN-的配体场强弱的次序。
6003按配位场理论,在Oh场中没有高低自旋络合物之分的组态是:----------- ()(A)d3 (B)d4 (C) d5 (D) d6 (E) d76004凡是中心离子电子组态为d6的八而体络合物,苴LFSE都是相等的,这一说法是否正确?6005络合物的中心离子的d轨道在正方形场中,将分裂成几个能级:-------------- ()(A) 2 (B)3 (C)4 (D)56006Fe(CN)63-的LFSE= ________________ 「6007凡是在弱场配位体作用下,中心离子d电子一立取高自旋态:凡是在强场配位体作用下,中心离子d电子一立取低自旋态。
这一结论是否正确?6008Fc(CN)6#中,CN-是强场配位体,FJ+的电子排布为心,故LFSE为________________ 。
6009尖晶石的一般表示式为AB2O4,其中氧离子为密堆积,当金属离子A占据正四而体门空隙时,称为正常尖晶石,而当A占据Oh空隙时,称为反尖晶石,试从晶体场稳左化能计算说明NiAl2O4晶体是什么型尖晶石结构(Ni?+为於结构)。
6010在Fe(CN)64-中的F2+离子半径比Fe(H2O)62+中的F2+离子半径大还是小?为什么?6011 作图证明CO是个强配位体。
6012CoFf啲成对能为21? 000cm1,分裂能为13? 000cnr1,试写出:(l)d电子排布⑵LFSE值(3)电子自旋角动捲⑷ 磁矩6013已知ML6络合物中(M%为的,>1,尸20? 000 cm-1, P= 25? 000 cm1,它的LFSE 绝对值等于多少? ----------------------- ()(A)0 (B) 25? 000 cnr1 (C) 54? 000 cnr1 (D) 8000 cnr16014四角方锥可认为是正八而体从z方向拉长,且下端没有配体L的情况。
结构化学讲义教案6配位化合物的结构和性质

第六章配位化合物的结构和性质教学目的:通过学习,使学生对配位化合物的三大化学键理论(价键理论、晶体场理论、分子轨道理论)有所了解,并能够运用合适的理论对常见配合物的结构和性质进行理论分析和解释。
教学重点:1.晶体场理论;2.姜-泰勒效应;3.分子轨道理论。
引言:配位化合物简称配合物,又叫络合物,是一类含有中心金属原子(离子)(M)和若干配体(L) 的化合物(MLn)。
中心原子通常是过渡金属元素的原子或离子,具有空的价轨道;而配体则有一对或多对孤对电子。
在广泛的化学实践和量子化学巨大发展的基础上,提出了各种解释中心原子和配体之间化学键本质的理论,主要有价键理论、晶体场理论和分子轨道理论第一节价键理论1928年Pauling把杂化轨道理论应用到配合物中,提出了配合物的价键理论。
一、理论要点:配体的配位原子提供孤对电子进入中心原子(或离子)的空的杂化轨道形成配位键;配位键可分为电价配键和共价配键两种,相应的配合物叫做电价配合物和共价配合物。
二、杂化轨道与空间构型三、电价配键和共价配键1、电价配合物中心离子的电子层结构和自由离子的一样,它与配体是以静电作用力结合在一起,常采用spd外轨道杂化,形成高自旋配合物。
电价配合物特点:配体往往电负性大,不易给出孤电子对,中心离子的结构不发生变化。
配合物中配位键共价性较弱,离子性较强;键能小,不稳定,在水中易分解简单粒子;2、共价配合物中心离子腾出内层能量较低的空d轨道,进行dsp内轨道杂化,接受配体的孤对电子,形成低自旋共价配合物。
共价配合物特点:配体往往电负性较小,较易给出孤电子对,对中心离子的影响较大,使其结构发生变化。
配合物中配位键共价性较强,离子性较弱;由于(n-1)d轨道比nd轨道能量低,所以一般共价配合物比电价配合物稳定,在水溶液中不易解离为简单离子。
