气流组织计算

合集下载

气流组织_精品文档

气流组织_精品文档
辐(斜)流洁净室(也称矢流)
混合流(局部单向流)洁净室
4.1 非单向流式气流组织
作用原理
当一股干净气流从送风口 送入室内时,迅速向四周 扩散、混合。同时把差不 多同样数量的气流从回风 口排走,这股干净气流稀 释着室内污染的空气,把 原来含尘浓度很高的室内 空气冲淡了,一直达到平 衡。所以气流扩散的越快 ,越均匀,那么稀释的效 果当然越好。 非单向流洁净室的原理就 是稀释作用。
4.2 单向流式气流组织
作用原理
在单向流洁净室内, 干净气流充满全室断 面,所以这种洁净室 不是靠掺混作用,而 是靠推出作用将室内 脏空气沿整个断面排 至室外,从而达到净 化室内空气的目的。 单向流洁净室的原理 就是“活塞”作用。
特点
单向流式气流组织方式要求室内断面保持一定的 风速,其折算的换气次数高达每小时数百次(200 ~600次/h),为非单向流的10~20倍,故可以使 室内达到较高的洁净度。洁净气流本身对污染源 会产生隔离作用,抑止了尘菌等污染物向房间的 扩散。
③当污染气流与送风气流逆向时,送风气流能 把污染气流抑制在必要的距离之内;
④在全室被污染的情况下,足以在合适的时间 内迅速使室内污染空气自净。
下限风速建议值
洁净室 下限风速 (m/s)


《医药工业洁净厂
房设计规范》值( m/s)
垂直 单向流
0.12 0.3 不大于0.5
平时无人或很少有人进出,无明显热源
乱流度是为了说明速度场的集中和离散程 度而定义的,用于不同的速度场的比较。 《洁净室施工及验收规范》中规定乱流度 的计算式为:
(3)下限风速 下限风速主要式为了保证洁净室能控制以下四 种污染而制定的。
①当污染气流多方位扩散时,送风气流要能有 效控制污染的范围;

条缝形风口送风气流组织设计计算

条缝形风口送风气流组织设计计算

条缝形风口送风设计计算
校核射程
说明
v x---距风口距离为x处的最大风速(m/s)
v s---条缝口的送风速度(m/s)
K---送风口常数 2.35对条缝口为2.35
b---条缝口有效宽度(m)
x o---条缝口中心至主气流外观原点的距离对条缝口x o=0
H---房间高度(m)
n---系数n=x/L1
x---射程(m)
L1---与射程有关的房间长度
确定送风速度vs和条缝口尺寸b
L---房间长度由房间的长度和高度确定表6-10中的使用表格;当W---宽度
H---高度
Ls---总送风量 m3/h
v p---室内平均风速 (m/s)查表6-10(民用建筑空调设计)
v p'---室内平均风速 (m/s)送冷风时乘以修正系数1.2;送热风时乘以修正系l---条缝风口的有效长度(m)多条条缝送风时乘以个数
n---条缝个数
Ls1每米长条缝的送风量 m3/h
vs---送风速度 (m/s)查表6-10;在第一列找到最接近Ls1的风量值,对b---每条条缝宽度 mm
注:按样本选取合适的条缝风苦型号,并校核射程;若能在表格中找到与计算Ls1接近的每米条缝送风量
中的使用表格;当条缝口设在房间一端向一个方向送风时,应按2L查表,Ls1值也应为实际值的2倍,2;送热风时乘以修正系数0.8
最接近Ls1的风量值,对应找到vs和b
s1接近的每米条缝送风量值时,则认为射程可以满足要求。

2倍,用乘以2后的L、Ls1值选取vp、vs和b值。

气流组织设计计算表(孔板送风)

气流组织设计计算表(孔板送风)
局部孔板送风计算 t s 基本资料 A B H tn 允许温度波动范围 送风温差 送风量 3.3 5.56 3 25 2 4 2700 4.2 1.2 孔板尺寸 1.做局部孔板A=2X6=12,选择孔眼送风速度vs 先选择孔板孔眼直径ds=5mm,孔板材料为五合板t/ds=1,选择孔眼送风速度vs(m/s) ds(mm) 6 Vs(m/s) 4 2.选择送风温差,计算出单位面积送风量Ls(M3/M2.H) r=1.2 C=1.01 3.计算顶棚开孔面积 a=0.75 自由端面比Cm 147.155
h=
0.0011SLs
S
为了安装及气流入口处的扩散,稳压层净高不小于0.2m,因此取h=(m)
0.2
工作区风速 q(kw/M2) 0.15 0.035
4
LS =
3600 q r C ts
A0 =
Hale Waihona Puke L 3600 S aCm =
A0 A
l = 0.886
ds Cm
N =
A l2
tx / ts =
C 1 S aCm
Vc=
1 0.7565344
7.校核工作区区域温差 t x 工作区高度1.8m,相当距风口2.2m,查查<空调调节设计手册第二版>页261的图5-15得到 即工作区区域温差 t x = 0.2
8.计算稳压层高度h 当Vz/Vs=0.25时, S=B(房间的长方向尺寸)
0.225
0.2403846
0.0476954
4.计算孔口间距l(mm) 孔口间距取值(mm)
24.341476 20
5.计算孔板孔眼数N 孔眼排列N A方向 210 210 B方向 60 60

