年高考数学试题知识分类大全函数与导数
(学生版)2024年高考数学真题分类汇编09:函数与导数
![(学生版)2024年高考数学真题分类汇编09:函数与导数](https://img.taocdn.com/s3/m/fd61c33fa88271fe910ef12d2af90242a895ab92.png)
函数与导数一、单选题1.(2024·全国)已知函数为22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î,在R 上单调递增,则a 取值的范围是()A .(,0]-¥B .[1,0]-C .[1,1]-D .[0,)+¥2.(2024·全国)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <3.(2024·全国)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x Î-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .24.(2024·全国)设函数()()ln()f x x a x b =++,若()0f x ³,则22a b +的最小值为()A .18B .14C .12D .15.(2024·全国)曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A .16B C .12D .6.(2024·全国)函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A .B .C .D .7.(2024·全国)设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .238.(2024·北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是()A .12122log 22y y x x ++>B .12122log 22y y x x ++<C .12212log 2y y x x +>+D .12212log 2y y x x +<+9.(2024·天津)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=10.(2024·天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A .a b c >>B .b a c >>C .c a b>>D .b c a>>11.(2024·上海)下列函数()f x 的最小正周期是2π的是()A .sin cos x x +B .sin cos x xC .22sin cos x x+D .22sin cos x x-12.(2024·上海)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ¥=ÎÎ-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值二、多选题13.(2024·全国)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->14.(2024·全国)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题15.(2024·全国)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .16.(2024·全国)已知1a >,8115log log 42a a -=-,则=a .17.(2024·全国)曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为.18.(2024·天津)若函数()21f x ax =-+有唯一零点,则a 的取值范围为.19.(2024·上海)已知()0,1,0x f x x >=£ïî则()3f =.四、解答题20.(2024·全国)已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x ¢³,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.21.(2024·全国)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1e xf x -<恒成立.23.(2024·全国)已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ³时,()0f x ³恒成立,求a 的取值范围.24.(2024·北京)已知()()ln 1f x x k x =++在()()(),0t f t t >处切线为l .(1)若切线l 的斜率1k =-,求()f x 单调区间;(2)证明:切线l 不经过()0,0;(3)已知1k =,()(),A t f t ,()()0,C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B 时.当215ACO ABO S S =△△,符合条件的A 的个数为?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)25.(2024·天津)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.26.(2024·上海)若()log (0,1)a f x x a a =>¹.(1)()y f x =过()4,2,求()()22f x f x -<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x的单调性.f x的“最近点”,试判断()。
全国卷历年高考函数与导数真题归类分析(含答案)
![全国卷历年高考函数与导数真题归类分析(含答案)](https://img.taocdn.com/s3/m/40dad2de4bfe04a1b0717fd5360cba1aa8118c98.png)
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
高考数学试卷板块知识总结
![高考数学试卷板块知识总结](https://img.taocdn.com/s3/m/240ae43ff4335a8102d276a20029bd64783e622e.png)
一、函数与导数1. 函数概念:函数的定义、性质、图像及性质;反函数、复合函数、分段函数等。
2. 函数图像:函数图像的绘制方法、性质;函数图像与方程的关系。
3. 函数性质:函数的单调性、奇偶性、周期性、有界性等;函数的极限、连续性。
4. 导数:导数的定义、计算方法;导数的几何意义、物理意义;导数的应用:函数的极值、最值、凹凸性、拐点等。
5. 高阶导数:高阶导数的计算方法;高阶导数的应用。
二、三角函数与解三角形1. 三角函数:正弦、余弦、正切、余切、正割、余割函数的定义、性质、图像;三角函数的周期性、奇偶性、有界性。
2. 解三角形:正弦定理、余弦定理;解三角形的应用:求角度、边长、面积等。
3. 三角函数的应用:三角函数在物理、几何、经济等领域的应用。
三、数列与不等式1. 数列:数列的定义、性质、通项公式;数列的极限;数列的求和。
2. 不等式:不等式的性质、解法;不等式的应用:最值、比较大小等。
3. 概率与统计:概率的定义、性质;随机变量、分布函数;期望、方差;大数定律、中心极限定理等。
四、立体几何与解析几何1. 立体几何:点、线、面、体的概念、性质;线面关系、面面关系;空间角、距离、面积等。
2. 解析几何:解析几何的基本概念、方程;解析几何的应用:求点、线、面、体的位置关系;解析几何在几何证明中的应用。
五、概率与统计1. 概率:概率的定义、性质;条件概率、独立事件;随机变量、分布函数;期望、方差等。
2. 统计:数据的收集、整理、分析;描述性统计、推断性统计;相关分析、回归分析等。
六、复数与复平面1. 复数:复数的概念、性质;复数的运算;复数的几何意义。
2. 复平面:复平面的概念、性质;复数在复平面上的表示;复数的乘除运算等。
七、数学文化与应用1. 数学文化:数学史、数学家故事、数学趣味知识等。
2. 数学应用:数学在日常生活、科技、经济、管理等领域的应用。
以上是对高考数学试卷板块知识的总结,希望对考生在备考过程中有所帮助。
高考文科数学试题分类汇编----函数与导数
![高考文科数学试题分类汇编----函数与导数](https://img.taocdn.com/s3/m/e3c9e9ebb8f67c1cfad6b823.png)
函数与导数一 选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是A .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =A.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。
导数高考大题知识点总结
![导数高考大题知识点总结](https://img.taocdn.com/s3/m/03cdcfcce43a580216fc700abb68a98270feac4f.png)
导数高考大题知识点总结一、导数的定义1. 函数的导数函数f(x)在点x处的导数定义为:f'(x) = lim(h->0) [f(x+h)-f(x)]/h其中,h表示x的增量,表示x的变化量;lim表示极限。
2. 几何意义函数f(x)在点x处的导数,表示函数在该点处的切线斜率。
3. 导数的记号函数f(x)关于x的导数通常记为f'(x)或y',也读作f关于x的导数或者y的导数。
4. 导数的存在性对于给定的函数f(x),在某一点x处可能存在导数,也可能不存在。
二、导数的运算法则1. 基本导数法则常数函数的导数等于零;幂函数的导数规律:(x^n)'=nx^(n-1);指数函数的导数规律:(a^x)'=a^x * ln(a);对数函数的导数规律:(log_a(x))' = 1/(x * ln(a));三角函数的导数规律:(sinx)' = cosx,(cosx)' = -sinx。
2. 基本函数的导数导数的和、差法则:(f(x) ± g(x))' = f'(x) ± g'(x);导数的积法则:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x);导数的商法则:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/g(x)^2;复合函数的导数:设y=f(u),u=g(x),则y=f(g(x)),导数为:y'=f'(g(x)) * g'(x)。
3. 链式法则如果函数y=f(u),u=g(x),则y=f(g(x)),则有:y'=f'(u) * g'(x)。
4. 隐函数的导数当函数关系式不显式的写出y=f(x),而是通过x和y的方程来确定时,求导的方法。
三、导数的应用1. 切线方程在点(x,f(x))处的切线方程为y-f(x)=f'(x)(x-a)。
高考数学导数知识点大全
![高考数学导数知识点大全](https://img.taocdn.com/s3/m/9b9a100232687e21af45b307e87101f69f31fb4a.png)
高考数学导数知识点大全导数作为高中数学的重要内容,在高考中占据着重要的地位。
掌握好导数的相关知识点,不仅可以帮助同学们在高考中取得好成绩,更能为日后的学习和科研打下坚实的基础。
本文将为大家详细介绍高考数学导数的知识点,帮助各位同学夯实导数的基本概念和应用技巧。
一、导数的定义在高中数学中,我们通常使用极限的概念来定义导数。
设函数y=f(x),若当自变量x在某一点a的邻近时,函数值f(x)的增量f(x+△x)-f(x)与自变量增量△x之比的极限存在,记为f'(a),则称f'(a)为函数f(x)在点a处的导数。
在导数的定义中,需要注意的是导数是描述函数在特定点处的变化率的概念,表示为斜率,具有方向性。
当导数为正时,函数单调递增;当导数为负时,函数单调递减;当导数为零时,函数可能是极值点。
二、导数的基本性质导数作为函数的一种重要性质,具有一些基本的性质,这些性质在解题中经常被使用到。
1. 和的导数等于导数的和若函数f(x)和g(x)在点a处都有导数,则有(f+g)'(a) = f'(a) +g'(a)。
2. 常数倍的导数等于导数的常数倍若函数f(x)在点a处有导数,则对于任意常数k,有(kf)'(a) =kf'(a)。
3. 乘积的导数公式若函数f(x)和g(x)在点a处都有导数,则有(fg)'(a) = f'(a)g(a) + f(a)g'(a)。
4. 商的导数公式若函数f(x)和g(x)在点a处都有导数,且g(a)≠0,则有(f/g)'(a) = [f'(a)g(a) - f(a)g'(a)]/[g(a)]^2。
三、常见函数的导数掌握常见的函数对应的导数形式,能够帮助我们更好地理解导数的应用。
1. 幂函数的导数设f(x) = x^n,则有f'(x) = nx^(n-1)。
2. 指数函数的导数设f(x) = a^x,则有f'(x) = a^xlna。
全国卷历年高考函数与导数真题归类分析(含答案)
![全国卷历年高考函数与导数真题归类分析(含答案)](https://img.taocdn.com/s3/m/53f1ac2502768e9950e73856.png)
全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
高考函数与导数知识点
![高考函数与导数知识点](https://img.taocdn.com/s3/m/f53bfb6d905f804d2b160b4e767f5acfa0c7836e.png)
高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。
理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。
本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。
1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。
通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。
函数可以用方程、图形或解析式等形式表示。
函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。
了解这些性质对于解题非常有帮助。
同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。
2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。
它是函数微分学的基本概念之一。
导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。
要计算导数,首先需要了解导数的定义。
其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。
此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。
3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。
首先,导数可以表征函数的变化趋势。
通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。
其次,函数的导数也可以求出函数的切线方程。
通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。
此外,通过函数的导数还可以判断函数的凹凸性。
函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。
4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。
这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。
在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。
2023年高考数学客观题专题六 函数与导数
![2023年高考数学客观题专题六 函数与导数](https://img.taocdn.com/s3/m/861eed447f21af45b307e87101f69e314332fad7.png)
2.函数的奇偶性:
(1)奇函数、偶函数的定义:
如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称
函数y=f(x)是偶函数;
如果对于函数则
称函数y=f(x)是奇函数.