3.实验测定:通过测定络合物的磁化率,可判断中央离子与配体间化学键性质kTN x A 32μμ=, )()(反顺O M x x x +=μ磁矩cn ehn n e B B πμμμ4,)2(=+=(玻尔磁子) n 未成对电子数有摩尔磁化率X m 可计算络合物的磁矩μ,由μ可估算出n(未成对电子数),从而可判断此络合物是电价配键,或共价配键。
结构化学习题答案(5)

《结构化学》第六章习题答案6001分裂成两组, d22yx 和2zd处于高能级,d xy,d yz,d xz处于低能级。
6002X-为弱场配体,CN-为强场配体, NH3介于两者之间。
6003(A)6004否6005(C)6006-2△06007此结论仅在O h场中,中心离子 d 电子数n=4--7 时才成立。
6008-0.4△0×6 =-2.4△06009假设填T d空隙LFSE(Td)=[4×(-0.267△)+4×0.178△] = -0.356△假设填O h空隙LFSE(Oh)=[6×(-0.4△)+2×0.6△] = -1.2△Ni2+倾向填入稳定化能大的空隙中,所以NiAl2O4为反尖晶石。
6010小 6011参看《结构化学基础》 (周公度编著) p.2756012(1) t 2g 4 e g 2(2) - 0.4△ (3) │M s │=6π2h(4) μ= 26μβ6013(D) 6014能级次序: d 22y x -最高, 2d z 次之,d xy 再次之,d yz ,d xz 最低。
理由:①因z 方向拉长,相应xy 平面上的 4 个L 靠近,所以d 22y x -能级升高,d z2能级下降; ②因为 d xy 在xy 平面内,受L 的影响大,所以d xy 能级上升,而d yz , d xz 受xy 平面上的 4 个L 排斥小,所以能级下降。
③但因z 方向上方还有 1 个L,加之2z d 的"小环"在xy 平面上,可受到L 的直接作用,所以2d z 能级高于 d xy 能级。
6015O h 点群,说明Jahn-Teller 效应为 0,按强场排:( t 2g )6(e g )0LFSE =-2.4△06016(B), (D)6017否6018(B)6019(1) [Fe(CN)6]3-: μ= [n(n+2)]1/2μβ; n1= 1[FeF6]3-: n2= 5(2) 中心离子Fe3+为d5结构,配位场为八面体场。
《结构化学》第六章 金属的结构和性质

6.2 金属单质的晶体结构
金属单质晶体结构比较简单, 这与金属键密切相关: 由 于金属键没有方向性和饱和性,大多数金属元素按照等径 圆球密堆积的几何方式构成金属单质晶体,主要有立方面 心最密堆积、六方最密堆积和立方体心密堆积三种类型.
6.2.1 等径圆球最密堆积与A1、A3型结构
等径圆球以最密集的方式排成一列(密置列),进 而并置成一层(密置层),再叠成两层(密置双层), 都只有一种方式:
非最密堆积方式中最重要的是立方体心堆积A2 , 还有A4和少数的A6、A7、A10、A11、A12等.
A2 立方体心密堆积
布鲁塞尔的原子球博物馆 9个直径18米的球形展厅构成一个立方体心模型
A4 金刚石型结构
A4中原子以四面体键相连. 晶胞中虽然都是同种原子, 但所处的环境不同(球棍图中用两色颜色来区分). 一个浅蓝 色球与一个深蓝色球共同构成一个结构基元.
A1最密堆积形成立方面心(cF)晶胞
ABCABC……堆积怎么会形成立方面心晶胞? 请来个逆向思维:
取一个立方面心晶胞:
体对角线垂直方向就是密置层, 将它们设成3种色彩:
从逆向思维你已明白, 立方面心晶胞确实满足 ABCABC……堆积。
那么, 再把思路正过来: ABCABC……堆积形成立 方面心晶胞也容易理解吧?
