vq说话人辨识MATLAB程序
MATLAB环境下基于矢量量化的说话人识别系统
处 理后 计算 语 音对 应 的特 征 参 数 . 用 的语 音 特 征 常
参 数 是 基 于 Me 频 率 倒 谱 系 数 ( l rq e c l Me F e u n y —
C p tu C ef i t , C ) 因为 人 耳 所 听 到 的 e srm o f ce s MF C . i n
[ 章 编 号 ]1 0 — 4 8 (0 6 1 -0 70 文 0 3 6 4 2 0 ) 20 2—3
MATL AB环 境 下 基 于矢 量 量 化 的说 话 人 识 别 系统
宋 敏 ,刘 幺和 ,谭 保 华
( 1湖 北工业大学机 械工程 学院,湖北 武 汉 4 0 6 ;2湖北 工业 大学理学院 ,湖北 武汉 4 0 6 ) 308 3 0 8
MF C参数 具 有识 别性 能 和抗 噪 能 力 , C 因此 本 系统 采 用 MF C参 数 为语 音 特征 参数 . C
到 广泛 应 用. 量 量 化 的 理 论 基 础 是 信 息 论 的率 失 矢
MF C参 数 的计算 过程 如 下 : C
1 对输 入语 音 帧 预加 重 和加 Ha ) mmig窗后 作 n 快 速 傅 利 叶 变 换 ( atF uir T a so main F s o r r n fr t , e o
性 能较 大 , 通常 取前 1 的 MF C系数 即可 . 2维 C ]
MF C系 数 C
M
一
个重 要环 节 . 征 提 取 的 目的 是对 原始 语 音 进 行 特
: g )o  ̄k .)/ l x( csr 一05nM] o 是 [(
( 一 1 2, , . , … L)
[ 键 词 ]说 话 人 识 别 系 统 ;MA AB 矢 量 量 化 关 TL ; [ 图 分 类 号 ]T 1. 中 N9 2 3 [ 献标识码] 文 :A
基于matlab程序实现人脸识别
基于matlab程序实现人脸识别
人脸识别已经成为一个广泛被应用的技术,例如手机的解锁方式,安全系统等等。
它是一种基于人脸图像进行身份验证或身份识别的技术,也是近年来计算机视觉和模式识别领域研究的热点方向之一。
在这篇文档中,我们将介绍如何使用matlab编写一个简单的人脸识别程序。
人脸识别是什么?
人脸识别可以被定义为一个过程,旨在使用数字算法识别和验证图像或视频中
人脸身份。
在计算机科学的领域中,这项技术可以被描述为一种模式识别技术,
旨在通过在人脸图像上提取可识别特征来确定身份验证。
通俗易懂地理解,就是计算机能够识别人脸的特征,并将其与已知的数据匹配,从而确定人物身份。
人脸识别程序的开发流程
以下是本文介绍的基本程序开发流程:
1.数据集导入和预处理
2.特征提取和脸部对齐
3.模型训练和分类器设计
4.模型评估和测试
数据集导入和预处理
考虑到一个好的项目,我们需要一个良好的数据集。
在这里,我们可以使用来
自orl人脸数据集的数据。
该数据集中包含的有40个人的400幅灰度图像,每个
人有10个不同的示例。
您可以从该网站下载并使用这些数据来测试您的算法。
在这个过程中,我们需要使用matlab中的imread函数将数据读取为数字矩阵,然后将数据分为训练集和测试集。
这个过程旨在将原始的数据转换为我们算法能
够处理的数字矩阵,并将数据划分为训练集和测试集。
``` % 读取数据集 dataFolderPath =。
如何使用Matlab进行人脸检测和人脸识别
如何使用Matlab进行人脸检测和人脸识别人脸检测和人脸识别是计算机视觉领域中的重要技术应用,可以广泛用于人脸识别系统、人脸支付、安全监控等众多领域。
本文将介绍如何使用Matlab进行人脸检测和人脸识别。
1. 背景介绍人脸检测和人脸识别技术的出现,为计算机系统实现对人脸的自动分析和识别提供了可能。
人脸检测是指从一幅图像或视频序列中确定是否存在人脸,并找出人脸的位置和大小。
而人脸识别则是在检测到的人脸图像上进行特征提取和模式匹配,以实现对人脸的身份识别。
2. 人脸检测在Matlab中,可以使用Viola-Jones算法进行人脸检测。
该算法通过构造Haar特征与Adaboost集成学习算法相结合,能够在较短的时间内实现高效的人脸检测。
具体操作如下:2.1 加载图像首先,在Matlab中加载需要进行人脸检测的图像。
可以使用imread函数进行图像加载,并将其转换为灰度图像进行处理。
例如:```Matlabimage = imread('face.jpg');gray_image = rgb2gray(image);```2.2 构建人脸检测器在Matlab中,可以使用vision.CascadeObjectDetector对象构建人脸检测器。
该对象可以通过Viola-Jones算法进行人脸检测。
具体代码如下:```MatlabfaceDetector = vision.CascadeObjectDetector();bbox = step(faceDetector, gray_image);```2.3 显示检测结果最后,可以使用insertObjectAnnotation函数将检测到的人脸位置在原始图像上标记出来。
代码示例如下:```Matlabdetected_image = insertObjectAnnotation(image, 'rectangle', bbox, 'Face');imshow(detected_image);```3. 人脸识别在Matlab中,可以使用基于人脸特征的Eigenface、Fisherface和LBPH等算法进行人脸识别。
人脸识别核心算法及MATLAB代码
人脸识别核心算法在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。
识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。
我们在这方面的主要工作包括:∙基于LGBP的人脸识别方法问题:统计学习目前已经成为人脸识别领域的主流方法,但实践表明,基于统计学习的方法往往会存在“推广能力弱”的问题,尤其在待识别图像“属性”未知的情况下,更难以确定采用什么样的训练图像来训练人脸模型。
鉴于此,在对统计学习方法进行研究的同时,我们还考虑了非统计模式识别的一类方法。
思路:对于给定的人脸图像,LGBP方法首先将其与多个不同尺度和方向的Gabor滤波器卷积(卷积结果称为Gabor特征图谱)获得多分辨率的变换图像。
然后将每个Gabor特征图谱划分成若干互不相交的局部空间区域,对每个区域提取局部邻域像素的亮度变化模式,并在每个局部空间区域内提取这些变化模式的空间区域直方图,所有Gabor特征图谱的、所有区域的直方图串接为一高维特征直方图来编码人脸图像。
并通过直方图之间的相似度匹配技术(如直方图交运算)来实现最终的人脸识别。
在FERET四个人脸图像测试集合上与FERET97的结果对比情况见下表。
由此可见,该方法具有良好的识别性能。
而且LGBP方法具有计算速度快、无需大样本学习、推广能力强的优点。