气流组织冷量计算

气流组织冷量计算

气流组织冷量计算一、引言在工业生产、建筑空调以及其他领域中,我们经常需要对气流进行冷量计算。

准确计算气流的冷量对于设计合适的空调系统以及合理利用能源具有重要意义。

本文将介绍气流组织冷量计算的基本原理和方法。

二、冷量计算的基本原理气流的冷量计算是基于热力学原理进行的。

热力学第一定律表明,能量守恒,即能量不会凭空消失或产生。

而热力学第二定律表明,能量的转化是有方向性的,自然界中能量会从高温区域传递到低温区域。

因此,我们可以通过测量气流进入和离开某个区域的能量变化,来计算气流的冷量。

三、冷量计算的方法1. 平均温度法平均温度法是最常用的气流冷量计算方法之一。

该方法基于气流进入和离开区域的温度差异,并结合气流的流量来计算冷量。

具体计算公式如下:冷量 = 气流流量 * 每单位质量气体的比热容 * 温度差2. 湿球温度法湿球温度法是用于计算湿空气的冷量的常用方法。

该方法考虑了湿空气的相对湿度对冷量的影响。

具体计算公式如下:冷量 = 气流流量 * 相对湿度 * 每单位质量湿空气的比焓差3. 能量平衡法能量平衡法是一种综合考虑气流进出口温度、湿度以及其他能量损失因素的计算方法。

该方法更为精确,但计算相对复杂。

在实际应用中,可以通过测量进出口温度、湿度以及其他参数,利用能量平衡方程来计算冷量。

四、冷量计算的影响因素冷量计算的结果受到多种因素的影响,下面列举了几个主要因素:1. 气流流量:气流流量越大,冷量也越大。

2. 温度差:温度差越大,冷量也越大。

3. 相对湿度:相对湿度越高,冷量也越大。

4. 每单位质量气体的比热容:不同气体的比热容不同,会影响到冷量的计算结果。

五、冷量计算的应用气流的冷量计算在许多领域都有广泛的应用。

在工业生产中,准确计算气流的冷量可以帮助优化生产过程,提高能源利用效率。

在建筑空调设计中,冷量计算可以帮助确定合适的空调系统容量,以达到舒适的室内环境。

此外,在环境监测、风洞实验等领域,冷量计算也扮演着重要的角色。

气流组织计算

气流组织计算

散流器气流组织的分析与核算以地下一层分区一为例进行计算:1.换气次数的确定换气次数n=31055m ³/h/(40.4x20.1x4)=9.56≈10根据对气流组织要求的有关规定可知,每小时的换气次数不应小于5次,计算的10次满足要求2.散流器尺寸及参数按50个散流器计算,每个散流器对应的Fn=40.4x20.1/50=16.24㎡,水平射程为2m,垂直射程x ’=4-1.8=2.2m.散流器出风速度4m/s,总风量31055m 3/h,每个散流器送风量为0L =31055/50=621.1m ³/h=0.17m ³/s 这样F 0=0.17/4=0.04m 2下面进行校核计算3.检查x ul x F K K K m u u o x +='203211 式中:12m —— 由《空气调节》表5-2送风口特性系统性表中查得:91.121=m ;1K ——根据n f x x ==55.024.162.2=在《空气调节》图5-13射流受限修正系数曲线图中取得=k 10.552K 、3K ——均取1。

代入各值,得:U X =2.022.204.055.091.14=+⨯⨯⨯m/s(4)检查x t ∆:l x F K n t t x +∆=∆'20110=c o 32.02.42.055.01.128=⨯⨯⨯⨯计算结果说明x u 和x t ∆均满足需求。

(5)检查射流贴附长度l x :k z x l exp 5.0=00h 62.0-35.0k F =04.004.01.062.035.0=-201041)2(245.5t n F u m z ∆==4.95 l x =0.5⨯4.95⨯exp0.04=2.57m贴附的射流长度满足要求。