晶胞 六方P
四、 金刚石型晶体(A4型)
C原子的配位数为4, 2套等同点 结构基元:2个C 空间点阵型式:立方F 每个晶胞中有8个C原子, 其坐标分别为:
(0,0,0), (1/2,1/2,0),
(1/2,0,1/2),(0,1/2,1/2),
(1/4,1/4,1/4),(1/4,3/4,3/4),
(为看得清楚,绿 球和蓝球层各有3 个球未画出)
王顺荣编高教版社结构化学习题答案第6章

(dxy)
(dz2)
(dxz,dyz) LFSE(D4h)=-[2× 0.228+2× (-0.428)+4× (-0.514)] =2.456 所以,LFSE(D4h)>LFSE(Td),即 Ni2+的低自旋配合物通常为正四方形构型。 若 Ni2+的高自旋配合物呈四面体构型,则 d 电子排布如图:
14、为什么羰基配合物中过度金属原子可以是零价(例如 Fe(CO)5) ,甚至是负 价(例如[Co(CO)4]-)? 答:CO 分子的结构为:KK(3σ)2(4σ)2(1π)4(5σ)2(2π)0 可见 CO 分子 中既有低能的 π 占有轨道----1π,又有高能的 π 空轨道----2π,CO 被占用的分子 轨道中,3σ 轨道中电子云大部分密集于 C 和 O 核之间,电子不易给出。4σ 轨道 中电子云主要集中于氧原子一侧, 由于氧的电负性较大, 电子也不易给出。 所以, 能对中心离子给予电子对而形成 σ 键的 CO 的分子轨道只有 1π 和 5σ 轨道。 在 Fe(CO)5 中,中心原子与配位体 σ 轨道,即 CO 的 5σ 轨道可形成 a1g t1u 和 eg 成键 σ 轨道,有 5 个 CO 共 10 个电子填充。这相当于配位体上的电子部分与中
结构化学第六章 配位化合物和簇合物的结构与性质习题解答
组员:林景 070601332 邱丽清 070601327 王华 070601328 林培海 070601349
黄水英 070601329 余建红 070601330 刘梅丽 070601331
1、为什么大多数配合物都有鲜艳的颜色,而四面体 Zn2+的配合物却例外? 答: 配合物中心金属原子或离子的 d 轨道分裂后,在光照下 d 电子可从能级低的 d 轨道跃迁到能级高的 d 轨道,产生 d—d 跃迁和吸收光谱。由于 d—d 跃迁对应 的光子频率在近紫外和可见光区,故过渡金属配合物通常都有颜色。Zn2+的 3d 轨道已充满电子,它通常以 sp3 杂化 轨道形成配建,无 d—d 能级跃迁,电子跃 迁只能发生在 σ—σ*之间,能级差大,在可见光的短波之外。因此,在配位化合 物一般是无色的。
结构化学基础-6配位化合物的结构和性质56页PPT

▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
56
▪
ห้องสมุดไป่ตู้
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
结构化学基础-6配位化合物的结构和 性质
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
基础化学 第三版 第6章 物质结构基础知识

角量子数(副量子数、电子亚层或亚层)就是描述核外 电子云形状的量子数,也是决定电子能量的次要因素。
角量子数取值为l≤n-1,每个l值代表一个亚层。角量子 数的取值、符号及能量变化见表6-1。
上页 下页 返回 帮助
6.1核外电子的运动状态
3.磁量子数(m)
磁量子数(m)是描述电子云在空间伸展方向的量子数。 m取值是从+l到-l包括0在内的任何整数值,即│m│≤l。当l =0时,m=0,即s亚层只有1个伸展方向(见图6-2);当l=1 时,m=+1、0、-1,即p亚层有3个(px、py、pz)伸展方 向;当l=2时,m=+2、+1、0、-1、-2,即d亚层有5个 伸展方向;f亚层则有7个伸展方向。