(2)奇、偶函数的性质:
①偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
A∩B= (
)
A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]
【答案】D
【解析】由题意得x-1>0,解得x>1,则集合B={x|x>1}.
而集合A={x|-1≤x≤2},
于是A∩B={x|1<x≤2}.故选D.
6.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )
1
D.-4
)
3.若奇函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=
【答案】-3
【解析】y=f(x)的图象关于直线x=2对称,则f(3)=f(1)=3.
y=f(x)为奇函数,则f(-1)=-f(1)=-3.
.
1
4.函数f(x)=ln(+1)+
4 − 2 的定义域为
(
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数
y=f(x)有零点.
2.定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一
条曲线,并且有:f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即
存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
指数、对数的运算性质:
(1)幂的运算性质:aman=am+n;
新高考数学试卷导数公式
![新高考数学试卷导数公式](https://img.taocdn.com/s3/m/7b1d85be9a89680203d8ce2f0066f5335a81678f.png)
一、导数的定义导数是描述函数在某一点处的瞬时变化率。
设函数y=f(x),当自变量x从x0变化到x0+Δx时,函数值y从f(x0)变化到f(x0+Δx),则导数f'(x0)定义为:f'(x0) = lim(Δx→0) [f(x0+Δx) - f(x0)] / Δx二、常见导数公式1. 常数函数的导数:若y=C(C为常数),则y' = 0。
2. 幂函数的导数:若y=x^n(n为常数),则y' = nx^(n-1)。
3. 指数函数的导数:若y=a^x(a>0,a≠1),则y' = a^xlna。
4. 对数函数的导数:若y=log_a(x)(a>0,a≠1),则y' = 1/(xlna)。
5. 三角函数的导数:- y=sinx,y'=cosx;- y=cosx,y'=-sinx;- y=tanx,y'=sec^2x;- y=ctgx,y'=-csc^2x;- y=cotx,y'=-csc^2x。
6. 反三角函数的导数:- y=arcsinx,y'=1/√(1-x^2);- y=arccosx,y'=-1/√(1-x^2);- y=arctanx,y'=1/(1+x^2);- y=arcctgx,y'=-1/(1+x^2)。
三、导数公式的应用1. 求函数在某一点处的导数:直接应用导数公式,代入x的值即可求得。
2. 求函数在某区间内的导数:利用导数公式,对函数进行求导,再代入x的值求得。
3. 判断函数的单调性:通过求导,判断导数的正负,从而确定函数的单调区间。
4. 求函数的极值:通过求导,找到导数为0的点,进一步判断这些点是否为极值点,从而求得函数的极值。
5. 求函数的最值:结合函数的定义域,求函数的极值,从而得到函数的最值。
总之,新高考数学试卷导数公式是高中数学中的重要知识点,掌握好导数公式及其应用对于解决高中数学问题具有重要意义。
高考数学函数与导数知识点
![高考数学函数与导数知识点](https://img.taocdn.com/s3/m/33c5eebaf80f76c66137ee06eff9aef8941e4808.png)
高考数学函数与导数知识点在高考数学中,函数与导数是重要的知识点。
理解和掌握这些知识点对于高考数学的学习非常关键。
本文将介绍函数与导数的基本概念、性质以及相关应用。
一、函数的基本概念函数是数学中一种重要的概念,定义如下:定义1:设A、B是两个非空集合,对于A中的每一个元素a,在B中都有唯一确定的元素b与之对应。
这样的对应关系称为函数,记作y=f(x)。
在函数的定义中,x是自变量,y是因变量,而f(x)则表示函数的值或函数表达式。
1.1 函数的表示方法函数可以通过多种方式来表示:1.1.1 函数的代数式表示:常用的代数式表示函数的方法有多项式函数、有理函数、指数函数、对数函数等。
1.1.2 函数的图像表示:通过绘制函数的图像,可以更直观地理解函数的性质。
1.1.3 函数的表格表示:将自变量与因变量的对应关系记录在表格中,方便观察函数的规律。
1.2 函数的性质函数具有以下一些基本性质:1.2.1 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2.2 奇偶性:函数的奇偶性描述了函数关于y轴对称或关于原点对称的特点。
1.2.3 单调性:函数的单调性描述了函数在定义域内的增减趋势。
1.2.4 周期性:周期函数是一类具有周期性规律的函数,如正弦函数、余弦函数等。
二、导数的基本概念导数是函数的一个重要性质,用来描述函数在某一点的变化率。
导数的定义如下:定义2:设函数y=f(x)在点x0处有定义,当自变量x在x0的邻域内取得不同值时,对应的函数值f(x)也随之变化。
如果存在一个常数k,使得当x趋近于x0时,函数值的变化量与x-x0的差的比趋近于k,那么称函数y=f(x)在点x0处可导,常数k称为函数f(x)在点x0处的导数,记作f'(x0)。
2.1 导数的几何意义导数的几何意义可以从函数的图像中理解:2.1.1 函数的切线斜率:对于函数y=f(x),在点(x0, f(x0))处的切线的斜率就是函数在该点处的导数。
高考数学函数与导数知识点梳理
![高考数学函数与导数知识点梳理](https://img.taocdn.com/s3/m/8c1a271c182e453610661ed9ad51f01dc281572a.png)
高考数学函数与导数知识点梳理在高考数学中,函数与导数是非常重要的基础知识点。
掌握好这些知识点,对于高考数学的备考和解题都至关重要。
下面将对高考数学函数与导数知识点进行梳理,帮助同学们更好地理解和掌握这些知识。
一、函数的概念和性质1. 函数的定义:函数是一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。
2. 函数的符号表示:设函数为y=f(x),x是自变量,y是因变量。
3. 函数的性质:3.1 定义域:函数的自变量的取值范围。
3.2 值域:函数的因变量的取值范围。
3.3 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数,否则为非奇非偶函数。
二、常见函数类型1. 一次函数:y=ax+b,其中a、b为常数,a不为0。
2. 二次函数:y=ax^2+bx+c,其中a、b、c为常数,a不为0。
3. 幂函数:y=x^a,其中a为常数。
4. 指数函数:y=a^x,其中a为常数且a大于0且不等于1。
5. 对数函数:y=log_a(x),其中a为常数且a大于0且不等于1。
6. 三角函数:包括正弦函数、余弦函数、正切函数等。
7. 反三角函数:包括正弦反函数、余弦反函数、正切反函数等。
三、函数的图像与性质1. 函数的图像:函数的图像是函数在坐标平面上的表示,可通过描点法或作图工具绘制。
2. 函数的增减性与极值:函数在某个区间上递增时,图像是上升的;在某个区间上递减时,图像是下降的。
3. 函数的奇偶性与轴对称:函数的奇偶性与轴对称与函数的性质有关。
四、导数的概念和性质1. 导数的定义:函数在某一点的导数是该点切线的斜率。
2. 导数的符号表示:函数f(x)的导数表示为f'(x)或dy/dx或y'。
3. 导数的性质:3.1 导数存在性:函数在某一点可导意味着该点的左导数和右导数都存在,且相等。
3.2 导数与函数图像的关系:函数图像在导数不为零的点处有切线。
五、常见函数的导数1. 一次函数的导数:一次函数y=ax+b的导数为a。
2022年高考数学真题:函数与导数(解析版)
![2022年高考数学真题:函数与导数(解析版)](https://img.taocdn.com/s3/m/6830cf45a36925c52cc58bd63186bceb19e8ed96.png)
第2讲函数与导数一、单选题1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ,则221()k f k ()A .3B .2C .0D .1【答案】A 【解析】【分析】根据题意赋值即可知函数 f x 的一个周期为6,求出函数一个周期中的 1,2,,6f f f 的值,即可解出.【详解】因为 f x y f x y f x f y ,令1,0x y 可得, 2110f f f ,所以 02f ,令0x 可得,2f y f y f y ,即 f y f y ,所以函数 f x 为偶函数,令1y 得,111f x f x f x f f x ,即有 21f x f x f x ,从而可知 21f x f x ,14f x f x ,故 24f x f x ,即 6f x f x ,所以函数 f x 的一个周期为6.因为 210121f f f , 321112f f f , 4221f f f , 5111f f f , 602f f ,所以一个周期内的 1260f f f .由于22除以6余4,所以 221123411213k f k f f f f .故选:A .2.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x .若()y g x 的图像关于直线2x 对称,(2)4g ,则221()k f k ()A .21B .22C .23D .24【答案】D 【解析】【分析】根据对称性和已知条件得到()(2)2f x f x ,从而得到 352110f f f ,462210f f f ,然后根据条件得到(2)f 的值,再由题意得到 36g 从而得到 1f 的值即可求解.【详解】因为()y g x 的图像关于直线2x 对称,所以 22g x g x ,因为()(4)7g x f x ,所以(2)(2)7g x f x ,即(2)7(2)g x f x ,因为()(2)5f x g x ,所以()(2)5f x g x ,代入得 ()7(2)5f x f x ,即()(2)2f x f x ,所以 35212510f f f ,46222510f f f .因为()(2)5f x g x ,所以(0)(2)5f g ,即 01f ,所以 (2)203f f .