参见ICCV2005表.LGBP方法与FERET'97最佳结果的对比情况∙基于AdaBoost的Gabor特征选择及判别分析方法问题:人脸描述是人脸识别的核心问题之一,人脸识别的研究实践表明:在人脸三维形状信息难以准确获取的条件下,从图像数据中提取多方向、多尺度的Gabor特征是一种合适的选择。
使用Gabor特征进行人脸识别的典型方法包括弹性图匹配方法(EGM)和Gabor特征判别分类法(GFC)。
EGM在实用中需要解决关键特征点的定位问题,而且其速度也很难提高;而GFC则直接对下采样的Gabor特征用PCA降维并进行判别分析,尽管这避免了精确定位关键特征点的难题,但下采样的特征维数仍然偏高,而且简单的下采样策略很可能遗漏了非常多的有用特征。
matlab语音识别系统(源代码)
(威海)《智能仪器》课程设计题目: MATLAB实现语音识别功能班级:学号:姓名:同组人员:任课教师:完成时间:2012/11/3目录一、设计任务及要求 (1)二、语音识别的简单介绍2.1语者识别的概念 (2)2.2特征参数的提取 (3)2.3用矢量量化聚类法生成码本 (3)2.4VQ的说话人识别 (4)三、算法程序分析3.1函数关系 (4)3.2代码说明 (5)3.2.1函数mfcc (5)3.2.2函数disteu (5)3.2.3函数vqlbg (6)3.2.4函数test (6)3.2.5函数testDB (7)3.2.6 函数train (8)3.2.7函数melfb (8)四、演示分析 (9)五、心得体会 (11)附:GUI程序代码 (12)一、设计任务及要求用MATLAB实现简单的语音识别功能;具体设计要求如下:用MATLAB 实现简单的数字1~9的语音识别功能。
二、语音识别的简单介绍基于VQ 的说话人识别系统,矢量量化起着双重作用。
在训练阶段,把每一个说话者所提取的特征参数进行分类,产生不同码字所组成的码本。
在识别(匹配)阶段,我们用VQ 方法计算平均失真测度(本系统在计算距离d 时,采用欧氏距离测度),从而判断说话人是谁。
语音识别系统结构框图如图1所示。
图1 语音识别系统结构框图2.1语者识别的概念语者识别就是根据说话人的语音信号来判别说话人的身份。
语音是人的自然属性之一,由于说话人发音器官的生理差异以及后天形成的行为差异,每个人的语音都带有强烈的个人色彩,这就使得通过分析语音信号来识别说话人成为可能。
用语音来鉴别说话人的身份有着许多独特的优点,如语音是人的固有的特征,不会丢失或遗忘;语音信号的采集方便,系统设备成本低;利用电话网络还可实现远程客户服务等。
因此,近几年来,说话人识别越来越多的受到人们的重视。
和其他生物识别技术如指纹识别、手形识别等相比较,说话人识别不仅使用方便,而且属于非接触性,容易被用户接受,并且在已有的各种生物特征识别技术中,是唯一可以用作远程验证的识别技术。
说话人识别VQ、HMM和NN方法浅析
维普资讯
电 信 技 术 研 究
ZO O S年 第 2期
说 话 人 识 别 VQ、 HM M 和 NN 方 法 浅 析
陈 国兴 贺 苏 宁
摘 要 : 话 人 识 别 方 法 很 多 , 文 针 对 应 用 比 较 广 泛 的 VQ 、 说 本 HM M 和 NN 三 种 方 法 ,
~
一
墨
随 机 码 字 选 取
本 法
8
1 6
2 3
l 5
・
失 真 测 度 选 取 。失 真 测 度 的选 取 与 应 用 VQ 技 术 的 领 域 及 采 用 的 参 数 类 型 有 关 。
目前 , 用 的 几 种 失 真 测 度 类 型 为 : 方 误 差 ( 欧 氏距 离 ) la uaS i 常 均 即 、tk r at 离 和 似 然 比 o距 距 离 等 一 般 来 说 , P 系 数 及 其 导 出特 征 通 常 用 l k r—at 离 , 对 时 域 参 数 和 各 LC t uaS i a o距 而 种 短 时 参 数 通 常 用 欧 氏距 离
基 于 VQ 的关 键 问 题 是 如 何 获 取 VQ 码 本 , 常 采 用 的 是 I13算 法 。在 L G 算 法 中 , 下 三 个关 键 性 的 问题 将 直 接 影 通 ( 3 B 以 响 到 码 本 质 量和 系 统 的识 别 性 能 , : 即
语音信号的提取与识别-基于VQ算法的说话人识别
本科毕业设计(论文)
毕 业 设 计(论 文)任 务 书
3.对毕业设计(论文)课题成果的要求〔包括毕业设计(论文)、图纸、实 物样品等):
1. 利用所学知识对具体的语音信号的特征及处理方法进行学习研究,达到对专业知识 的复习与理解。 2. 利用所学的处理软件,对声音信号进行一定的处理,并有相关例子的图形表示。 3. 按要求完成毕业论文。
2.毕业设计(论文)课题的具体工作内容(包括原始数据、技术要求、工 作要求等) :
1. 查阅相关资料,利用已学的相关知识进行消化和理解。 2. 了解现阶段的语音处理情况,分析研究相关的基本算法。 3. 研究学习一种基本的识别处理方法。 4. 学习相关信号处理软件。 5. 对软件的学习达到能对基本的算法进行软件的处理。 6. 并在对算法理解的基础上用 MATLAB 编制相关程序并调试完成实验。 7. 完成毕业设计论文。
关键词: 语音识别, 说话人识别, VQ, MATLAB, LBG 算法
本科毕业设计(论文)
Abstract: Speech Recognition is a kind of technology that is using computer to transfer the voice signal to an associated text or command by identification and understand. speaker recognition is a kind of special way of Voice- identifications . The paper is going to introduce speaker recognition. .In this paper,VQ arithmetic is adapted to study and research the implement . the identification of speaker , and Speech recognition for speaker is realized by using MATLAB.In the end , this paper gets a conclusion on the feature and the shortage of VQ and put forward the improvement. VQ arithmetic based on the method of LBG has solved the problems that set up good codebook of vector Quantization and quantization unknown vector. After compared ,the output of recognition is putout .