上页 下页 返回 帮助
6.1核外电子的运动状态
E4s<E3d; E5s<E4d; E6s<E4f<E5d; E7s<E5f<E6d
上页 下页 返回 帮助
6.2 原子核外电子分布与元素周期表
6.2.1 基态原子核外电子分布规律
任务6-1:写出基态26Fe原子核外电子分布式、原子实表 示式和轨道表示式。
6.1核外电子的运动状态 4.自旋量子数(ms)
电子除绕核运动外,还作两种相反的自旋运动。描述电子 自旋运动的量子数称为自旋量子数。取值为+1/2 或-1/2 ,用 符号 “↑”和“↓”表示。
用一套量子数表示某一核外电子的运动状态,正确 的是( )
A. n=3,l=3,m=2,mS=1/2 B. n=3,l=1,m=-1,mS=1/2 C. n=1,l=0,m=0,mS=0 D. n=2,l= m=0,-2,mS=1/2
6.1.1 核外电子的运动特征
【实例分析】1927年戴维逊(Davisson C J)和革末(Germer L H)将一束高速电子流通过镍晶体(作为光栅)投射到荧光屏上, 得到了与光衍射现象相似的一系列明暗交替的衍射环纹(图61),这种现象称为电子衍射。
2015年《结构化学》电子课件 孙宏伟PPT Chap6 分子对称性

《结构化学》第六章 分子对称性
6.2.3 对称元素的组合规律
• 当一个分子中有多种对称元素同时存在时,可根据对 称操作乘法关系证明,当两个对称元素按某种相对位 置同时存在时,必定能推导出第三个对称元素,这叫 对称元素的组合。
一个Cn轴包含n个旋转操作 : ˆ ,C ˆ 2, C ˆ 3 , , C ˆ n1, E ˆ C
n n n n
C2轴 C4轴
ˆ, E ˆ C 2 ˆ ,C ˆ 2, C ˆ 3, E ˆ C 4 4 4 ˆ2 C ˆ C 4 2 ˆ3 C ˆ C 6 2 ˆ2 C ˆ C ˆ4 C ˆ2 C 6 3 6 3
Nankai University
《结构化学》第六章 分子对称性
ˆ 旋转角等于基转角的旋转操作表示为:C n ˆ 操作得到 C ˆ2 相继两次进行 C n n ˆ n (C ˆ )n E ˆ (恒等操作) 旋转角等于基转角n倍的旋转操作 C n n
Nankai University
《结构化学》第六章 分子对称性
旋转轴与镜面的组合 当分子中存在着一个Cn轴,及一个通过Cn轴的镜面时, 则必有n个镜面通过该Cn轴,两相邻镜面的夹角为360/2n。
NH3
Nankai University
《结构化学》第六章 分子对称性
1.
2. 3. 4.
Nankai University
6.2.2 群的乘法表
C2v
ˆ E ˆ E ˆ C
ˆ E ˆ C
ˆ C 2 ˆ C
2
ˆ xz ˆ xz
ˆ yz ˆ yz
ˆ xz ˆ C
6.2.4 如何找出分子中全部独立的对称元素
结构化学 第六章-1

一频率v处发生共振; 若扫场, 应在同一磁感强度B处发生
共振。但实验发现, 同一种核的共振频率随化学环境而发 生变化。
原因:分子中的核不是裸核,核外电子云在外磁场B中感
应出一个大小与外磁场成正比而方向相反的微弱磁场 B, 作用在核上的有效磁感强度Beff不等于B, 而是
e是玻尔磁子,g是无量纲因子,称为g因子,自由电子
的g因子ge=2.0023。 自旋磁矩在磁场方向的分量:
sz gms e
1 1 ms , 2 2
在磁场中,自旋磁矩与外 磁场作用,不同方向的磁 矩有不同的能量:
S N S N
E B SZ B gmS e B