因为()(4)7g x f x ,所以(4)()7g x f x ,又因为()(2)5f x g x ,联立得, 2412g x g x ,所以()y g x 的图像关于点 3,6中心对称,因为函数()g x 的定义域为R ,所以 36g 因为()(2)5f x g x ,所以 1531f g .所以 221123521462213101024()k f f f f f f f f f k .故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36 ,且3l )A .8118,4B .2781,44C .2764,43D .[18,27]【答案】C 【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为36 ,所以球的半径3R ,设正四棱锥的底面边长为2a ,高为h ,则2222l a h ,22232(3)a h ,所以26h l ,2222a l h所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ,所以5233112449696l l V l l,当3l 0V ,当l 时,0V ,所以当l 时,正四棱锥的体积V 取最大值,最大值为643,又3l 时,274V,l 814V ,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443,.故选:C.4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ,,则()A .a b cB .c b aC .c a bD .a c b【答案】C 【解析】【分析】构造函数()ln(1)f x x x ,导数判断其单调性,由此确定,,a b c 的大小.【详解】设()ln(1)(1)f x x x x ,因为1()111x f x x x,当(1,0)x 时,()0f x ,当,()0x 时()0f x ,所以函数()ln(1)f x x x 在(0,) 单调递减,在(1,0) 上单调递增,所以1((0)09f f ,所以101ln 099 ,故110ln ln 0.999,即b c ,所以1((0)010f f ,所以91ln +01010 ,故1109e 10 ,所以11011e 109,故a b ,设()e ln(1)(01)xg x x x x ,则 21e 11()+1e 11x xx g x x x x,令2()e (1)+1x h x x ,2()e (21)x h x x x ,当01x 时,()0h x ,函数2()e (1)+1x h x x 单调递减,11x 时,()0h x ,函数2()e (1)+1x h x x 单调递增,又(0)0h ,所以当01x 时,()0h x ,所以当01x 时,()0g x ,函数()e ln(1)x g x x x 单调递增,所以(0.1)(0)0g g ,即0.10.1e ln 0.9 ,所以a c 故选:C.5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3] 的大致图像,则该函数是()A .3231x x y x B .321x xy x C .22cos 1x x y xD .22sin 1x y x【答案】A 【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设 321x xf x x ,则 10f ,故排除B;设 22cos 1x x h x x,当π0,2x时,0cos 1x ,所以 222cos 2111x x xh x x x ,故排除C;设 22sin 1x g x x ,则2sin 33010g ,故排除D.故选:A.6.(2022·全国·高考真题(文))函数 cos 1sin 1f x x x x 在区间 0,2π的最小值、最大值分别为()A .ππ22,B .3ππ22,C .ππ222,D .3ππ222,【答案】D 【解析】【分析】利用导数求得 f x 的单调区间,从而判断出 f x 在区间 0,2π上的最小值和最大值.【详解】sin sin 1cos 1cos f x x x x x x x ,所以 f x 在区间π0,2 和3π,2π2 上 0f x ,即 f x 单调递增;在区间π3π,22上 0f x ,即 f x 单调递减,又 02π2f f ,ππ222f ,3π3π3π11222f,所以 f x 在区间 0,2π上的最小值为3π2 ,最大值为π22.故选:D7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ,则()A .c b aB .b a cC .a b cD .a c b【答案】A 【解析】【分析】由14tan 4c b 结合三角函数的性质可得c b ;构造函数21()cos 1,(0,)2f x x x x ,利用导数可得b a ,即可得解.【详解】因为14tan 4c b ,因为当π0,,sin tan 2x x x x所以11tan44,即1cb ,所以c b ;设21()cos 1,(0,)2f x x x x,()sin 0f x x x ,所以()f x 在(0,) 单调递增,则1(0)=04f f,所以131cos 0432 ,所以b a ,所以c b a ,故选:A8.(2022·全国·高考真题(理))函数 33cos x xy x 在区间ππ,22的图象大致为()A .B .C .D .【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos ,,22x xf x x x,则 33cos 33cos x x x xf x x x f x ,所以 f x 为奇函数,排除BD ;又当0,2x时,330,cos 0x x x ,所以 0f x ,排除C.故选:A.9.(2022·全国·高考真题(理))当1x 时,函数()ln bf x a x x取得最大值2 ,则(2)f ()A .1B .12C .12D .1【答案】B 【解析】【分析】根据题意可知()12f =-, 10f 即可解得,a b ,再根据 f x 即可解出.【详解】因为函数 f x 定义域为 0, ,所以依题可知,()12f =-, 10f ,而 2a b f x x x,所以2,0b a b ,即2,2a b ,所以 222f x x x,因此函数 f x 在 0,1上递增,在 1, 上递减,1x 时取最大值,满足题意,即有 112122f .故选:B.10.(2022·全国·高考真题(文))已知910,1011,89m m m a b ,则()A .0a bB .0a b C .0b a D .0b a【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m ,再利用基本不等式,换底公式可得lg11m ,8log 9m ,然后由指数函数的单调性即可解出.【详解】由910m可得9lg10log 101lg9m ,而222lg 9lg11lg 99lg 9lg111lg1022,所以lg10lg11lg9lg10,即lg11m ,所以lg11101110110m a .又 222lg8lg10lg80lg8lg10lg 922,所以lg9lg10lg8lg9 ,即8log 9m ,所以8log 989890m b .综上,0a b .故选:A.二、多选题11.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x 的图像关于点2π,03中心对称,则()A .()f x 在区间5π0,12单调递减B .()f x 在区间π11π,1212有两个极值点C .直线7π6x 是曲线()y f x 的对称轴D .直线32y x 是曲线()y f x 的切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f,所以4ππ3k ,k Z ,即4ππ,3k kZ ,又0π ,所以2k 时,2π3,故2π()sin 23f x x.对A ,当5π0,12x时,2π2π3π2,332x,由正弦函数sin y u 图象知()y f x 在5π0,12上是单调递减;对B ,当π11π,1212x时,2ππ5π2,322x ,由正弦函数sin y u 图象知()y f x 只有1个极值点,由2π3π232x,解得5π12x ,即5π12x 为函数的唯一极值点;对C ,当7π6x时,2π23π3x ,7π(06f ,直线7π6x 不是对称轴;对D ,由2π2cos 213y x 得:2π1cos 232x,解得2π2π22π33x k或2π4π22π,33x k k Z ,从而得:πx k 或ππ,3x k kZ ,所以函数()y f x 在点处的切线斜率为02π2cos 13x k y ,切线方程为:(0)y x 即y x .故选:AD .12.(2022·全国·高考真题)已知函数()f x 及其导函数() f x 的定义域均为R ,记()()g x f x ,若322f x,(2)g x 均为偶函数,则()A .(0)0fB .102gC .(1)(4)f f D .(1)(2)g g 【答案】BC 【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为322f x,(2)g x 均为偶函数,所以332222f x f x即3322f x f x,(2)(2)g x g x ,所以 3f x f x ,(4)()g x g x ,则(1)(4)f f ,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x 对称,又()()g x f x ,且函数()f x 可导,所以 30,32g g x g x,所以 (4)()3g x g x g x ,所以 (2)(1)g x g x g x ,所以13022g g, 112g g g ,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C (C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.13.(2022·全国·高考真题)已知函数3()1f x x x ,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x 的对称中心D .