如何在MATLAB中进行系统辨识
如何在MATLAB中进行系统辨识引言:在系统辨识中,我们通常会使用数据来推导出系统的数学模型,进而对系统进行建模和预测。
MATLAB作为一种强大的数值计算和分析工具,提供了丰富的系统辨识工具包,能够帮助我们实现这一目标。
本文将介绍如何使用MATLAB进行系统辨识,包括数据预处理、模型选择、参数估计等内容。
一、数据预处理系统辨识的第一步是数据预处理,即对采集到的数据进行处理和清洗,以提高后续建模和分析的准确性。
常见的数据预处理技术包括去除异常值、平滑数据、采样率调整等。
在MATLAB中,我们可以使用一系列内置的函数和工具箱来完成这些任务。
例如,使用"findoutliers"函数可以检测并去除异常值,使用"smoothdata"函数可以平滑数据,使用"resample"函数可以进行采样率调整等。
二、模型选择在系统辨识中,我们需要选择适合的数学模型来描述系统的行为。
常用的系统模型包括线性模型、非线性模型、时变模型等。
在MATLAB中,我们可以使用"sysident"工具箱中的函数来进行模型选择。
其中最常用的方法是ARX模型和ARMAX模型。
ARX模型适用于仅包含输入和输出的线性系统辨识,而ARMAX 模型适用于包含自回归项和移动平均项的线性系统辨识。
根据实际情况和需求,选择适合的模型进行建模。
三、参数估计参数估计是系统辨识中的关键步骤,其目的是通过观测数据来估计系统模型中的参数。
在MATLAB中,我们可以使用"arx"和"armax"函数进行参数估计。
这些函数将原始观测数据作为输入,并根据选择的模型类型进行系统参数的估计。
具体的参数估计方法包括最小二乘法、极大似然法、递推最小二乘法等。
根据系统模型和实际需求,选择合适的参数估计方法进行系统参数的估计。
四、模型验证模型验证是系统辨识中的重要环节,其目的是验证建立的系统模型是否能够准确地描述观测数据。
MATLAB系统辨识工具箱学习详细教程
MATLAB系统辨识工具箱学习详细教程MATLAB系统辨识工具箱是MATLAB软件中的一个工具箱,用于进行系统辨识和模型建模的分析。
该工具箱提供了多种辨识算法和工具,可以对线性和非线性系统进行辨识,并生成对应的数学模型。
下面将为您详细介绍MATLAB系统辨识工具箱的学习过程。
首先,在使用MATLAB系统辨识工具箱前,需要安装MATLAB软件并具备一定的MATLAB编程基础。
如果您还没有安装MATLAB或者对MATLAB不够熟悉,建议您先进行相关的学习和了解。
1.学习基本概念:在开始学习MATLAB系统辨识工具箱之前,需要了解一些基本概念,例如系统辨识、模型建模、参数估计等。
可以通过阅读相关的系统辨识的教材或者进行在线,对相关概念有一个基本的了解。
2.熟悉MATLAB系统辨识工具箱界面:3.数据导入:在进行系统辨识之前,首先需要准备好系统辨识所需的数据。
数据可以是实验数据或者仿真数据,可以是时域数据或者频域数据。
在系统辨识工具箱界面的“数据导入”区域,可以将数据导入到MATLAB中进行后续的辨识分析。
4.选择模型类型:在进行系统辨识之前,需要选择适合的数学模型类型。
MATLAB系统辨识工具箱提供了多种常见的模型类型,包括ARX模型、ARMAX模型、OE模型、TFE模型等。
选择合适的模型类型对辨识结果的精度和准确性有重要的影响。
5.选择辨识算法:在选择模型类型后,需要选择合适的辨识算法进行参数估计和模型建模。
MATLAB系统辨识工具箱提供了多种常用的辨识算法,例如最小二乘法、极大似然法、递推最小二乘法等。
选择合适的辨识算法也对辨识结果的精度和准确性有重要的影响。
6.进行系统辨识:在选择了合适的模型类型和辨识算法后,可以在系统辨识工具箱界面中点击“辨识”按钮,开始进行系统辨识分析。
系统辨识工具箱会根据所选的模型类型和辨识算法,对输入的数据进行参数估计和模型建模,并生成相应的辨识结果。
7.结果分析和评估:在系统辨识完成后,可以在系统辨识工具箱界面中查看辨识结果和模型质量评估。
语音信号矢量量化设计与实现算法的matlab仿真设计说明书
引言21世纪是信息的社会,各种科技领域的信息大爆炸。
数字信号的数据量通常很巨大,对存储器的存储容量,通信信道的带宽及计算机的处理速度带来压力,因此必须对其进行量化压缩来紧缩数据存储容量,较快地传输各种信号,并使发信机功率降低。
矢量量化(VQ)是一种极其重要的信号压缩方法,其在语音信号处理中占有十分重要的地位,广泛应用于语音编码,语音识别,语音合成等领域。
在许多重要的课题中,VQ都起着非常重要的作用。
采用矢量量化技术对信号波形或参数进行压缩处理,可以获得非常高的效益。
VQ不仅可以压缩表示语音参数所需的数码率,而且在减少运算量方面也是非常高效的,它还能直接用于构成语音识别和说话人识别系统。
语音数字通信的两个关键部分是语音质量和传输数码率。
但这两者是矛盾的:要获得较高的语音质量,就必须使用较高的传输码率;相反,为了实现高效地压缩传输数码率,就很难得到良好的语音质量。
但是矢量量化却是一种既能得到高效压缩的数码率,又能保证语音质量的方法。
量化可以分为两大类:一类是标量量化,一类是矢量量化VQ。
标量量化是把抽样后的信号值逐个进行量化,而矢量量化是先将k个抽样值组成k 维空间中的一个矢量,然后将此矢量进行量化,它可以极大的降低数码率,优于标量量化。
各种数据都可以用矢量表示,直接对矢量进行量化,可以方便的对数据进行压缩。
矢量量化属于不可逆压缩方法,具备比特率低,解码简单,失真较小的优点。
矢量量化的发展大致可以分为两各阶段:第一阶段约为1956至1977年。
1956年steinhaus第一次系统的阐述了最佳矢量量化的问题。
1957年,在loyd的“PCM中的最小平方化”一文中给出了如何划分量化区间和如何求量化值问题的结论。
约于此同时MAX也得出同样的结果。
虽然他们谈论的都是标量量化问题,但他们的算法对后面的矢量量化的发展有着深刻的影响。
1964年,NEWMAN研究了正六边形原理。
1977年,berger的‘率失真理论’一书出版。
Matlab中的人脸识别与人脸特征提取
Matlab中的人脸识别与人脸特征提取近年来,随着计算机技术的快速发展和应用的普及,人脸识别技术逐渐进入了我们的生活。
无论是在安全领域的门禁系统、身份验证应用,还是在娱乐领域的人脸美化软件,人脸识别都发挥着重要的作用。
而在人脸识别技术的实现中,人脸特征提取是一个关键的环节。
本文将介绍在Matlab中实现人脸识别和人脸特征提取的方法与技巧。
在Matlab中,有许多经典的人脸识别算法可供选择,其中最为常见且被广泛应用的是基于主成分分析(PCA)的人脸识别算法。