综上所述,我们选择方形散流器,其喉部尺寸为250mm ×250mm 。

其他房间散流器的片数由各自房间的送风量及面积来确定,各个房间散流器的片数计算结果详见附表。

气流组织计算

气流组织计算

⽓流组织计算ρ空⽓密度: 1.2kg/m3c空⽓定压⽐热容: 1.01kJ/(kg·℃)Ls房间总送风量:6000m3/h 1.666667m3/s L房间长度:30m W房间宽度:12m H房间净⾼:7m ts送风温度:20℃tn房间⼯作区温度:28℃△ts送风温差:8℃⼯作区⾼度: 2.7m ɑ喷⼝紊流系数:0.07设计步骤:喷⼝直径ds=0.26m喷⼝倾⾓α=0喷⼝安装⾼度: h=6m喷⼝安装位置: x=13my= 3.3my/ds=12.69231x/ds=50①当α=0且送冷风时0.002378②当α⾓向下且送冷风时0.002378②当α⾓向下且送热风时-0.00238阿基⽶德数Ar=0.002378(3)根据要求达到的⽓流射程x和垂直落差y,计算阿基⽶德数Ar。

喷⼝侧向送风⽓流组织设计计算——单股⾮(1)初选喷⼝直径ds、喷⼝倾⾓α、喷⼝安装⾼度h。

(喷⼝有圆形和扁形[⾼宽⽐(1:10~(1:20射程较远,速度衰减也较慢,⽽扁喷⼝在⽔平⽅向扩散要圆喷⼝相似。

)带收缩⼝的圆喷⼝,ɑ=0.07;对圆柱形喷喷⼝直径ds⼀般在0.2~0.8m之间;喷⼝倾⾓α按计算确定,⼀般冷射流α=0~15°,热射流根据⼯程具体要求⽽确定:h太⼩,射流会直接进⼊⼯作区,影响舒适程度;h太⼤也不适宜6~10m。

(2)计算相对落差y/ds和相对射程x/ds。

5.339266m/s 式中,g为重⼒加速度,g=9.81m/s 25.879367个,取6实际的送风速度υs= 5.231918m/s 0.688977m/s 0.344488m/s 0.2m/s,ρ空⽓密度: 1.2kg/m3c空⽓定压⽐热容: 1.01kJ/(kg·℃)Ls房间总送风量:6000m3/h 1.666667m3/s L房间长度:30m W房间宽度:12m H房间净⾼:7m ts送风温度:20℃tn房间⼯作区温度:28℃△ts送风温差:8℃⼯作区⾼度: 2.7m ɑ喷⼝紊流系数:0.07设计步骤:(喷⼝有圆形和扁形[⾼宽⽐(1:10~(1:20射程较远,速度衰减也较慢,⽽扁喷⼝在⽔平⽅向扩散要圆喷⼝相似。

气流组织计算

气流组织计算

ρ
空气密度: 1.2kg/m³c
空气定压比热容: 1.01kJ/(kg·
Ls
房间总送风量:
1.62m³/s L
房间长度:W
房间宽度:H
房间净高:
x0平送射流原点与散流器中心的距离:K
送风口常数:
设计步骤:① 按照房间(或分区)的尺寸布置散流
器,计算每个散流器的送风量。

散流器个数n:每个散流器的送风量
l s:729m³/h 0.20
m³/s
② 初选散流器。

选用散流器颈部尺寸:
方(矩形)形:
圆形:
颈部面积:颈部风速υ0= 3.81m/s
散流器实际出口面积A=0.05㎡散流器出口风速υs = 4.242.52m
0.22m/s
式中,L——散流器服务区边长:多层锥面散流器取0.07m。

④ 计算工作区平均风速。

多层锥面散流器为1.4,盘③ 计算射程,即散流器中心到风速为υx=按表1选择适当的散流器颈部风速υ0,层高较低或要求噪声低时,应选低风速;层高较高选定散流器规格。