直线2y x 是曲线()y f x 的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题, 231f x x ,令 0f x 得x 33x ,令()0f x 得x所以()f x 在(,33上单调递减,在(,)3 ,3(,)3上单调递增,所以3x 是极值点,故A 正确;因(10f,10f , 250f ,所以,函数 f x在,3上有一个零点,当x时,03f x f ,即函数 f x在3+上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x ,该函数的定义域为R , 33h x x x x x h x ,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x 的对称中心,故C 正确;令 2312f x x ,可得1x ,又 (1)11f f ,当切点为(1,1)时,切线方程为21y x ,当切点为(1,1) 时,切线方程为23y x ,故D 错误.故选:AC.三、双空题14.(2022·全国·高考真题)曲线ln ||y x 过坐标原点的两条切线的方程为____________,____________.【答案】1e y x1ey x【解析】【分析】分0x 和0x 两种情况,当0x 时设切点为 00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x 时同理可得;【详解】解:因为ln y x ,当0x 时ln y x ,设切点为 00,ln x x ,由1y x,所以001|x x y x ,所以切线方程为 0001ln y x x x x ,又切线过坐标原点,所以 0001ln x x x,解得0e x ,所以切线方程为 11e e y x ,即1ey x ;当0x 时 ln y x ,设切点为 11,ln x x ,由1y x,所以111|x x y x ,所以切线方程为1111ln y x x x x ,又切线过坐标原点,所以 1111ln x x x,解得1e x ,所以切线方程为 11e e y x ,即1e y x ;故答案为:1ey x ;1e y x 15.(2022·全国·高考真题(文))若 1ln 1f x a b x 是奇函数,则 a _____,b ______.【答案】12 ;ln 2.【解析】【分析】根据奇函数的定义即可求出.【详解】因为函数 1ln 1f x a b x为奇函数,所以其定义域关于原点对称.由101a x 可得, 110x a ax ,所以11a x a ,解得:12a ,即函数的定义域为 ,11,11, ,再由 00f 可得,ln 2b .即 111ln ln 2ln 211x f x x x,在定义域内满足 f x f x ,符合题意.故答案为:12;ln 2.四、填空题16.(2022·全国·高考真题(理))已知1x x 和2x x 分别是函数2()2e x f x a x (0a 且1a )的极小值点和极大值点.若12x x ,则a 的取值范围是____________.【答案】1,1e【解析】【分析】由12,x x 分别是函数 22e x f x a x 的极小值点和极大值点,可得 12,,x x x 时, 0f x ,12,x x x 时, 0f x ,再分1a 和01a 两种情况讨论,方程2ln 2e 0x a a x 的两个根为12,x x ,即函数ln x y a a 与函数e y x 的图象有两个不同的交点,构造函数 ln xg x a a ,利用指数函数的图象和图象变换得到 g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】解: 2ln 2e x f x a a x ,因为12,x x 分别是函数 22e x f x a x 的极小值点和极大值点,所以函数 f x 在 1,x 和 2,x 上递减,在 12,x x 上递增,所以当 12,,x x x 时, 0f x ,当 12,x x x 时, 0f x ,若1a 时,当0x 时,2ln 0,2e 0x a a x ,则此时 0f x ,与前面矛盾,故1a 不符合题意,若01a 时,则方程2ln 2e 0x a a x 的两个根为12,x x ,即方程ln e x a a x 的两个根为12,x x ,即函数ln x y a a 与函数e y x 的图象有两个不同的交点,∵01a ,∴函数x y a 的图象是单调递减的指数函数,又∵ln 0a ,∴ln x y a a 的图象由指数函数x y a 向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数 y g x 的图象相切的直线的切点为00,ln x x a a ,则切线的斜率为 020ln x g x a a ,故切线方程为 0020ln ln x x y a a a a x x ,则有0020ln ln x x a a x a a ,解得01ln x a,则切线的斜率为122ln ln e ln a a a a ,因为函数ln x y a a 与函数e y x 的图象有两个不同的交点,所以2eln e a ,解得1e ea ,又01a ,所以11ea ,综上所述,a 的范围为1,1e.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.17.(2022·全国·高考真题)若曲线()e x y x a 有两条过坐标原点的切线,则a 的取值范围是________________.【答案】,40, 【解析】【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a ,∴(1)e x y x a ,设切点为 00,x y ,则 000e x y x a ,切线斜率 001e x k x a ,切线方程为: 00000e 1e x x y x a x a x x ,∵切线过原点,∴ 00000e 1e x x x a x a x ,整理得:2000x ax a ,∵切线有两条,∴240a a ,解得4a <-或0a ,∴a 的取值范围是 ,40, ,故答案为:,40, 五、解答题18.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x.(1)当0a 时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.【答案】(1)1(2)0, 【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得 211ax x f x x,按照0a 、01a 及1a 结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当0a 时, 1ln ,0f x x x x ,则 22111x f x x x x,当 0,1 x 时,()0f x ¢>, f x 单调递增;当 1,x 时,()0f x ¢<, f x 单调递减;所以 max 11f x f ;(2)11ln ,0f x ax a x x x ,则 221111ax x a f x a x x x ,当0a 时,10 ax ,所以当 0,1 x 时,()0f x ¢>, f x 单调递增;当 1,x 时,()0f x ¢<, f x 单调递减;所以 max 110f x f a ,此时函数无零点,不合题意;当01a 时,11a ,在 10,1,,a上,()0f x ¢>, f x 单调递增;在11,a上,()0f x ¢<, f x 单调递减;又 110f a ,由(1)得1ln 1x x ,即1ln 1x x ,所以ln x x x当1x 时,11()(1)ln 2((2f x ax a x ax a ax a x x则存在2312m a a,使得 0f m ,所以 f x 仅在1,a有唯一零点,符合题意;当1a 时, 2210x f x x ,所以 f x 单调递增,又 110f a ,所以 f x 有唯一零点,符合题意;当1a 时,11a ,在 10,,1,a上,()0f x ¢>, f x 单调递增;在1,1a上,()0f x ¢<, f x 单调递减;此时 110f a ,由(1)得当01x 时,1ln 1xx ,1 ln 21x,此时11()(1)ln 2(11)1f x ax a x ax ax x x 存在2114(1)n a a,使得()0f n ,所以 f x 在10,a 有一个零点,在1,a无零点,所以 f x 有唯一零点,符合题意;综上,a 的取值范围为 0, .【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.19.(2022·全国·高考真题)已知函数()e e ax x f x x .(1)当1a 时,讨论()f x 的单调性;(2)当0x 时,()1f x ,求a 的取值范围;(3)设n Nln(1)n .【答案】(1) f x 的减区间为 ,0 ,增区间为 0, .(2)12a (3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得 f x 的单调性.(2)设 e e 1ax x h x x ,求出 h x ,先讨论12a 时题设中的不等式不成立,再就102a 结合放缩法讨论 h x 符号,最后就0a 结合放缩法讨论 h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt 对任意的1t 恒成立,从而可得 ln 1ln n n *n N 恒成立,结合裂项相消法可证题设中的不等式.(1)当1a 时, 1e x f x x ,则 e x f x x ,当0x 时,()0f x ¢<,当0x 时,()0f x ¢>,故 f x 的减区间为 ,0 ,增区间为 0, .(2)设 e e 1ax x h x x ,则 00h ,又 1e e ax x h x ax ,设 1e e ax x g x ax ,则 22e e ax x g x a a x ,若12a ,则 0210g a ,因为 g x 为连续不间断函数,故存在 00,x ,使得 00,x x ,总有()0g x ¢>,故 g x 在 00,x 为增函数,故 00g x g ,故 h x 在 00,x 为增函数,故 01h x h ,与题设矛盾.若102a ,则 ln 11e e e e ax ax ax x x h x ax ,下证:对任意0x ,总有 ln 1x x 成立,证明:设 ln 1S x x x ,故 11011x S x x x,故 S x 在 0, 上为减函数,故 00S x S 即 ln 1x x 成立.由上述不等式有 ln 12e e e e e e 0ax ax x ax ax x ax x ,故 0h x 总成立,即 h x 在 0, 上为减函数,所以 01h x h .当0a 时,有 e e e 1100ax x ax h x ax ,所以 h x 在 0, 上为减函数,所以 01h x h .综上,12a.