PCA是一种经典的降维算法,它通过线性变换将高维数据映射到低维空间中,从而捕捉数据的主要特征。
在人脸识别中,我们可以将每张人脸的像素矩阵视为一个高维数据向量,利用PCA算法将其映射到一个低维特征空间中。
在特征空间中,每张人脸都可以表示为一个特征向量,就像每个人都有自己独特的“人脸特征码”一样。
要在Matlab中实现基于PCA的人脸识别,首先需要收集一组包含多个人脸的图像数据集作为训练样本。
然后,将每个人脸的像素矩阵展开成一个列向量,并将这些列向量按列排成一个矩阵,构成一个大的数据矩阵。
接下来,通过对数据矩阵进行协方差矩阵分解和特征值分解,可以得到一组特征向量。
这些特征向量被称为“特征脸”,它们是训练样本中人脸数据的主要变化方向。
最后,通过计算待识别人脸与训练样本中每个人脸的特征向量的距离,并找出距离最小的特征向量所对应的人脸,即可完成人脸识别的过程。
除了PCA算法,还有其他一些在Matlab中常用的人脸识别算法,如线性判别分析(LDA)算法、小波变换、局部二值模式(LBP)等。
这些算法在原理和实现上各有特点,可以根据实际需求选择合适的算法进行人脸识别。
在人脸识别之前,首先需要对输入的人脸图像进行预处理。
通常的预处理步骤包括灰度化、直方图均衡化和人脸检测。
灰度化是将彩色图像转换为灰度图像,降低了计算复杂度,同时保留了图像的关键信息。
直方图均衡化可以增强图像的对比度,使得人脸特征更加明显。
MATLAB中的人脸检测与人脸关键点定位技术
MATLAB中的人脸检测与人脸关键点定位技术人脸检测与人脸关键点定位是计算机视觉中一个重要的课题,它在许多应用领域都有着广泛的应用,如人脸识别、人机交互、表情分析等。
MATLAB作为一种非常强大的科学计算软件,也提供了丰富的工具和函数来实现这些功能。
在本文中,将探讨MATLAB中的人脸检测与人脸关键点定位技术,并介绍其原理和具体实现方式。
一、人脸检测技术人脸检测是计算机视觉中的一项基础任务,其目标是在给定的图像中准确地识别出人脸的位置。
在MATLAB中,人脸检测通常基于基于统计模型的方法,如Haar特征和级联分类器。
1. Haar特征Haar特征是一种用于物体检测的特征描述方法,它通过计算图像中不同区域的灰度差异来表示目标物体的特征。
在人脸检测中,Haar特征可以用来检测人脸的各种细节,如眼睛、鼻子、嘴巴等。
MATLAB提供了一系列函数和工具箱来计算和提取Haar特征,以及构建Haar特征分类器。
2. 级联分类器级联分类器是一种常用的目标检测方法,它通过级联多个简单的分类器来实现对复杂目标的检测。
在人脸检测中,级联分类器可以用来筛选候选区域,并排除一些不可能是人脸的区域,从而提高检测的准确率。
MATLAB中的人脸检测函数通常会使用级联分类器进行初步筛选,以减少计算量。
二、人脸关键点定位技术人脸关键点定位是在检测到人脸后,进一步定位人脸的关键特征点,如眼睛、眉毛、鼻子、嘴巴等。
在MATLAB中,人脸关键点定位主要基于形状模型和特征点回归方法。
1. 形状模型形状模型是一种用于描述人脸形状变化的数学模型,它通过学习和建模一组训练数据的形状变化,从而能够对新的输入数据进行形状预测。
在人脸关键点定位中,形状模型可以用来对给定的人脸进行局部形状的估计,从而进一步定位关键点。
MATLAB提供了一些函数和工具箱来实现形状模型的训练和预测。
2. 特征点回归特征点回归是一种常用的人脸关键点定位方法,它通过学习一个回归函数,将图像中的像素坐标映射到关键点的位置坐标。
毕业论文《语音识别系统的设计与实现》
摘要 (III)Abstract (I)前言 (I)第一章绪论 (1)1.1 研究的目的和意义 (1)1.2 国内外研究历史与现状 (1)1.3 语音识别存在的问题 (4)1.4 论文主要研究内容及结构安排 (5)第二章语音识别系统 (6)2.1 语音识别系统简介 (6)2.1.1 语音识别系统的结构 (6)2.1.2 语音识别的系统类型 (7)2.1.3 语音识别的基元选择 (9)2.2 语音识别系统的应用 (9)2.2.1 语音识别系统的应用分类 (9)2.2.2语音识别系统应用的特点 (10)2.2.3 语音识别系统的应用所面临的问题 (11)2.3 语音识别的算法简介 (12)2.3.1 基于语音学和声学的方法 (12)2.3.2 模板匹配的方法 (13)2.3.3神经网络的方法 (15)第三章语音识别系统的理论基础 (16)3.1 语音识别系统的基本组成 (16)3.2 语音预处理 (17)3.2.1 预加重 (17)3.2.2 加窗分帧 (17)3.2.3 端点检测 (18)3.2.4 语音特征参数提取 (18)3.2.5 语音训练和识别 (22)第四章特定人孤立词语音识别系统的设计方案 (26)4.1 基于VQ语音识别系统的模型设计 (26)4.2 语音识别系统特征参数提取提取 (27)4.2.1 特征参数提取过程 (27)4.2.2 特征提取matlab实现 (28)4.3 VQ训练与识别 (30)4.3.1 用矢量量化生成码本 (30)4.3.2 基于VQ的说话人识别 (31)4.4 设计结果分析 (33)总结与体会 (36)谢辞 (38)参考文献 (39)摘要本文主要介绍了语音识别系统的基础知识,包括语音识别系统的应用、结构以及算法。
重点阐述了语音识别系统的原理以及相关算法,通过参考查阅资料,借助MATLAB工具,设计基于VQ码本训练程序和识别程序,识别特定人的语音。
系统主要包括训练和识别两个阶段。
使用Matlab进行语音识别的方法
使用Matlab进行语音识别的方法引言语音识别是人工智能领域的一个重要研究方向,它在现代社会中应用广泛,包括语音助手、语音指令、语音识别系统等。
而Matlab作为一款强大的数据处理和分析软件,也提供了丰富的工具和算法用于语音识别。
本文将介绍如何使用Matlab进行语音识别,包括特征提取、模型训练与识别等方面的方法和步骤。
一、波形预处理在进行语音识别之前,首先需要对语音波形进行预处理。
常见的预处理方法包括端点检测、语音分段、降噪等。
其中,端点检测是指识别语音信号开始和结束的时间点,语音分段是指将语音信号切分成较小的语音片段,而降噪则是为了去除环境噪声对语音信号的干扰。
在Matlab中,可以使用信号处理工具箱提供的函数来实现这些预处理步骤。
比如,使用`detectSpeech`函数进行端点检测,使用`vad`函数进行语音分段,使用`wiener`函数进行降噪。
同时,也可以结合其他信号处理算法进行更复杂的处理,比如基于频谱的方法和小波变换方法等。