散流器的具体选择可参看有关样本。

散流器平送气流组织计算
左右选取风口。

散流器实际出口面
夏季不大于
工作区风速要求,冬季不大于
室内平均风速:
送冷风时,υm=0.27m/s
送热风时,υm=0.18m/s
.07m。

.4,盘式散流器为1.1。

高较高或噪声控制要求不高时,可选用高风速;选定风速后,进一步织计算
取其平均值。

出口面积与颈部面积的比值:
υm满足工作区风速要求,设计合理!υm满足工作区风速要求,设计合理!。

哈尔滨工业大学—暖通空调课件—第三章_3.7_3.8典型气流组织计算

哈尔滨工业大学—暖通空调课件—第三章_3.7_3.8典型气流组织计算

9
3、选取送风速度vs,计算各风口送 风量
(6-3)
10
4 计算送风口数量n,与实际送风速度
11
12
2
5 校核送风速度
6 校核射流贴附长度
13
14
15
室内温 度波动 小于 1℃时 侧送风 气流组 织计算 流程
17
16
18
3
19
20
喷口侧送风的设计计算
喷流的形状的影响因素:
21
喷口侧送风气流组织的设计
可为1℃左右,此时可认为射流温度衰减只与射程有 关。中国建筑科学研究院通过对受限空间非等温射流的实 验研究,提出了温度衰减的变化规律,
8
2 计算风口的最大允许直径ds,max
根据射流的实际所需贴附长度和最小相 对射程,计算风口允许的最大直径ds,max
从风口样本中预选风口的规格尺寸。 对于非圆形的风口,按面积折算风口直
41
42
7
1137常见气流组织的计算气流组织的基本要求气流组织设计流程侧送风设计计算喷口送风的设计计算散流器送风的设计计算气流分布性能的评价2气流组织的基本要求3气流组织设计流程4侧送风设计计算5常用符号说明6风口的选择与布置设计中根据不同的室温允许波动范围的要求选择不同结构的侧送风口以满足现场运行调节的要求
非等温射流的计算方法很多,世界各国所采用 的计算公式基本相同,一般都是以美国的 Koestel单股非等温(包括垂直和水平)射流 计算公式为基础,通过试验得出经验系数,因
而公式差别仅在实验系数和指数上有所不同。
冷射流轨迹
22
喷口 侧送 风气 流组 织设 计流 程图
23
24
4
25
26