峰,-CHO质子峰分裂为四重峰。这是由于分子中距离 相近的质子之间核自旋相互作用的结果,称为自旋耦合。
自旋-自旋耦合使核磁共振信号分裂为多重峰 ——自旋
分裂。
=1.7的CH3峰分裂成三重峰, 3个小峰强度之比为1:2:1,峰 间距离为7Hz; =3.4的CH2峰分裂成四重峰,4个小峰强度 比1:3:3:1,峰间距离7Hz。
B
(3)氢键的影响
溶液中溶剂与溶质可以生成氢键,氢键的形成降低了核 外电子云密度,使增大。
羟基氢 信号移 向低场
4. 核的自旋-自旋耦合作用
具有一定化学位移的质子峰并不一定是单峰,往往会分 裂为数个峰,例如乙醛中有- CH3和-CHO两种质子,
只应有两个单峰,但实际上,- CH3 质子峰分裂为二重
当B=1.4092 T时 v=60×106 Hz =60 MHz
扫频式
扫场式。多数仪器采用扫场式。
1H的核磁矩大,核磁能级分裂大,吸收信号强。1H的天然
结构化学习题解答6

[6.23] 根据磁性测定结果知, NiCl42-为顺磁性而 Ni ( CN) 42- 为 反磁性,试推测它们的几何构型。 [解]:Ni2+为(3d)8组态,半径小,其四配位化合物既可呈四面体 构型,也可呈平面正方形构型,决定因素是配体间排斥作用的 大小。若 Ni2+的四配位化合物呈四面体构型,则d电子的排布方 式为:
第六章 配合物的结构和性质
[6.3] 判断下列配位离子是高自旋型还是低自旋型,画出d电 子排布方式,说明配位离子的磁性,计算LFSE(用△0表示)。 (a) Mn(H2O)62+ (b) Fe(CN)64- (c) FeF63[解]:兹将各项结果列于下表: 配位离子 Mn(H2O)62+ Fe(CN)64FeF63-
t2 e
配合物因有未成对的 d电子而显顺磁性。若呈平面正方形, 则d电子的排布方式为:
dx2 -y 2 dxy dz2 dxz,dyz
配合物因无不成对电子而显反磁性。反之,若 Ni2+ 的四配位 化合物显顺磁性,则它呈四面体构型;若显反磁性,则它呈平面 正方形。此推论可推广到其他具有 d8组态过渡金属离子的四面体 配位化合物。 NiCl42-为顺磁性离子,因而呈四面体构型。Ni(CN)42-为反 磁性离子,因而呈平面正方形。 [6.17] 某学生测定了三种配合物的d—d跃迁光谱,但是忘记了贴 标签,请帮助他将光谱波数与配合物对应起来。三种配合物是: CoF63- , Co(NH3)63+ , Co(CN)63- 。三种光谱波数是: 3400cm-1 , 1300cm-1,2300cm-1。 [解]: d—d跃迁光谱的波数与配位场分裂能的大小成正比,而分 裂能大小与配位体的强弱及中心离子的性质有关。因此,光谱波 数与配体强弱及中心离子的性质有关。而在这三种配合物中,中 心离子及其 d 电子构型都相同,因此光谱波数只决定于各自配体 的强弱。配体强者,光谱波数大;反之,光谱波数小。据此,可 将光谱波数与配合物对应起来: CoF63Co(NH3)63+ Co(CN)631300cm-1 2300cm-1 3400cm-1
结构化学前线分子轨道理论

Ni的HOMO:dxz
电负性:Ni 1.8, H 2.15, C 2.6
催化剂镍起了传递电子桥梁作用
➢Ni的dxz与H2的σ*1s对称性匹配,镍的d电子可流向H2 的σ*1s,从而使H2键削弱,使H2拆开变成2H,吸附在 镍上,成为一种过渡状态。 ➢过渡状态的HOMO仍和C2H4的π*2p(LUMO)对称性匹 配,继而又将电子应得以顺利进行。 ➢镍上的电子可由对称性匹配的H2的σ1s流到镍的空d轨 道(如dz2)上而得到补充。
C4H6 ψ2
C2H4+C4H6 → 环已烯
HOMO
LUMO
ψ3
C2H4
HOMO-LUMO对称性匹配,无需光照激发, 加热条件下反应即可发生。