(3)取12a ,则0x ,总有12e e 10x x x 成立,令12e x t ,则21,e ,2ln x t t x t ,故22ln 1t t t 即12ln t t t 对任意的1t 恒成立.所以对任意的*n N ,有整理得到:ln 1ln n nln 2ln1ln 3ln 2ln 1ln n nln 1n ,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.20.(2022·全国·高考真题)已知函数()x f x e ax 和()ln g x ax x 有相同的最小值.(1)求a ;(2)证明:存在直线y b ,其与两条曲线()y f x 和()y g x 共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)1a (2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b 时,e x x b 的解的个数、ln x x b 的解的个数均为2,构建新函数()e ln 2x h x x x ,利用导数可得该函数只有一个零点且可得 ,f x g x 的大小关系,根据存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax 的定义域为R ,而()e x f x a ,若0a ,则()0f x ,此时()f x 无最小值,故0a .()ln g x ax x 的定义域为 0, ,而11()ax g x a x x.当ln x a 时,()0f x ,故()f x 在 ,ln a 上为减函数,当ln x a 时,()0f x ,故()f x 在 ln ,a 上为增函数,故 min ()ln ln f x f a a a a .当10x a时,()0g x ,故()g x 在10,a 上为减函数,当1x a 时,()0g x ,故()g x 在1,a上为增函数,故min 11()1ln g x g a a.因为()e x f x ax 和()ln g x ax x 有相同的最小值,故11ln ln a a a a ,整理得到1ln 1a a a,其中0a ,设 1ln ,01a g a a a a ,则222211011a g a a a a a ,故 g a 为 0, 上的减函数,而()10g =,故 0g a 的唯一解为1a ,故1ln 1a a a的解为1a .综上,1a .(2)由(1)可得e ()x x f x 和()ln g x x x 的最小值为11ln11ln 11 .当1b 时,考虑e x x b 的解的个数、ln x x b 的解的个数.设 e x S x x b , e 1x S x ,当0x 时, 0S x ,当0x 时, 0S x ,故 S x 在 ,0 上为减函数,在 0, 上为增函数,所以 min 010S x S b ,而 e 0b S b , e 2b S b b ,设 e 2b u b b ,其中1b ,则 e 20b u b ,故 u b 在 1, 上为增函数,故 1e 20u b u ,故 0S b ,故 e x S x x b 有两个不同的零点,即e x x b 的解的个数为2.设 ln T x x x b , 1x T x x,当01x 时,()0T x ¢<,当1x 时, 0T x ,故 T x 在()0,1上为减函数,在 1, 上为增函数,所以 min 110T x T b ,而 e e 0b b T , e e 20b b T b ,ln T x x x b 有两个不同的零点即ln x x b 的解的个数为2.当1b ,由(1)讨论可得ln x x b 、e x x b 仅有一个零点,当1b 时,由(1)讨论可得ln x x b 、e x x b 均无零点,故若存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点,则1b .设()e ln 2x h x x x ,其中0x ,故1()e 2x h x x,设 e 1x s x x ,0x ,则 e 10x s x ,故 s x 在 0, 上为增函数,故 00s x s 即e 1x x ,所以1()1210h x x x,所以()h x 在 0, 上为增函数,而(1)e 20h ,31e 333122()e 3e 30e e eh ,故 h x 在 0, 上有且只有一个零点0x ,0311e x 且:当00x x 时, 0h x 即e ln x x x x 即 f x g x ,当0x x 时, 0h x 即e ln x x x x 即 f x g x ,因此若存在直线y b 与曲线 y f x 、()y g x =有三个不同的交点,故 001b f x g x ,此时e x x b 有两个不同的零点1010,(0)x x x x ,此时ln x x b 有两个不同的零点0404,(01)x x x x ,故11e x x b ,00e x x b ,44ln 0x x b ,00ln 0x x b 所以44ln x b x 即44e x b x 即 44e 0x b x b b ,故4x b 为方程e x x b 的解,同理0x b 也为方程e x x b 的解又11e x x b 可化为11e x x b 即 11ln 0x x b 即 11ln 0x b x b b ,故1x b 为方程ln x x b 的解,同理0x b 也为方程ln x x b 的解,所以 1004,,x x x b x b ,而1b ,故0410x x b x x b 即1402x x x .【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.21.(2022·全国·高考真题(理))已知函数 ln 1e x f x x ax (1)当1a 时,求曲线 y f x 在点 0,0f 处的切线方程;(2)若 f x 在区间 1,0,0, 各恰有一个零点,求a 的取值范围.【答案】(1)2y x(2)(,1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,) 两部分研究(1)()f x 的定义域为(1,)当1a 时,()ln(1),(0)0e x x f x x f ,所以切点为(0,0)11(),(0)21e x x f x f x ,所以切线斜率为2所以曲线()y f x 在点(0,(0))f 处的切线方程为2y x(2)()ln(1)e x ax f x x2e 11(1)()1e (1)e x x xa x a x f x x x 设 2()e 1x g x a x 1 若0a ,当 2(1,0),()e 10x x g x a x ,即()0f x 所以()f x 在(1,0) 上单调递增,()(0)0f x f 故()f x 在(1,0) 上没有零点,不合题意2 若10a ,当,()0x ,则()e 20x g x ax 所以()g x 在(0,) 上单调递增所以()(0)10g x g a ,即()0f x 所以()f x 在(0,) 上单调递增,()(0)0f x f 故()f x 在(0,) 上没有零点,不合题意3 若1a (1)当,()0x ,则()e 20x g x ax ,所以()g x 在(0,) 上单调递增(0)10,(1)e 0g a g 所以存在(0,1)m ,使得()0g m ,即()0 f m 当(0,),()0,()x m f x f x 单调递减当(,),()0,()x m f x f x 单调递增所以当(0,),()(0)0x m f x f 当,()x f x所以()f x 在(,)m 上有唯一零点又(0,)m 没有零点,即()f x 在(0,) 上有唯一零点(2)当2(1,0),()e 1x x g x a x 设()()e 2x h x g x ax()e 20x h x a 所以()g x 在(1,0) 单调递增1(1)20,(0)10eg a g 所以存在(1,0)n ,使得()0g n 当(1,),()0,()x n g x g x 单调递减当(,0),()0,()x n g x g x 单调递增,()(0)10g x g a 又1(1)0eg 所以存在(1,)t n ,使得()0g t ,即()0f t 当(1,),()x t f x 单调递增,当(,0),()x t f x 单调递减有1,()x f x而(0)0f ,所以当(,0),()0x t f x 所以()f x 在(1,)t 上有唯一零点,(,0)t 上无零点即()f x 在(1,0) 上有唯一零点所以1a ,符合题意所以若()f x 在区间(1,0),(0,) 各恰有一个零点,求a 的取值范围为(,1)【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(2022·全国·高考真题(理))已知函数 ln x f x x a xx e .(1)若 0f x ,求a 的取值范围;(2)证明:若 f x 有两个零点12,x x ,则环121x x .【答案】(1)(,1]e (2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x,再利用导数即可得证.(1)()f x 的定义域为(0,) ,2111()e 1x f x x x x1111e 1e 11x x x x x x x x 令()0f x ,得1x 当(0,1),()0,()x f x f x 单调递减当(1,),()0,()x f x f x 单调递增()(1)e 1f x f a ,若()0f x ,则e 10a ,即1a e 所以a 的取值范围为(,1]e (2)由题知, f x 一个零点小于1,一个零点大于1不妨设121x x <<要证121x x ,即证121x x 因为121,(0,1)x x ,即证 121f x f x 因为 12f x f x ,即证 221f x f x 即证1e 1ln e ln 0,(1,)x x x x x x x x x即证1e 11e 2ln 02x x x x x x x下面证明1x 时,1e 11e 0,ln 02x x x x x x x 设11(),e e xx g x x xx ,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x111e 1e 1e e x x x x x x x x x设 22e 1111,e e 0xx x x x x x xx x x 所以 1e x ,而1e ex 所以1e e 0xx x,所以()0g x 所以()g x 在(1,) 单调递增即()(1)0g x g ,所以1e e 0x x x x令11()ln ,12h x x x x x2222211121(1)()10222x x x h x x x x x 所以()h x 在(1,) 单调递减即()(1)0h x h ,所以11ln 02x x x;综上,1e 11e 2ln 02x x x x x x x,所以121x x .【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式11()ln 2h x x x x 这个函数经常出现,需要掌握。