气流组织计算

气流组织计算

气流组织计算
气流组织计算,这可真是个神奇又有趣的领域啊!它就像是一场无声的舞蹈,看不见却至关重要。

你知道吗,气流就如同空气的精灵,在我们的周围跳跃、穿梭。

而气流组织计算,就是要搞清楚这些精灵们的行动轨迹和规律。

这可不是一件简单的事儿啊!想想看,我们要考虑房间的大小、形状,各种设备的布局,人员的活动等等诸多因素。

这就好像是在给这些空气精灵们设计一个完美的舞台,让它们能够尽情地表演。

比如说在一个大礼堂里,我们要怎样让新鲜空气均匀地分布到每个角落,而又不会让人们感觉到有风直接吹在身上呢?这就需要精确的计算和巧妙的设计啦。

是不是很神奇?就好像我们是空气的导演,指挥着它们的一举一动。

再看看医院的手术室,对气流的要求那更是严格到了极点。

不能有一丝一毫的差错,否则可能会对手术造成影响。

这难道不像是在走钢丝吗,必须小心翼翼,精准无误。

在工厂的车间里,良好的气流组织可以提高生产效率,保障工人的健康。

这不就像是给机器和人都注入了活力一样吗?
我们在生活中其实也经常能感受到气流组织的重要性。

比如在一个闷热的房间里,我们多么希望有一股凉爽的气流吹过来啊。

或者在一个有异味的地方,我们多么希望能快速地把这些不好的空气排出去。

这都是气流组织在默默发挥作用呢。

气流组织计算,它看似默默无闻,却在我们的生活中扮演着如此重要的角色。

它让我们的环境更加舒适,让我们的工作更加高效,让我们的健康更有保障。

所以啊,可千万别小看了它!它真的是非常非常重要的!。

气流组织的计算和选型

气流组织的计算和选型

气流组织的计算和选型
气流组织通常用于工业生产过程中对气体的输送、分配和控制。

其计算和选型需要考虑以下因素:
1. 气体压力和流量:通过计算气体压力和流量确定需要多大的气流组织以满足生产需求。

2. 组织类型:根据气体输送的距离、流速和使用场合选择合适的组织类型,如圆形组织、方形组织等。

3. 管道长度和直径:根据气体输送距离确定管道长度,根据气体流量和压力确定管道直径,以保证气体输送的稳定性和效率。

4. 材料选择:根据气体性质、输送环境和使用要求选择合适的材料,如塑料、金属等。

5. 连接方式:根据使用场合和操作要求选择合适的连接方式,如焊接、螺纹连接等。

选型时需要根据实际需求进行综合考虑,选择合适的气流组织,确保生产过程的安全、高效和稳定。

同时也要根据地形、气候和环境等因素,在设计和使用中注意气流组织的维护和保养。

散流器送风计算方法

散流器送风计算方法

11.1.2散流器送风计算方形散流器的规格用颈部尺寸W ×H 表示, (见空调工程P378)外沿尺寸A ×B =(W +106)×(H +106),顶棚上预留洞尺寸C ×D =(W +50)×(H +50) 1、散流器送风气流组织设计计算内容(1)送风口的喉部风速Vd 取2~5m/s 最大不超过6m/s (2) 射流速度衰减方程及室内平均风速xox F K Vo Vx += 式中:X-以散流器中心为起点的射流水平距离(射程)mVx-在X 处的最大风速m/s Vo -散流器出口风速m/sXo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m F-散流器的有效流通面积m 2按90%K-系数:多层锥面散流器为1.4盘式散流器为1.1若要求射流末端速度为0.5m/s,则射程为散流器中心到风速为0.5m/s 处的距离根据式8-6,则: 射程X =VxF Kvo -Xo= X =Xo FKvo -5.0 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按90%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速一般为0.5 m/s散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程当送冷风时, 室内平均风速取值增加20%, 送热风时减少20% (3)轴心温差:对于散流器平送,其轴心温差衰减可近似地取Vd Vx to tx ≈∆∆ to VdVxtx ∆≈∆△tx -射流末端温度衰减值℃Vx-在X 处的最大风速一般为0.5 m/s△to -送风温差℃Vd-散流器的喉部风速m/s2、散流器送风气流设计步骤(见空调工程P401)(1)、布置散流器一般按对称布置或梅花形布置,方形散流器的送风面积的长宽比不宜大于1:1.5散流器中心线和墙体距离一般不小于1m(2)、由空调区的总送风量和散流器的个数,就可以计算出单个方形散流器的送风量,假定散流器的颈部风速(如取2~5m/s)计算出所需散流器喉部面积,根据散流器喉部面积,选择散流器规格(3)、校核(1)的射程,根据下式(8-7)校核射流的射程是否满足要求,中心处设置的散流器的射程应为散流器中心到房间或区域边缘距离的75% (4)校核室内平均风速,根据式8-8计算室内平均风速,校核是否满足要求 室内平均风速Vm=2122)4/(381.0H L rL +(m/s)式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2H-房间净空高(m)r L -射程 r-射流射程与边长L 之比,因此r L 即为射程(5)校核轴心温差衰减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度波动范围要求-------已知一层大厅舒适性空调区的尺寸为L=13. 8m,B=13.6m,H=3.5m,总送风量q v =1.389m 3/s,送风温度to=19℃,工作区温度tn=24℃,采用散流器平送,进行气流分布设计解:(1)布置 散流器将空调区进行划分,沿长度方向划分为3等分, 沿宽度方向划分为3等分,则空调区被划分成9个小区域,每个区域为一个散流器的服务区, 散流器的数量n=9个(2)选用方型散流器, 假定散流器的颈部风速Vd 为3m/s,则单个散流器所需的喉部面积为q v/Vd n,计算如下q v/Vd n=4(总送风量)/(3m ×20)=0.067m 2选用喉部尺寸为240mm 的方型散流器,则喉部实际风速为 Vd=36.036.0104⨯⨯m/s=3.068m/s, 散流器实际出口面积约为喉部面积的85%,则散流器的有效流通面积 散流器实际出口风速为Vo=%Vd 85=85.0068.3m/s=3.609m/s (3)计算射程射程X =VxFKvo -Xo=07.05.036.0%85609.34.12-⨯⨯⨯m=3.353m 式中:X-以散流器中心为起点的射流水平距离(射程)mK-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/sF-散流器的有效流通面积m 2按85%Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s散流器中心到边缘距离 2.3m,根据要求, 散流器的射程应为散流器中心到房间或区域边缘距离的75%,所需的最小射程为:2.3m ×0.75=1.725m 。

气流组织计算

气流组织计算

气流组织的校核空气调节区的气流组织(又称为空气分布) ,是指合理地布置送风口和回风口,使得经过净化、热湿处理后的空气,由送风口送入空调区后,在与空调区内空气混合、置换并进行 热湿交换的过程中,均匀地消除空调区内的余热和余湿,从而使空调区(通常指离地面高度为2m 以下的空间)内形成比较均匀而稳定的温湿度、气流速度和洁净度,以满足生产工艺 和人体舒适度的要求。

同时,还要由回风口抽走空调区内空气, 将大部分回风返回到空气处理机组(AHU )、少部分排至室外。

影响空调区内空气分布的因素有:送风口的形式和位置、 送风射流的参数(例如, 送风风量、出口风速、送风温度)、回风口的位置、房间的几何形状以及热源在室内的位置等, 其中送风口的位置和形式、送风射流的参数是主要的影响因素。

5.1双层百叶风口的气流组织校核:标间、套房、咖啡厅以及洽谈室内风机盘管加新风系统选取上送侧回的双层百叶风口送 风。

选取三层十二号老人活动室为例,进行气流组织的校核计算。

该房间其空调区域室温要求为26C ,房间长为 A=5m ,宽为B=4.2m ,高为H=4.0m ,室内全热冷负荷 Q=3229W 。

①:根据空调区域的夏季冷负荷、热湿比和送风温差,绘制空气处理的 h-d 图,计算夏季空调的总送风量 Ls ( m3/h )和换气次数n (1/h ):L s A* B* H式中:Q — 空调区的全热冷负何, W ;h N 、 h S ――室内空气和送风状态空气的比焓值, kJ/kg ;A—沿射流方向的房间长度, m ; B — —房间宽度,m ;H ——房间高度,m 。