C2H4+C2H4 → 环丁烯 C2H4的HOMO:π2p
C2H4的LUMO:π*2p HOMO-LUMO对称性不匹配,反应不能发生。
C2H4*: (π2p)2(π*2p)0 → (π2p)1(π*2p)1 C2H4*的HOMO:π*2p
C2H4的LUMO:π*2p 在光照条件下,2+2环加成反应C2H4+C2H4 → 环丁烯可顺利发生。
结构化学 —— 第六章 共轭分子的结构
第六章
(2) 前线轨道理论应用实例 乙烯加氢反应及镍的催化作用
HOMO
HOMO
C2H4 + H2 = C2H6
LUMO
LUMO
无论何种方式,HOMO-LUMO对称性不匹配, 反应不能发生。
采用过渡金属作催化剂可使反应顺利进行。
C2H4的LUMO: π*2p
结构化学课件6第六章 配位化合物的结构和性质

八面体场,d轨道分裂成 eg 轨道(dz2 ,dx2-y2), t2g 轨道(dxy ,dxz ,dyz)。 将eg和t2g这两组轨道间的能量差用△o或10Dq来表 示, △o或10 Dq称为分裂能, 根据重心守恒原理, 则
2E(eg)+3E(t2g)=0 E(eg)-E(t2g)=△o 由此解得 E(eg)=0.6△o = 6Dq E(t2g)=-0.4△o =-4Dq
H2[HgI4]
K2[SiF6] K2[Co(SO4)2] [Ag(NH3)2]Cl [CrCl2(NH3)4]· 2H2O Cl· K[PtCl3NH3] [Co(NH3)5H20]Cl3
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl
四碘合汞(ll)酸
六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬(III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III)
K3[Fe(CN)6]
Fe3+:
3d5
µ =2.40
n=1
配合物的空间构型
配合物分子或离子的空间构型与配位数的 多少密切相关。 配位数
4 2 6 4 4 6 2
空间构型 直线形
四面体 平面正方形 八面体
NiCl 2 4
Ni(CN ) 2 4
例
Ag(NH3 ) 2
Fe(CN) 3 6
空间构型 例
[BeX4]2-四面体
Ni2+形成配位数为4的配合物时,既有四面体构型,也有平面正 方形构型的,前者,Ni2+采用的是dsp2杂化,后者,Ni2+采用的 是sp3 杂化。
四 配 位 的 配 平面正方形,μ=0 合 物
四面体,μ=2.83B.M.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配体有能量较高的空*型轨道
中心金属的t2g 轨道与CO, CN-的2(*)的进一步组合。
分裂能o增大,强场配体
2010-5-28 19
配体有能量较低的型占据轨道
例如,X־, H2O 除了与中心离子形成配键外,还有孤对 电子轨道可与中心离子的 t2g 轨道可形成 型配键,使 o 变 小,形成弱场高自旋配合物。
中心离子的价态对Δo影响很大,价态高, Δo大。例如Mn2+对
H2O 的Δo为 7800 cm-1 ,而Mn3+为21000 cm-1 。
中心离子所处的周期数也影响Δo值。第二、第三系列过渡金 属离子的Δo值均比同族第一系列过渡金属离子大。例如:
Co(NH3)63+ 为23000 cm-1,Rh(NH3)63+ 为34000 cm-1,
式中: ψM包括M中(n-1)d,ns,np等 价层轨道, ΣcL ψL可看作是群轨道。
★有效形成分子轨道要满足:对称性匹配,轨道最大重叠,能级
高低相近。
2010-5-28 11
4. 配位场理论