2023年全国各地高考数学真题+详解分类汇编【第3章 函数与倒数合集】高清解析版
![2023年全国各地高考数学真题+详解分类汇编【第3章 函数与倒数合集】高清解析版](https://img.taocdn.com/s3/m/40164634f02d2af90242a8956bec0975f565a472.png)
第3章函数与导数1(2023•乙卷)已知f(x)=xe xe ax-1是偶函数,则a=()A.-2B.-1C.1D.2【解析】:∵f(x)=xe xe ax-1的定义域为{x|x≠0},又f(x)为偶函数,∴f(-x)=f(x),∴-xe-xe-ax-1=xe xe ax-1,∴xe ax-x e ax-1=xe xe ax-1,∴ax-x=x,∴a=2.故选:D.2(2023•新高考Ⅱ)若f(x)=(x+a)ln 2x-12x+1为偶函数,则a=()A.-1B.0C.12D.1【解析】:由2x-12x+1>0,得x>12或x<-12,由f(x)是偶函数,∴f(-x)=f(x),得(-x+a)ln -2x-1-2x+1=(x+a)ln2x-12x+1,即(-x+a)ln 2x+12x-1=(-x+a)ln2x-12x+1-1=(x-a)ln2x-12x+1=(x+a)ln2x-12x+1,∴x-a=x+a,得-a=a,得a=0.故选:B.3(2023•上海)下列函数是偶函数的是()A.y=sin xB.y=cos xC.y=x3D.y=2x 【解析】:对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由正弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.4(2023•甲卷)若f(x)=(x-1)2+ax+sin x+π2为偶函数,则a=.【解析】:根据题意,设f(x)=(x-1)2+ax+sin x+π2=x2-2x+ax+1+cos x,若f(x)为偶函数,则f(-x)=x2+2x-ax+1+cos x=x2-2x+ax+1+cos x=f(x),变形可得(a-2)x=0在R上恒成立,必有a=2.故答案为:2.5(2023•甲卷)若y=(x-1)2+ax+sin x+π2为偶函数,则a=.【解析】:根据题意,设f(x)=(x-1)2+ax+sin x+π2=x2-2x+ax+1+cos x,其定义域为R,若f(x)为偶函数,则f(-x)=x2+2x-ax+1+cos x=x2-2x+ax+1+cos x=f(x),变形可得(a-2)x=0,必有a=2.故答案为:2.6(2023•上海)已知函数f (x )=1,x ≤0,2x ,x >0,则函数f (x )的值域为.【解析】:当x ≤0时,f (x )=1,当x >0时,f (x )=2x >1,所以函数f (x )的值域为[1,+∞).故答案为:[1,+∞).7(2023•全国)f (x )为R 上奇函数,f (x +4)=f (x ),f (1)+f (2)+f (3)+f (4)+f (5)=6,f (-3)=.【解析】:f (x +4)=f (x ),则函数f (x )的周期为4,f (x )为R 上奇函数,f (0)=f (4)=0,令x =-2,则f (-2+4)=f (2)=f (-2)=-f (2),解得f (2)=0,令x =-3,则f (1)=f (-3)=-f (3),f (1)=f (5)=f (-3),所以f (1)+f (2)+f (3)+f (4)+f (5)=-f (3)+f (2)+f (3)+f (4)+f (-3)=f (-3)=6.故答案为:6.8(2023•全国)已知函数f (x )=2x +2-x ,则f (x )在区间-12,12的最大值为 .【解析】:∵f (x )=2x +2-x ,∴f ′(x )=2x ln2-2-x ln2=ln2(2x -2-x ),令f ′(x )=0,则x =0,∴f (x )在-12,0 单调递减,在0,12单调递增,∴f -12 =322,f (0)=2,f 12 =322,则f (x )在区间-12,12的最大值为322.故答案为:322.9(2023•乙卷)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是()A.(-∞,-2)B.(-∞,-3)C.(-4,-1)D.(-3,0)【解析】:f ′(x )=3x 2+a ,若函数f (x )=x 3+ax +2存在3个零点,则f ′(x )=3x 2+a =0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0-12a >0,得a <0,由f ′(x )>0得x >-a 3或x <--a 3,此时f (x )单调递增,由f ′(x )<0得--a 3<x <-a 3,此时f (x )单调递减,即当x =--a 3时,函数f (x )取得极大值,当x =-a 3时,f (x )取得极小值,则f --a 3>0,f -a 3 <0,即--a 3-a 3+a +2>0,且-a 3-a3+a +2<0,即--a 3×2a 3+2>0,①,且-a 3×2a 3+2<0,②,则①恒成立,由-a 3×2a 3+2<0,2<--a 3×2a 3,平方得4<-a3×4a 29,即a 3<-27,则a <-3,综上a <-3,即实数a 的取值范围是(-∞,-3).故选:B .10(2023•甲卷)函数y =f (x )的图象由y =cos 2x +π6 的图象向左平移π6个单位长度得到,则y =f (x )的图象与直线y =12x -12的交点个数为()A.1B.2C.3D.4【解析】:y =cos 2x +π6 的图象向左平移π6个单位长度得到f (x )=cos 2x +π2 =-sin2x ,在同一个坐标系中画出两个函数的图象,如图:y =f (x )的图象与直线y =12x -12的交点个数为:3.故选:C .11(2023•全国)若log 2(x 2+2x +1)=4,且x >0,则x =()A.2B.3C.4D.5【解析】:∵log 2(x 2+2x +1)=4,∴x 2+2x +1=16,且x >0,解得x =3.故选:B .12(2023•天津)若函数f (x )=ax 2-2x -|x 2-ax +1|有且仅有两个零点,则a 的取值范围为.【解析】:①当a =0时,f (x )=-2x -|x 2+1|=-2x -x 2-1,不满足题意;②当方程x 2-ax +1=0满足a ≠0且△≤0时,有a 2-4≤0即a ∈[-2,0)∪(0,2],此时,f (x )=(a -1)x 2+(a -2)x -1,当a =1时,不满足,当a ≠1时,Δ=(a -2)2+4(a -1)=a 2>0,满足;③Δ>0时,a ∈(-∞,-2)∪(2,+∞),记x 2-ax +1的两根为m ,n ,不妨设m <n ,则f (x )=[(a -1)x -1](x +1),x ∈(-∞,m ]∪[n ,+∞)[(a +1)x -1](x -1),x ∈(m ,n ),当a >2时,x 1=1a -1,x 2=-1且x ∈(-∞,m ]∪[n ,+∞),但此时x 21-ax 1+1=-a +2(a -1)2<0,舍去x 1,x 3=1a +1,x 4=1,且x ∈(m ,n ),但此时x 23-ax 3+1=a +2(a -1)2>0,舍去x 3,故仅有1与-1两个解,于是,a ∈(-∞,0)∪(0,1)∪(1,+∞).故答案为:(-∞,0)∪(0,1)∪(1,+∞).13(2023•上海)已知函数f (x )=2-x +1,且g (x )=log 2(x +1),x ≥0f (-x ),x <0,则方程g (x )=2的解为.【解析】:当x ≥0时,g (x )=2⇔log 2(x +1)=2,解得x =3;当x <0时,g (x )=f (-x )=2x +1=2,解得x =0(舍);所以g (x )=2的解为:x =3.故答案为:x =3.14(多选)(2023•新高考Ⅰ)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级L p =20×lg pp 0,其中常数p 0(p 0>0)是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为p 1,p 2,p 3,则()A.p 1≥p 2B.p 2>10p 3C.p 3=100p 0D.p 1≤100p 2【解析】:由题意得,60≤20lg p 1p 0≤90,1000p 0≤p 1≤1092p 0,50≤20lg p 2p 0≤60,1052p 0≤p 2≤1000p 0,20lg p 3p 0=40,p 3=100p 0,可得p 1≥p 2,A 正确;p 2≤10p 3=1000p 0,B 错误;p 3=100p 0,C 正确;p 1≤1092p 0=100×1052p 0≤100p 2,p 1≤100p 2,D 正确.故选:ACD .15(2023•甲卷)已知函数f (x )=e -(x -1)2.记a =f 22,b =f 32 ,c =f 62,则()A.b >c >aB.b >a >cC.c >b >aD.c >a >b【解析】:令g (x )=-(x -1)2,则g (x )的开口向下,对称轴为x =1,∵62-1-1-32 =6+32-42,而(6+3)2-42=9+62-16=62-7>0,∴62-1-1-32 =6+3-42>0,∴62-1>1-32,∴由一元二次函数的性质可知g 62 <g 32 ,∵62-1-1-22 =6+2-42,而(6+2)2-42=43-8<0,∴62-1<1-22,∴g 62>g 22 ,综合可得g 22 <g 62 <g 32 ,又y =e x为增函数,∴a <c <b ,即b >c >a .故选:A .16(2023•甲卷)曲线y =e xx +1在点1,e 2 处的切线方程为()A.y =e4x B.y =e 2x C.y =e 4x +e 4D.y =e2x +3e 4【解析】:因为y =e xx +1,y ′=e x (x +1)-e x (x +1)'(x +1)2=xe x(x +1)2,故函数在点1,e2处的切线斜率k =e 4,切线方程为y -e 2=e 4(x -1),即y =e4x +e 4.