通过计算可得: Ls=1038 m 3/h n=13 1/h② :根据总送风量和房间的建筑尺寸,确定百叶风口上网型号、个数,并进行布置。

送 风口最好贴顶布置,以获得贴附射流。

送冷风时,可采取水平送出;送热风时,可调节风口 外层叶片的角度,向下送出。

式中:LS3.6Q 1.2(hN -hS)(5-1)(5-2)③:按照下式计算射流到达空调区域时的最大速度V x (m/s ),校核其是否满足要求:Vxmv s k b k c Fs(5-3)Fs――送风口的计算面积,怦;查表可得,Ls=0.189m3/s , Vs=6.52~5.21m/s , F=0.025~0.038 m, 速是允许的。

空气调节技术 第六章 空调房间的气流组织

空气调节技术 第六章 空调房间的气流组织

二、 回风口的形式
由于回风口附近气流速度衰减很快,对室 内气流速度的影响很小,因而构造简单,类型也 不多。常用的回风口有百叶式回风口、活动箅板 式回风口和蘑菇形回风口。
§6-3 气流组织的基本形式
一、气流组织形式
通常用送回风口在空调房间内设臵的相对位
臵来表示气流组织形式,气流组织的形式不同,
y x x ax 2 tg Ar( ) (0.51 0.35) dO dO d O cos d O cos
Ar数的贴附射流”---- 射程比自由射流更 长 贴附长度与Ar有关,Ar小----S长 贴附射流:
dO

4 24 2FO 2 d O 2d O 4
第 六 章
空调房间的气流组织
气流组织:
在空调房内合理布臵送、回风口,使送入
风在扩散与混合过程中,均匀地消除室内余热和
余湿,使工作区形成均匀的t、Ф、υ和洁净度, 以满足生产工艺和人体舒适的要求。
§6-1
射流:
送、回风口气流的流动规律
一、送风射流的流动规律
空气经孔口或管嘴向周围气体的外射流动 称为射流。
5.旋流风口
旋流风口是依靠起旋器或旋流叶片等部件,
使轴向气流起旋形成旋转射流。由于旋转射流的 中心处于负压区,它能诱导周围大量空气与之混 合,然后送至工作区。
旋流风口有下送式和上送式两种
6.孔板风口
孔板送风是利用顶棚上面的空间作为送风静
压箱(或另外安装静压箱),空气在箱内静压作
用下,通过在金属
2、散流器
散流器是一种装在空调房间的顶棚或暴露风
管的底部作为下送风口使用的风口。其造型美
观,易与房间装饰要求配合,是使用最广泛的送

一二层全空气系统的气流组织计算

一二层全空气系统的气流组织计算

全空气系统的气流组织计算 各房间风量计算对于舒适性空调且层高≤5m ,送风温差设为Δt o =100C,则送风温度为t o =16 0C, 室内设计温度为t N =26±1 0C,室内相对湿度φN =55±5%。

查参考文献1表2-18,换气次数应大于等于5次/h 。

3.2.1负荷和风量计算由前面设计得舞厅总冷负荷Q= 79711.9W ,总湿负荷W= 5.7512457/g s ,热湿比线为13859.936,室内设计计算参数: 26.0oN t C =,505N ϕ=±%,室外设计气象参数: 35.0ow t C =,555w ϕ=±%。

在i-d 图上根据N t 和N ϕ确定室内空气状态点N ,通过该点画出热湿比线。

按消除余热和消除余湿所求通风量基本相同,说明计算无误,所取送风温差为10℃符合要求,查附录(文献1)1-1得:当t0=16时,空气密度31.195/kg m ρ=。

所以,L= 24596.815m3/h 。

查参考文献1中表4—1以及4—2可知:人短期停留的房间中CO 2允许浓度为2.0 l/ m 3,在轻劳动条件下人CO 2呼出量为30 l/h*人,取室外CO 2浓度为0.42 l/ m 3,则为达到卫生标准须新风量为:G w2= 205×0.89×30/(2-0.42)= 3451.51 m 3/h 而由系统总风量得新风两为G 3=24596.815×0.2=4919.363 m 3/h ;由于室内外压差近似为零,故G 1=0 m 3/h 。

所以,最小新风量为4919.363 m 3/h 。

同理可知大堂最小新风量为G=12020.06057*0.2=2404m3/h 。

如下表,一楼其它各室新风量空调设备选型计算及空调方式说明第一层空调箱选型计算第一层的空调系统负荷192.824+23.78=216.6kW,其中新风负荷为23.78kW。