配位场理论内容:是晶体场理论的发展,其实质是配位化合物 的分子轨道理论。 配位场理论处理问题的方法: 在处理中心金属原子在其周围配位体所产生的电场作用下,金属 原子轨道能级发生变化时,以分子轨道理论方法为主,根据配位 体场的对称性进行简化,并吸收晶体场理论的成果,阐明配位化
2010-5-28
2
6.1.1 配位体
每个配位体至少有一个原子具有一对(或多对)孤对电子,
或分子中有π 电子。如,N、O、C、P、S、Cl、F等。 分类:
1.单啮配位体:只有一个配位点的配体。
2.非螯合多啮配位体:配体有多个配位点,但 受几何形状限制不能与同一金属离子配位。 3. 螯合配位体:一个配位体的几个配 位点能直接和同一个金属离子配位。
价键理论的作用: ① 能简明解释配位化合物几何构型和磁性等性质;
②可以解释Co(CN)64-存在高能态电子,非常容易被氧化,是
很强的还原剂,能把水中的H+还原为H2。 价键理论的缺点:价键理论是定性理论,没有提到反键轨道
,不涉及激发态,不能满意地解释配位化合物的光谱数据,
不能满意说明有些化合物的磁性、几何构型和稳定性。
2 2 2
2 2 2
这两组能级间的差值,称为晶体场分裂能,用Δo (或Δ )表示。
2010-5-28 9
晶体场理论的作用和缺陷:
① 可以成功地解释配位化合物的许多结构和性质; ② 只按静电作用进行处理,相当于只考虑离子键的作用,出 发点过于简单。
③ 难于解释分裂能大小变化次序。如:中性的NH3分子比带
电的卤素离子分裂能大,而且CO和CN-等分裂能都特别大 ,不能用静电场理论解释。
2010-5-28
10
3.分子轨道理论
内容: 用分子轨道理论的观点和方法处理金属离子和配位体的
成键作用。 描述配位化合物分子的状态主要是M的价层电子波函数ψM 与配体L的分子轨道ψL组成离域分子轨道 ψ
cM M cL L
由此,可得e*g的能级为 0.6 Δo ,t2g的能级为 –0.4Δo 。 这个能级零点也就作为中心离子M处在球形场中未分裂的d轨 道的能级。 配位场稳定化能(LFSE-Ligand Field Stabilified Energy):配 位化合物中d电子填入上述的轨道后,若不考虑成对能,能级
降低的总值称为LFSE 。
d 电子在分裂了的d 轨道中(按分子轨道理论应是eg*与 t2g)如何排布,取决于0 与 P 的相对大小。
Δo
P>Δo
Δo
P<Δo
(a) 弱场高自旋
2010-5-28
(b) 强场低自旋
24
配位场稳定化能(LFSE)
若选取t2g和 e*g能级的权重平均值作为能级的零点(重心不
变),即 而 2E(e*g )+3E(t2g)=0 E (e*g )-E(t2g)= Δo
t1u, t1u*
4pz
3dxy 3dxz 3dyz
2010-5-28
1 ( 3 6 ) 2
t2g
14
z
z
z
a1g
y
+ + + +
t1u
y
z
+
+
s
x
+ +
y
x
+
y
pz
x
x
-
z
z
eg
+
z
z
y
+
y
+
+
+
x
-
-
y
x
-
x
-
y
+
x
+
px
d z2
z
+
z
++
y
-
x
-
+
-
y
z
y
+
z
+
+
x
y
d x 2 y2
2010-5-28 17
6.2.2 八面体场的分裂能o
配体除了提供与键轴平行的型轨道,还有与键轴垂直的型 轨道,这些型轨道的对称性与中心离子的t2g对称性一致,还可以 线性组合形成型分子轨道。 配体的 型轨道有2类: ① CO, CN-, N2 等的 2(即*型空轨道)是 型轨道。 ②X- 中有3对孤对电子,一对孤对电子作为 型轨道,另2 对就是型轨道(p轨道);还有H2O分子等。
Ir(NH3)63+ 为41000 cm-1。