二、特征提取特征提取是语音识别中的关键步骤,目的是从语音信号中提取出具有鉴别能力的特征。
常用的特征包括MFCC(Mel频率倒谱系数)、PLP(Perceptual Linear Predictive)系数和LPCC(Linear Prediction Cepstral Coefficients)等。
在Matlab中,可以使用音频处理工具箱提供的函数来提取这些特征。
比如,使用`mfcc`函数来计算MFCC系数,使用`lpc`函数来计算LPCC系数等。
同时,也可以根据具体任务的需求选择合适的特征提取算法和参数设置,以提高语音识别的准确性和鲁棒性。
三、建立模型建立模型是语音识别的核心步骤,它是为了将特征与语音类别建立映射关系。
常见的模型包括隐马尔可夫模型(Hidden Markov Model,HMM)、高斯混合模型(Gaussian Mixture Model,GMM)和深度神经网络(Deep Neural Network,DNN)等。
使用MATLAB进行人脸识别的基本原理
使用MATLAB进行人脸识别的基本原理人脸识别是一种应用广泛的生物特征识别技术,它通过对人脸图像进行分析和比对,来判断图像中的人脸是否与已知的人脸相匹配。
随着计算机视觉和模式识别技术的发展,人脸识别技术已经在安全领域、人机交互、社交媒体等方面得到广泛应用。
在人脸识别的研究中,MATLAB是一个非常有用的工具。
它提供了强大的图像处理和模式识别相关的函数和工具箱,可以方便地实现人脸识别算法的原理。
本文将介绍使用MATLAB进行人脸识别的基本原理,包括人脸图像的预处理、特征提取和分类方法。
1. 人脸图像的预处理在进行人脸识别之前,首先需要将人脸图像进行预处理,以提高后续的识别效果。
预处理包括人脸检测、人脸对齐和人脸裁剪等步骤。
人脸检测是最基本的预处理步骤。
它的目的是从图像中准确地检测出人脸区域。
在MATLAB中,可以使用现成的人脸检测算法,如Viola-Jones算法和基于深度学习的卷积神经网络。
这些算法可以在MATLAB的计算机视觉工具箱中找到,可以很方便地实现。
人脸对齐是为了保证后续的特征提取和分类算法对人脸具有良好的可比性。
在人脸对齐步骤中,通常需要将检测到的人脸图像进行标准化处理,如旋转、缩放和平移等。
MATLAB提供了丰富的图像几何变换函数和工具箱,可以方便地实现这些操作。
人脸裁剪是为了去除图像中的多余背景,并将人脸图像转化为统一大小和灰度值范围。
在MATLAB中,可以使用图像剪裁函数和变换函数来完成这一步骤。
同时,还可以对图像进行直方图均衡化、归一化和滤波等处理,以进一步提升识别效果。
2. 特征提取特征提取是人脸识别中最重要的步骤之一。
它的目的是从人脸图像中提取出具有代表性的特征向量,以实现对人脸的唯一性描述。
在MATLAB中,可以使用各种图像处理和模式识别函数来进行特征提取。
常用的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)和人脸描述子(Face Descriptor)等。
(完整版)基于matlab程序实现人脸识别
基于matlab程序实现人脸识别1.人脸识别流程1.1.1基本原理基于YCbCr颜色空间的肤色模型进行肤色分割。
在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显著不同。
采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。
1.1.2流程图人脸识别流程图读入原始图像将图像转化为YCbCr颜色空间利用肤色模型二值化图像并作形态学处理选取出二值图像中的白色区域,度量区域属性,筛选后得到所有矩形块否筛选特定区域(高度和宽度的比率在(0.6~2)之间,眼睛特征)是存储人脸的矩形区域特殊区域根据其他信息筛选,标记最终的人脸区域2.人脸识别程序(1)人脸和非人脸区域分割程序function result = skin(Y,Cb,Cr)%SKIN Summary of this function goes here% Detailed explanation goes herea=25.39;b=14.03;ecx=1.60;ecy=2.41;sita=2.53;cx=109.38;cy=152.02;xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)];%如果亮度大于230,则将长短轴同时扩大为原来的1.1倍if(Y>230)a=1.1*a;b=1.1*b;end%根据公式进行计算Cb=double(Cb);Cr=double(Cr);t=[(Cb-cx);(Cr-cy)];temp=xishu*t;value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2;%大于1则不是肤色,返回0;否则为肤色,返回1if value>1result=0;elseresult=1;endend(2)人脸的确认程序function eye = findeye(bImage,x,y,w,h)%FINDEYE Summary of this function goes here % Detailed explanation goes herepart=zeros(h,w);%二值化for i=y:(y+h)for j=x:(x+w)if bImage(i,j)==0part(i-y+1,j-x+1)=255;elsepart(i-y+1,j-x+1)=0;endendend[L,num]=bwlabel(part,8);%如果区域中有两个以上的矩形则认为有眼睛if num<2eye=0;elseeye=1;endend(3)人脸识别主程序clear all;%读入原始图像I=imread('face3.jpg');gray=rgb2gray(I);ycbcr=rgb2ycbcr(I);%将图像转化为YCbCr空间heighth=size(gray,1);%读取图像尺寸width=size(gray,2);for i=1:heighth %利用肤色模型二值化图像for