空调房间的气流组织

空调房间的气流组织

(二)散流器
散流器是安装在顶棚上的送风口,自上而下送出气流。散流
器的型式很多,有盘式散流器,气流里辐射状送出,且 为贴附射流;有片式散流器,设有多层可调散流片,使 送风或呈辐射状,或呈锥形扩散;也有将送回风口结合在一 起的送、吸式散流器;另外有适用于净化空调的流线型散
流器。
(三)孔板送风口 空气经过开有若干小孔的孔板面进入房间,这种风口型式 叫孔板送风口。孔板送风口的最大特点是送风均匀,气流 速度衰减快。因此最适用于要求工作区气流均匀、区域温 差较小的房间,如高精度恒温室与平行流洁净室.
(3)下送上回
房间送风口布臵在下部,对于内余热量大,特别是热
源又靠近顶棚的场合,如计算机房,广播电台的演播大厅 等,采用这种气流组织形式非常合适。 但下送风的温差不能太大,否则容易引起人的不舒适感, 另外风速不能太大,否则容易吹起灰尘,影响空气的清洁度。
下部送风的气流组织 (a)地板送风;(b)下部低速侧送风
第五节 气流分布性能的评价
(3)换气效率:可能最短的空气寿命与平均空气寿 命之比。


n

2 100%
(4)能量利用系数:考察气流分布方式的能量利用 有效性,
第五章 空调房间的 空气分布
【知识点】室内气流组织的基本方式;送、回风口 气流流动规律;常用送、回风口的型式及适用范围; 散流器送风的计算方法。
【学习目标】掌握室内气流组织的基本方式;了 解送、回风口气流流动规律;掌握常用送、回风口的 型式以及适用范围;理解散流器送风的计算方法。


第一节 送风射流的流动规律
第四节
房间气流分布的计算
空间气流分布的计算不像等温自由射流计算那么简单, 需要考虑射流的受限、重合及非等温的影响等因素。 需要对它们进行修正。

气流组织计算.doc

气流组织计算.doc

散流器气流组织的分析与核算以地下一层分区一为例进行计算:1.换气次数的确定换气次数n=31055m ³/h/(40.4x20.1x4)=9.56≈10根据对气流组织要求的有关规定可知,每小时的换气次数不应小于5次,计算的10次满足要求2.散流器尺寸及参数按50个散流器计算,每个散流器对应的Fn=40.4x20.1/50=16.24㎡,水平射程为2m,垂直射程x ’=4-1.8=2.2m.散流器出风速度4m/s,总风量31055m 3/h,每个散流器送风量为0L =31055/50=621.1m ³/h=0.17m ³/s 这样F 0=0.17/4=0.04m 2下面进行校核计算3.检查x ul x F K K K m u u o x +='203211 式中:12m —— 由《空气调节》表5-2送风口特性系统性表中查得:91.121=m ;1K ——根据n f x x ==55.024.162.2=在《空气调节》图5-13射流受限修正系数曲线图中取得=k 10.55 2K 、3K ——均取1。

代入各值,得:U X =2.022.204.055.091.14=+⨯⨯⨯m/s(4)检查x t ∆:l x F K n t t x +∆=∆'20110=c o 32.02.42.055.01.128=⨯⨯⨯⨯计算结果说明x u 和x t ∆均满足需求。

(5)检查射流贴附长度l x :k z x l ex p 5.0=00h 62.0-35.0k F =04.004.01.062.035.0=-2010401)2(245.5t n F u m z ∆==4.95 l x =0.5⨯4.95⨯exp0.04=2.57m贴附的射流长度满足要求。

综上所述,我们选择方形散流器,其喉部尺寸为250mm ×250mm 。

其他房间散流器的片数由各自房间的送风量及面积来确定,各个房间散流器的片数计算结果详见附表。

气流组织分布及计算

气流组织分布及计算

第10章室内气流分布10.1对室内气流分布的要求与评价10.1.1概述空气分布又称为气流组织。

室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。

空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。

下面介绍对气流分布的主要要求和常用评价指标。

10.1.2对温度梯度的要求在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。

在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0.1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况);美国ASHRAE55-92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况)。

10.1.3工作区的风速工作区的风速也是影响热舒适的一个重要因素。

在温度较高的场所通常可以用提高风速来改善热舒适环境。

但大风速通常令人厌烦。

试验表明,风速<0.5m/s 时,人没有太明显的感觉。

我国规范规定:舒适性空调冬季室内风速≯0.2m/s ,夏季≯0.3m/s 。

工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0.2-0.5m/s 。

10.1.4吹风感和气流分布性能指标吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。

1.有效吹风温度EDT美国ASHRAE 用有效吹风温度EDT(EffectiveDraftTemperature)来判断是否有吹风感,定义为)15.0(8.7)(EDT ---=x m x t t ν(10-1)式中t x ,t m --室内某地点的温度和室内平均温度,℃;v x --室内某地点的风速,m/s 。