以上两个因素的影响可以写成两个因子的积
2010-5-28
o =f × g
22
Δo值可分为配位体的贡献(f)和中心离子的贡献(g)的乘积。
即: Δo = f × g JÖrgensen 给出八面体场的 f 和 g 的数值如下表。
八面体场的 f 值 和 g 值 f 值 g 值(单位:1000cm-1 )
2010-5-28
常见的杂化形式
d2sp3正八面体
dsp2正方形
d4sp3 正十二面体
sp3正四面体
2010-5-28
sp2正三角形
sp直线
8
2. 晶体场理论
晶体场理论的内容: 把中心离子(M)和配体(L)的相互作用看作类似离子晶体中正 负离子的静电作用。 当L接近M时,M中的d轨道受到L负电荷 的静电微扰作用,使原来能级简并的d轨道发生分裂。 在晶体场中d 轨道能级分裂,引起电子排布及其他一系列性质 的变化,据此可解释配位化合物的各种性质。
分裂能减小,弱场配体
2010-5-28 20
影响o的因素:
① 配体的影响
对同一种金属原子(M),不同配体的分裂能大小次 序——光谱化学序列: CO, CN‾ > NO2‾ > en > NH3 > py > H2O > F > OH‾ > Cl‾ > Br‾ 一般情况下,将在H2O以前称为强场配体,H2O以后
合物的结构和性质。
2010-5-28 12
§6–2 配位场理论
6.2.1 ML6八面体的分子轨道
大多数六配位化合物呈正八面体或变形八面体的结构,如
TiF63-,Fe(CN)64-,V(H2O)62+,Co(NH3)63+,Ni(H2O)62+。
设中心原子M处在直角坐标系原点,6 个 配位体位于坐标轴上。按M和L组成的分 子轨道是σ 轨道还是π轨道,将M的轨道进 行分组,得:
2010-5-28 25
2010-5-28
26
-Δ
2.8 2.4 2 1.6 1.2 0.8 0.4 0
0 1 2 3 4 5 6 7 8 9 10
弱场 强场
n
不同电子组态的 LFSE 值
2010-5-28 27
1. 离子水化热和MX2的点阵能
M2+(g) + 6H2O(l) [M(H2O)6]2+(aq) 弱场配合物 反应热 rHmӨ(水化热,负值),随 d 电子数呈现“双凸”曲线。
N M 单齿配体
N M
N
多齿配体
2010-5-28
[Co(EDTA)]-配位螯合离子的结构
3
4. 键配位体:含有π 电子的烯烃、炔烃、芳
C M C
香烃等也可作配体。 如:C2H4、丁二烯、
CO、C6H6、C5H5等都是。
π键配体
在配位化合物的结构中,一个配位体同时和n 个不同的金属 原子M配位时,常在配位体前加μn-记号,例如 Fe3(CO)10·(μ2- CO)2 ,表示有2个 CO 分别同时和2个Fe原子结合。若一个配位体 有n个配位点与同一金属原子结合,则在配位体前标上ηn-记号, 例如(η5- C5H5 ) 2 Fe,表示每个C5H5都有5 个配位点和同一个Fe 原子结合。
: s,p x,p y,p z,d x : d xy,d yz,d xz
2
z 3 4
y2
,d z 2
5 1 x 6
2
y
配位体L按能与中心原子生成σ键或π键轨 道分别组合成新的群轨道,使与M的原子 轨道对称性匹配。
2010-5-28
13
表6.2.1 ML6八面体场的分子轨道
M
4s
3dx2-y2 3dz2 4px 4py
如:八面体配位离子中,6个配位体沿± x,± y,± z 坐标接近M,L的负电 d ,d z 荷对 x y 轨道的电子排斥作用大,而夹在两坐标之间 d xy,d xz,d yz 受到推 斥较小,这样d轨道分裂成两组:能级低的3个d轨道 d xy,d xz,d yz 通常用t2g表示; 高能级的2个d轨道 d x y ,d通常用 eg表示。 z