故选:C .17(2023•新高考Ⅱ)已知函数f (x )=ae x -ln x 在区间(1,2)上单调递增,则a 的最小值为()A.e 2B.eC.e -1D.e -2【解析】:对函数f (x )求导可得,f '(x )=ae x -1x,依题意,ae x -1x≥0在(1,2)上恒成立,即a ≥1xe x在(1,2)上恒成立,设g (x )=1xe x ,x ∈(1,2),则g '(x )=-(e x +xe x )(xe x )2=-e x (x +1)(xe x )2,易知当x ∈(1,2)时,g ′(x )<0,则函数g (x )在(1,2)上单调递减,则a ≥g (x )max =g (1)=1e=e -1.故选:C .18(2023•全国)已知函数f (x )=x 3+ax 2+x +b 在x =1处取得极小值1,则b =()A.-1B.0C.1D.2【解析】:f (x )=x 3+ax 2+x +b ,则f '(x )=3x 2+2ax +1,∵函数f (x )=x 3+ax 2+x +b 在x =1处取得极小值1,∴1+a +1+b =13+2a +1=0 ,解得a =-2b =1 ,故f (x )=x 3-2x 2+x +1,f '(x )=3x 2-4x +1,令f '(x )=0,解得x =13或x =1,f (x )在-∞,13 ,在(1,+∞)上单调递增,在13,1上单调递减,故f (x )在x =1处取得极小值,故b =1,符合题意.故选:C .19(2023•全国)曲线y =2ln x +x 2在(1,1)处切线方程为.【解析】:由y =2ln x +x 2可得y ′=2x+2x ,x >0,曲线在点(1,1)处的切线斜率为k =4,所以所求切线方程为y -1=4(x -1)即y =4x -3.故答案为:y =4x -3.20(2023•乙卷)设a ∈(0,1),若函数f (x )=a x +(1+a )x 在(0,+∞)上单调递增,则a 的取值范围是 .【解析】:∵函数f (x )=a x +(1+a )x 在(0,+∞)上单调递增,∴f ′(x )=a x ln a +(1+a )x ln (1+a )≥0在(0,+∞)上恒成立,即(1+a )x ln (1+a )≥-a x ln a ,化简可得1+a a x ≥-ln aln (1+a )在(0,+∞)上恒成立,而在(0,+∞)上1+a ax>1,故有1≥-ln a ln (1+a ),由a ∈(0,1),化简可得ln (1+a )≥ln 1a ,即1+a ≥1a ,a 2+a -1≥0,解答5-12≤a <1,故a 的取值范围是5-12,1.故答案为:5-12,1 .21(多选)(2023•新高考Ⅱ)若函数f (x )=a ln x +bx +c x2(a ≠0)既有极大值也有极小值,则()A.bc >0B.ab >0C.b 2+8ac >0D.ac <0【解析】:函数定义域为(0,+∞),且f ′(x )=a x -b x 2-2c x 3=ax 2-bx -2cx 3,由题意,方程f ′(x )=0即ax 2-bx -2c =0有两个正根,设为x 1,x 2,则有x 1+x 2=b a >0,x 1x 2=-2ca>0,Δ=b 2+8ac >0,∴ab >0,ac <0,∴ab •ac =a 2bc <0,即bc <0.故选:BCD .。
函数与导数知识点总结高考必备)
![函数与导数知识点总结高考必备)](https://img.taocdn.com/s3/m/ad434f59fbd6195f312b3169a45177232f60e4ab.png)
函数与导数知识点总结高考必备)一、函数的概念与性质1.函数:函数是一种将一个数域的数值和另一个数域的数值结合起来的关系。
记作y=f(x),其中y是函数值,x是自变量。
2.定义域和值域:函数的定义域是自变量x的取值范围,值域是函数所有可能的函数值的集合。
3.奇偶性:如果对于函数f(x),有f(-x)=f(x),则函数是偶函数;如果对于函数f(x),有f(-x)=-f(x),则函数是奇函数。
4.单调性:函数在定义域上的取值随着自变量的增大而增大,或随着自变量的减小而减小,则函数是单调递增的;函数在定义域上的取值随着自变量的增大而减小,或随着自变量的减小而增大,则函数是单调递减的。
二、导数的定义与性质1.导数的定义:函数y=f(x)在点x处的导数记作f'(x),定义为当自变量x的增量趋近于0时,函数值的增量与自变量增量的比值的极限。
2.导数的几何意义:导数表示函数曲线在该点处的切线斜率。
切线斜率越大,函数曲线越陡峭;切线斜率越小,函数曲线越平缓。
3.导函数:函数的导数也被称为导函数。
函数f(x)的导函数记作f'(x),如果导数存在。
4.导数的四则运算:(常数乘以函数)导数等于常数乘以函数的导数;(两个函数的和)导数等于两个函数的导数之和;(两个函数的差)导数等于两个函数的导数之差。
5.高阶导数:函数的导数的导数叫做高阶导数。
高阶导数也可以通过导数的定义来求解。
6.导数与函数图像的性质:函数在特定点处可导,则在该点处函数图像的切线与曲线相切;函数在特定点处导数不存在,则在该点处函数图像可能有尖点、垂直切线或间断点。
三、导数的求法1.基本初等函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数可以通过一些公式来求解。
2.利用导数的四则运算:通过导数的四则运算性质,可以求得由基本初等函数组成的复合函数的导数。
3.链式法则:如果y=f(g(x))是由两个函数复合而成的复合函数,则其导数可以通过链式法则求解:f(g(x))'=f'(g(x))*g'(x)。
导数有关知识点总结、经典例题及解析、近年高考题带答案
![导数有关知识点总结、经典例题及解析、近年高考题带答案](https://img.taocdn.com/s3/m/8a3920bf941ea76e59fa0402.png)
导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
【知识梳理】一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。
即f (x 0)=0lim→∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f ’(x 0)=x yx ∆∆→∆0lim。
二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
2024年高考数学高频考点题型总结一轮复习 导数与函数的单调性(精练:基础+重难点)
![2024年高考数学高频考点题型总结一轮复习 导数与函数的单调性(精练:基础+重难点)](https://img.taocdn.com/s3/m/799b6e23dcccda38376baf1ffc4ffe473368fdaa.png)
2024年高考数学高频考点题型归纳与方法总结第15练导数与函数的单调性(精练)一、解答题【A组在基础中考查功底】一、单选题A .B .C ..【答案】A【分析】根据函数的单调性与导函数的关系判断即可;【详解】解:由()f x 的图象可知,当(),0x ∈-∞时函数单调递增,则()f x ',故排除C 、D ;当()0,x ∈+∞时()f x 先递减、再递增最后递减,所以所对应的导数值应该先小于,再大于0,最后小于B ;故选:A4.(2023·全国·高三专题练习)若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .),1-∞-C .[)+∞D .[1,-【答案】D【分析】根据函数单调性与导数的关系进行求解即可【详解】由ln 1a y x a x x=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10ax+≥在[1,+∞上恒成立,因为[)1,x ∞∈+,所以由100x a a ≥⇒+≥⇒≥,因为[)1,x ∞∈+,所以,1]x --∞-,于是有1a ≥-二、多选题f x为偶函数A.()f x为奇函数B.()f x的最小值为a C.()三、填空题四、解答题【B组在综合中考查能力】一、解答题二、单选题而函数()3g x a ax =-恒过点(3,0C 象应介于直线AC 与直线BC 之间(可以为直线又()1,1A ,()2,2ln 21B +,∴011312AC k -==--,0(2ln 3BC k -=三、填空题故1x =为函数极小值点,此时函数也取得最小值,最小值为(1)e g =-,故e,e m m -≤-∴≥,经验证,当e m =时,()()21e 0xf x m x x '=+--≥在R 上恒成立,仅在1x =时取等号,适合题意,故实数m 的取值范围是[e,)+∞,故答案为:[e,)+∞【C 组在创新中考查思维】一、解答题令()0f x ¢>,解得()0,x ∈+∞;令()0f x '<,解得(),0x ∈-∞,所以()f x 的单调增区间为()0,∞+,单调减区间为(),0∞-,当1a <-时,令()0f x '=,解得:0x =或()ln 1x a =--,①当()ln 10a --=时,即2a =-,()()2e 10xf x '=-≥,所以()f x 在(),-∞+∞上单增.②当()ln 10a -->时,即2a <-,由()0f x ¢>解得:()()(),0ln 1,x a ∈-∞--+∞ ;由()0f x '<解得:()()0,ln 1x a ∈--,所以()f x 的单调增区间为()()(),0,ln 1,a -∞--+∞,()f x 的单调减区间为()()0,ln 1a --.③当()ln 10a --<时,即21a -<<-,由()0f x ¢>解得:()()(),ln 10,x a ∈-∞--+∞ ;由()0f x '<解得:()()ln 1,0x a ∈--,所以()f x 的单调增区间为()()(),ln 1,0,a -∞--+∞,()f x 的单调减区间为()()ln 1,0a --.综上:当1a ≥-时,()f x 的单调增区间为()0,∞+,单调减区间为(),0∞-;当21a -<<-时,()f x 的单调增区间为()()(),ln 1,0,a -∞--+∞,()f x 的单调减区间为()()ln 1,0a --;当2a =-时,()f x 在(),-∞+∞上单增;当2a <-时,()f x 的单调增区间为()()(),0,ln 1,a -∞--+∞,()f x 的单调减区间为()()0,ln 1a --.二、单选题三、多选题四、填空题。
高考数学导数小题分类总结整理
![高考数学导数小题分类总结整理](https://img.taocdn.com/s3/m/2da3ded17cd184254a353596.png)
(1) u v
;
(3)
u
;
v
(2) u v (4) cu
;
( c 为常数).
复合函数的导数
设函数 u x在点 x 处有导数 u x,函数 y f u在点 x 的对应点 u 处有导数 y f u,则复合函数 y f x在点 x 处也有导数,且 yx yu ux 或写作 f x x f ux .