对于办公室,当EDT=-1.7~l ℃,v x <0.35m/s 时,大多数人感觉是舒适的,小于下限值时有冷吹风感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.2 4.2 4.2
4 4 4
0.066 0.060 0.042
3.04 3.48 2.07
二 三楼散流器 送风温度20℃ 工作区温度 26℃ 送风量 送风量 (㎡/s) 988 558 527 621 558 558 621 621 558 558 621 621 558 0.27 0.16 0.15 0.17 0.16 0.16 0.17 0.17 0.16 0.16 0.17 0.17 0.16 喉部风 单个散流器 速 H(m) (v m/s 喉部面积 d (m2)
射程x
附加后 室内平 室内平 最小射 的室内 轴心温差衰 均风速 均风速 程xmin 平均风 减Δ t0 vm 附加 速 1.46 2.93 1.69 0.2 0.2 0.1 20% 20% 20% 0.3 0.3 0.1 0.7 0.5 0.8
办公室 餐厅 大厅
102 104 105
5.4 7.8 9.6
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
4 4 4 4 4 4 4 4 4 4 4 4 4
0.069 0.039 0.037 0.043 0.039 0.039 0.043 0.043 0.039 0.039 0.043 0.043 0.039
客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房
202 204 205 206 207 208 209 210 211 212 213 214 215
7.5 6.8 6.6 6.6 6.8 6.8 6.6 6.6 6.8 6.8 6.6 6.6 6.8
3.9 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
3.17 2.22 2.09 2.48 2.22 2.22 2.48 2.48 2.22 2.22 2.48 2.48 2.22
31
附录表-2 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 客房 216 217 302 304 305 306 307 308 309 310 311 312 313 314 315 316 317 995 840 685 748 706 706 748 748 706 706 748 748 706 706 748 685 1079 0.28 0.23 0.19 0.21 0.20 0.20 0.21 0.21 0.20 0.20 0.21 0.21 0.20 0.20 0.21 0.19 0.30 7.5 7.5 7.5 6.8 6.6 6.6 6.8 6.8 6.6 6.6 6.8 6.8 6.6 6.6 6.8 7.5 7.5 4.2 3.9 3.9 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 3.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0.069 0.058 0.048 0.052 0.049 0.049 0.052 0.052 0.049 0.049 0.052 0.052 0.049 0.049 0.052 0.048 0.075 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4.42 5.83 4.76 5.20 4.90 4.90 5.20 5.20 4.90 4.90 5.20 5.20 4.90 4.90 5.20 4.76 4.80 0.056 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.056 4.91 6.48 5.28 5.77 5.45 5.45 5.77 5.77 5.45 5.45 5.77 5.77 5.45 5.45 5.77 5.28 5.33 3.19 3.37 2.74 3.00 2.82 2.82 3.00 3.00 2.82 2.82 3.00 3.00 2.82 2.82 3.00 2.74 3.47 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.7 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
0.25 0.25
32
射程x
附加后 室内平 室内平 最小射 的室内 轴心温差衰 均风速 均风速 程xmin 平均风 减Δ t0 vm 附加 速 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8
气流组织计算表
一层散流器 餐厅布置散流器 将空调区进行划分,沿长度L方向划分为6等份,沿宽度方向划分1等份,则空调区被划分成62个小区域,每个区域为一个散流器的服务区,个数为6个。 大厅布置散流器 将空调区进行划分,沿长度L方向划分为6等份,沿宽度方向划分1等份,则空调区被划分成6个小区域,每个区域为一个散流器的服务区,个数为6个。 喉部风 单个散流器 速 H(m) (v m/s 喉部面积 d (m2)

附录表-2
房间名称 房间编号
送风量 送风量 (㎡/s) 947 5189 3662 0.26 1.44 1.02
L(m)
B(m)
方形散流 器尺寸 (a*b)m 0.25 0.25 0.2 0.2 0.2 0.2
喉部实际 有效流 散流器 风速 通面积 出口风 (vdm/s 速(v0) m2 ) 4.21 6.01 3.63 0.056 0.036 0.036 4.68 6.67 4.04

房间名称 房间编号
L(m)
B(m)
方形散流 器尺寸 (a*b)m 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
喉部实际 有效流 散流器 风速 通面积 出口风 (vdm/s 速(v0) m2 ) 4.39 3.88 3.66 4.32 3.88 3.88 4.32 4.32 3.88 3.88 4.32 4.32 3.88 0.056 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 4.88 4.31 4.07 4.79 4.31 4.31 4.79 4.79 4.31 4.31 4.79 4.79 4.31
相关文档
最新文档