j=1:widthY=ycbcr(i,j,1);Cb=ycbcr(i,j,2);Cr=ycbcr(i,j,3);if(Y<80)gray(i,j)=0;elseif(skin(Y,Cb,Cr)==1)%根据色彩模型进行图像二值化gray(i,j)=255;elsegray(i,j)=0;endendendendse=strel('arbitrary',eye(5));%二值图像形态学处理gray=imopen(gray,se);figure;imshow(gray)[L,num]=bwlabel(gray,8);%采用标记方法选出图中的白色区域stats=regionprops(L,'BoundingBox');%度量区域属性n=1;%存放经过筛选以后得到的所有矩形块result=zeros(n,4);figure,imshow(I);hold on;for i=1:num %开始筛选特定区域box=stats(i).BoundingBox;x=box(1);%矩形坐标Xy=box(2);%矩形坐标Yw=box(3);%矩形宽度wh=box(4);%矩形高度hratio=h/w;%宽度和高度的比例ux=uint16(x);uy=uint8(y);if ux>1ux=ux-1;endif uy>1uy=uy-1;endif w<20 || h<20|| w*h<400 %矩形长宽的范围和矩形的面积可自行设定continueelseif ratio<2 && ratio>0.6 && findeye(gray,ux,uy,w,h)==1%根据“三庭五眼”规则高度和宽度比例应该在(0.6,2)内;result(n,:)=[ux uy w h];n=n+1;endendif size(result,1)==1 && result(1,1)>0 %对可能是人脸的区域进行标记rectangle('Position',[result(1,1),result(1,2),result(1,3),result(1,4)],'EdgeColor','r'); else%如果满足条件的矩形区域大于1,则再根据其他信息进行筛选a=0;arr1=[];arr2=[];for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%得到符合和人脸匹配的数据if m1+m3<width && m2+m4<heighth && m3<0.2*widtha=a+1;arr1(a)=m3;arr2(a)=m4;%rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endend%得到人脸长度和宽度的最小区域arr3=[];arr3=sort(arr1,'ascend');arr4=[];arr4=sort(arr2,'ascend');%根据得到的数据标定最终的人脸区域for m=1:size(result,1)m1=result(m,1);m2=result(m,2);m3=result(m,3);m4=result(m,4);%最终标定人脸if m1+m3<width && m2+m4<heighth && m3<0.2*widthm3=arr3(1);m4=arr4(1);rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');endendend(4)程序说明人脸识别程序主要包含三个程序模块,人脸识别主程序由三部分构成。
利用Matlab进行语音情感识别与情绪分析的实践方法
利用Matlab进行语音情感识别与情绪分析的实践方法引言近年来,随着人工智能技术的快速发展,情感识别和情绪分析逐渐成为研究的热点。
语音情感识别与情绪分析是利用计算机技术对人的情绪状态进行自动识别和分析的过程,具有广泛的应用前景,如情感智能机器人、智能疗愈系统等。
本文将介绍利用Matlab进行语音情感识别与情绪分析的一些实践方法。
一、语音情感特征提取语音情感特征提取是语音情感识别与情绪分析的重要步骤。
目前常用的语音情感特征包括基频、能量、谐波比、声调等。
利用Matlab进行语音情感特征提取可以通过Waveform对象和Spectrogram对象等工具实现。
1. Waveform对象利用Waveform对象可以直接读取语音文件并获取音频的波形信息。
首先,我们需要将语音文件加载到Matlab中,然后可以使用audioread函数读取语音数据。
通过绘制波形图,可以观察声音的形状,获得一些初步的情感特征。
2. Spectrogram对象Spectrogram对象可以将语音信号转换为频谱图,进一步提取语音特征。
频谱图可以展示音频在不同频率上的能量分布情况,进而呈现声音的谐波结构。
Matlab 提供了spectrogram函数和pmtm函数来生成频谱图,可以利用这些函数来获取声音的主频、谐波比等特征。
二、语音情感识别模型构建在得到语音情感特征之后,我们需要构建语音情感识别模型。
常用的模型包括基于机器学习的分类模型和基于深度学习的神经网络模型。
接下来,将重点介绍基于深度学习的语音情感识别模型构建方法。
1. 数据预处理首先,我们需要准备标记好的语音情感数据集。
数据集应包含语音样本和对应的情感标签,可以通过在网络上搜索公开的数据集进行下载。
然后,利用Matlab对数据集进行预处理,如拆分训练集和测试集、进行数据标准化等。
2. 构建神经网络模型基于深度学习的语音情感识别模型可以利用卷积神经网络(CNN)或长短时记忆网络(LSTM)来实现。
MATLAB技术人脸识别算法
MATLAB技术人脸识别算法MATLAB技术在人脸识别算法中的应用人脸识别技术是近年来快速发展的一项先进技术,它可以实现对人脸图像进行自动识别和身份验证。
作为一种非接触式的生物识别技术,人脸识别具有高效、方便、准确的特点,因此在安全领域、人机交互、图像检索等方面有着广泛的应用。
而MATLAB作为一种功能强大的科学计算工具,其丰富的图像处理工具箱和灵活的编程环境,使得其成为人脸识别算法研究和开发的重要工具。
一、人脸识别算法概述人脸识别算法主要包括人脸检测、人脸特征提取和人脸匹配三个步骤。
人脸检测是指从图像或视频中自动检测并定位人脸,通常采用基于特征的方法(如Haar特征、HOG特征等)或基于模型的方法(如支持向量机、神经网络等)进行。
人脸特征提取是指从检测到的人脸中提取出具有代表性的特征,常用的方法有主成分分析(PCA)、线性判别分析(LDA)、局部二值模式(LBP)等。
人脸匹配是指将提取出来的人脸特征与已有的数据库中的人脸特征进行比对和匹配,一般采用欧氏距离、余弦相似度等度量方法。
二、MATLAB中的人脸检测算法实现MATLAB提供了多种人脸检测算法的库函数和工具箱,例如Viola-Jones算法、DLib算法等。
这些算法基于不同的原理和方法,可以根据实际需求选择适合的算法进行人脸检测。
以Viola-Jones算法为例,其基于Haar特征的方法可以高效地进行人脸检测。