趋势,
例 1、导函数正负与原函数图像的影响 (1)函数 f(x)=ax3+bx2+cx+d 的图象如图,且|x1|<|x2|,则
有( ) A.a>0,b>0,c>0,d>0 B.a<0,b>0,c<0,d>0 C.a<0,b<0,c>0,d>0 D.a>0,b<0,c>0,d<0
变式.已知 R 上可导函数 f x 的图像如图所示,
g(x)
=
f
(x)
−x−b
有三个零点,则实数
b
的取值
范围为( )
(3)设函数 f (x) = ex (2x 1) ax a ,其中 a 1,若存在唯一的整数 x0,使得 f (x0 ) 0,则 a 的
取值范围是( )A.[- ,1) B. [- , ) C. [ , ) D. [ ,1)
变式:(1)已知
D. x2e x1 x1e x2
(2).已知定义在(0,+∞)上的函数 f(x)的导函数为 f'(x),满足 x2f'(x)+xf(x)
=lnx,f(e)= ,则 f(x)( )
A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值又有极小值 D.既无极大值也无极小值
变式:(1)已知函数 f x 是定义在 0, 内的单调函数,且对
高考数学的知识点大全总结
![高考数学的知识点大全总结](https://img.taocdn.com/s3/m/9a3557b7710abb68a98271fe910ef12d2af9a9d2.png)
高考数学的知识点大全总结一、函数与导数1. 函数的概念2. 函数的性质3. 函数的图像4. 函数的运算5. 函数的奇偶性6. 函数的周期性7. 导数的概念8. 导数的计算9. 函数的极值10. 函数的微分与微分中值定理二、平面向量1. 向量的概念2. 向量的加减法3. 向量的数量积4. 向量的夹角5. 向量的方向角6. 向量的共线条件7. 向量的投影8. 向量的线性运算9. 平面向量的运用10. 平面向量的应用题三、三角函数1. 弧度制与角度制2. 三角函数的概念3. 三角函数的性质4. 三角函数图像5. 三角恒等式6. 三角函数的变换7. 三角函数的应用8. 三角函数的周期性9. 三角函数的图像10. 三角函数的导数与积分四、数列与数学归纳法1. 数列的概念2. 等差数列3. 等比数列4. 通项公式与前n项和5. 数学归纳法的概念6. 数学归纳法的应用7. 数列的极限五、集合与不等式1. 集合的概念2. 集合的运算3. 集合的性质4. 不等式的概念5. 不等式的解法6. 不等式的性质7. 不等式的应用8. 绝对值不等式六、概率与统计1. 概率的基本概念2. 随机事件的概念3. 概率的计算4. 条件概率与独立性5. 排列组合6. 概率分布7. 统计参数的估计8. 正态分布9. 抽样调查10. 统计图表分析七、平面几何1. 点、线、面的概念2. 角的性质3. 三角形的性质4. 四边形的性质5. 圆的性质6. 三角形的相似性7. 圆的相似性8. 圆锥曲线的概念9. 平面几何证明10. 平面几何应用题八、空间几何1. 空间点、直线、平面的位置关系2. 空间直角坐标系3. 球、圆柱、锥的性质4. 空间向量的运算5. 空间几何证明6. 空间几何应用题九、解析几何1. 解析几何基本概念2. 直线、圆的方程3. 在直线外一点到直线的距离4. 直线与圆的位置关系5. 直线、圆的参数方程6. 解析几何证明7. 解析几何应用题十、函数与导数1. 函数与导数的基本概念2. 导数的概念与计算3. 复合函数的导数4. 隐函数的导数5. 参数方程的导数6. 函数与导数的应用以上就是高考数学的知识点大全的总结,希望对大家备考有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年高考数学试题汇编函数与导数(07广东) 已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=⋂N M ( )C.B.) AA .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件B(07江西)设函数f(x)是R 上以5为周期的可导偶函数,则曲线y =f(x)在x =5处的切线的斜率为 A .-51 B .0 C .51D .5B.(07浙江)设()⎩⎨⎧<≥=1,1,2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的值域是( )A.(][)+∞-∞-,11,YB.(][)+∞-∞-,01,YC.[)+∞,0D. [)+∞,1C.B.A.(07湖南) 函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) A.4 B.3 C.2 D.1B.(07湖南)设集合{}6,5,4,3,2,1=M ,k S S S ,,,21Λ都是M 的含有两个元素的子集,且满足:对任意的{}i i i b a S ,=、{}j j j b a S ,=({}k j i j i ,,3,2,1,,Λ∈≠)都有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠⎭⎫⎩⎨⎧j j j j i i i i a b b a a b b a ,min ,min , ({}y x ,m in 表示两个数y x ,中的较小者),则k 的最大值是( )A.10B.11C.12D.13B.C.DB.(07山东) 设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为( ) A.1,3 B.-1,1 C.-1,3 D.-1,1,3A.(07江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是()A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1A.(07安徽)若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A. a <-1B. a ≤1C.a <1D.a ≥1B.(07安徽)定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A.0B.1C.3D.5D.(07安徽)图中的图象所表示的函数的解析式为(A)|1|23-=x y (0≤x ≤2) (B) |1|2323--=x y (0≤x ≤2)(C) |1|23--=x y (0≤x ≤2)(D) |1|1--=x y (0≤x ≤2)B.(07安徽)设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >nB.(07北京)对于函数①()()12lg +-=x x f ,②()()22-=x x f ,③()()2cos +=x x f .判断如下三个命题的真假:命题甲:()2+x f 是偶函数;命题乙:()()2,∞-在区间x f 上是减函数,在区间()+∞,2上是增函数;命题丙:()()x f x f -+2在()+∞∞-,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是()A.①③B.①②C. ③D. ②D(07湖北)为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为at y -⎪⎭⎫⎝⎛=161(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室. (07山东)函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A,若点A 在直线01=++ny mx 上,其中0>mn ,则nm 21+的最小值为 . 8(07重庆) 若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范围 。
[]0,1-(07宁夏)设函数()()()xa x x x f ++=1为奇函数,则实数=a 。
-1(07全国Ⅰ)函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x =__________。
(07北京)()()x g x f ,已知函数分别由下表给出:则()[]1g f 的值 ;满足()[]()[]x f g x g f >的x 的值 .1,2()()1010f f ≥⎪⎪-≥⎩()()1010f f ≤⎪⎪-≤⎩解得5a ≥或32a --<综上所求实数a 的取值范围是 1a > 或 32a -≤ . (07北京)已知集合{})2(,,,,321≥=k a a a a A k Λ其中),,2,1(k i Z a i Λ=∈,由A 中的元素构成两个相应的集合(){}A b a A b A a b a S ∈+∈∈=,,,,(){}A b a A b A a b a T ∈-∈∈=,,,,其中()b a ,是有序实数对,集合T S 和的元素个数分别为n m ,.若对于任意的A a A a ∉-∈,总有,则称集合A 具有性质P .(Ⅰ)检验集合{}3,2,1,0与{}3,2,1-是否具有性质P ,并对其中具有性质P 的集合写出相d c b a +=+与d b =中至少有一个不成立,故()b b a ,+与()d d c ,+也是T 中的不同元素.可见S 中的元素个数不多于T 中的元素个数,即n m ≤;②对于()T b a ∈,,根据定义()S b b a A b a A b A a ∈-∈-∈∈,,,从而,则 如果()()d c b a ,,与是T 中的不同元素,那么d b c a ==与中至少有一个不成立,于是d c b a -=-与d b =中至少有一个不成立,故()b b a ,-与()d d c ,-也是S 中的不同元素.可见T 中的元素个数不多于S 中的元素个数,即m n ≤.由①②可知n m =. (07上海)已知函数()),0(2R a x xax x f ∈≠+=.(重庆理)已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。
(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。
解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-.又对()f x 求导得()34341ln 4'bx xax x ax x f +⋅+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.(II )由(I )知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =. 当01x <<时,()0f x '<,此时()f x 为减函数; 当1x >时,()0f x '>,此时()f x 为增函数.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+.由240y x '=-=,得2x =±. 因为当(2)x ∈-∞-,时,y '>0,当(22)x ∈-,时,0y '<,当(2)x ∈+∞,时,0y '>, 故所求函数的单调递增区间是(2)-∞-,,(2)+∞,;单调递减区间是(22)-,.(II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>, 则223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立.方法二:对任意00x >,0016()43x g x x =-,因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥,即200(2)(4)0x x -+≤, ①又因为00x >,不等式①成立的充分必要条件是02x =,所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.(天津理)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调所以()f x 在区间a -- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间a a - ⎪⎝⎭,内为增函数. 函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭, 函数()f x 在21x a=处取得极大值()f a ,且()1f a =. (2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化情况如下表:所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在1处取得极小值1⎛⎫,且21⎛⎫.⎝⎭⎝⎭证法二:因()()22112211n f x f n n ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭≥11211nn n ⎛⎫⎛⎫=+⋅+ ⎪⎪⎝⎭⎝⎭而()'11221ln 1nf x n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭故只需对11n ⎛⎫+⎪⎝⎭和1ln 1n ⎛⎫+ ⎪⎝⎭进行比较。