在MATLAB中,可以使用“vision.CascadeObjectDetector”类实现Viola-Jones算法的人脸检测功能。
首先,需要加载人脸检测器对象,并使用“detect”方法对图像进行人脸检测,最后使用“insertShape”方法将检测结果标记在原图像上。
三、MATLAB中的人脸特征提取算法实现MATLAB提供了多种常用的人脸特征提取算法的函数和工具箱,如PCA、LDA、LBP等。
这些算法能够对从图像中提取到的人脸特征进行降维和优化,以便于后续的人脸匹配工作。
Matlab中的人脸识别与表情分析方法
Matlab中的人脸识别与表情分析方法人脸识别和表情分析是计算机视觉领域中的热门研究方向。
在这个信息爆炸的时代,人们对于自动化识别和分析人脸表情的需求越来越高。
Matlab作为一种功能强大的数值计算与可视化软件,提供了一些重要的工具和算法来实现人脸识别和表情分析。
本文将介绍Matlab中一些常用的人脸识别与表情分析方法。
首先,我们来介绍一下人脸识别的基本概念和方法。
人脸识别是指通过计算机技术来识别和验证人脸的身份。
常见的人脸识别方法包括主成分分析(PCA)、线性判别分析(LDA)和支持向量机(SVM)等。
在Matlab中,可以使用内置的人脸识别工具箱来实现这些方法。
其中,主成分分析是一种常用的降维方法,它通过对数据进行特征提取和投影变换,将高维数据映射到低维空间。
在人脸识别中,PCA可以用来提取脸部特征,并通过与已知人脸数据的比较来判断其身份。
在Matlab中,可以使用pca函数实现主成分分析。
另一种常用的人脸识别方法是线性判别分析。
LDA可以通过最大化类间散布和最小化类内散布的方式来找到最优的投影向量,从而实现有效的人脸分类。
Matlab提供了lda函数来实现线性判别分析。
此外,支持向量机也是一种常用的分类方法,它的基本思想是寻找一个最优的超平面来实现数据的最佳分类。
在人脸识别领域,SVM可以通过训练一组已知标记的人脸图像来建立分类模型,然后利用该模型来识别新的人脸图像。
Matlab中的svmtrain和svmclassify函数可以帮助我们实现这一过程。
除了人脸识别,表情分析也是一个引人注目的研究领域。
表情分析旨在从人脸图像中提取和解释情绪表达。
常见的表情分析方法包括基于特征提取的方法、基于神经网络的方法和基于统计模型的方法等。
在Matlab中,可以使用图像处理工具箱提供的函数来实现基于特征提取的表情分析。
这些函数包括人脸检测、特征检测和分类器训练等功能。
通过这些函数,我们可以提取脸部特征,如眼睛、嘴巴等,进而分析表情的特征,如笑容、愤怒等。
系统辨识的Matlab实现方法(手把手)
最近在做一个项目的方案设计,应各位老总的要求,只有系统框图和器件选型可不行,为了凸显方案设计的高大上,必须上理论分析,炫一下“技术富”,至于具体有多大实际指导意义,那就不得而知了!本人也是网上一顿百度,再加几日探索,现在对用matlab 实现系统辨识有了一些初步的浅薄的经验,在此略做一小节。
必须要指出的是,本文研究对象是经典控制论理最简单最常用的线性时不变的siso 系统,而且是2阶的哦,也就是具有如下形式的传递函数:121)(22++=Ts s T s G ξ 本文要做的就是,对于有这样传递函数的一个系统,要辨识得到其中的未知数T , ξ!!这可是控制系统设计分析的基础哦,没有系统模型,啥理论、算法都是白扯,在实际工程中非常重要哦! 经过总结研究,在得到系统阶跃响应实验数据之后(当然如果是其他响应,也有办法可以辨识,在此还是只讨论最简单的阶跃响应实验曲线,谁让你我是菜鸟呢),利用matlab 至少可以有两种方法实现实现(目前我只会两种,呵呵)!一、函数法二、GUI 系统辨识工具箱下面分别作详细介绍!一、 函数法看官别着急,先来做一段分析(请看下面两排红*之间部分),这段分析是网上找来的,看看活跃一下脑细胞吧,如果不研读一下,对于下面matlab 程序,恐怕真的就是一头雾水咯!*******************************************************************************G(s)可以分解为:))((1)(212ωω++=s s T s G其中, [][]11112221--=-+=ξξωξξωTT1ω、2ω都是实数且均大于零。
则有:211ωω=T ,21212ωωωωξ+=传递函数进一步化为:))(()(2121ωωωω++=s s s G 因此,辨识传递函数就转化为求解1ω、2ω。
当输入为单位阶跃函数时,对上式进行拉普拉斯反变换,得系统时域下的单位阶跃响应为:tteet y 212111221)(ωωωωωωωω---+--=即 tteet y 21211122)(1ωωωωωωωω-----=-令1ω=2ωk )1(>k,得tk t ek e k k t y 22111)(1ωω-----=-⎥⎦⎤⎢⎣⎡--=---t k t e k e k k 2)1(2111ωω 对上式两边取以e 为底的对数得[]⎥⎦⎤⎢⎣⎡-+--=---t k e k t k k t y 2)1(211ln 1ln )(1ln ωω 当∞→t 时,⎥⎦⎤⎢⎣⎡---t k e k 2)1(11ln ω0→,则上式化简为[]t k k t y 21ln )(1ln ω--=-该式的形式满足直线方程b at t y +=)(*其中,)(*t y =[])(1ln t y -,1ln ,2-=-=k kb a ω)1(>k通过最小二乘算法实现直线的拟合,得到a ,b 的值,即可得到1ω、2ω的值,进而可得系统的传递函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Train.mfunction code = train(traindir, n)% Speaker Recognition: Training Stage%% Input:% traindir : string name of directory contains all train sound files% n : number of train files in traindir%% Output:% code : trained VQ codebooks, code{i} for i-th speaker%% Note:% Sound files in traindir is supposed to be:% s1.wav, s2.wav, ..., sn.wav% Example:% >> code = train('C:\data\train\', 8);k = 16; % number of centroids requiredfor i = 1:n % train a VQ codebook for each speaker file = sprintf('%ss%d.wav', traindir, i);disp(file);[s, fs] = wavread(file);*********************************************************** MFCC.mfunction r = mfcc(s, fs)% MFCC%% Inputs: s contains the signal to analize% fs is the sampling rate of the signal%% Output: r contains the transformed signal%%%%%%%%%%%%%%%%%%%%% Mini-Project: An automatic speaker recognition system%% Responsible: Vladan V elisavljevic% Authors: Christian Cornaz% Urs Hunkelerm = 100;n = 256;l = length(s);nbFrame = floor((l - n) / m) + 1;for i = 1:nfor j = 1:nbFrameM(i, j) = s(((j - 1) * m) + i);endendh = hamming(n);M2 = diag(h) * M;for i = 1:nbFrameframe(:,i) = fft(M2(:, i));endt = n / 2;tmax = l / fs;m = melfb(20, n, fs);n2 = 1 + floor(n / 2);z = m * abs(frame(1:n2, :)).^2;r = dct(log(z));************************************************************************* Vqlbg.mfunction r = vqlbg(d,k)% VQLBG Vector quantization using the Linde-Buzo-Gray algorithme%% Inputs: d contains training data vectors (one per column)% k is number of centroids required%% Output: r contains the result VQ codebook (k columns, one for each centroids)%%%%%%%%%%%%%%%%%%%%% Mini-Project: An automatic speaker recognition system%% Responsible: Vladan V elisavljevic% Authors: Christian Cornaz% Urs Hunkelere = .01;r = mean(d, 2);dpr = 10000;for i = 1:log2(k)r = [r*(1+e), r*(1-e)];while (1 == 1)z = disteu(d, r);[m,ind] = min(z, [], 2);t = 0;for j = 1:2^ir(:, j) = mean(d(:, find(ind == j)), 2);x = disteu(d(:, find(ind == j)), r(:, j));for q = 1:length(x)t = t + x(q);endendif (((dpr - t)/t) < e)break;elsedpr = t;endendend*****************************************************Disteu.mfunction d = disteu(x, y)% DISTEU Pairwise Euclidean distances between columns of two matrices %% Input:% x, y: Two matrices whose each column is an a vector data.%% Output:% d: Element d(i,j) will be the Euclidean distance between two % column vectors X(:,i) and Y(:,j)%% Note:% The Euclidean distance D between two vectors X and Y is:% D = sum((x-y).^2).^0.5[M, N] = size(x);[M2, P] = size(y);if (M ~= M2)error('Matrix dimensions do not match.')endd = zeros(N, P);if (N < P)copies = zeros(1,P);for n = 1:Nd(n,:) = sum((x(:, n+copies) - y) .^2, 1);endelsecopies = zeros(1,N);for p = 1:Pd(:,p) = sum((x - y(:, p+copies)) .^2, 1)';endendd = d.^0.5;*********************************Melfb.mfunction m = melfb(p, n, fs)% MELFB Determine matrix for a mel-spaced filterbank%% Inputs: p number of filters in filterbank% n length of fft% fs sample rate in Hz%% Outputs: x a (sparse) matrix containing the filterbank amplitudes% size(x) = [p, 1+floor(n/2)]%% Usage: For example, to compute the mel-scale spectrum of a% colum-vector signal s, with length n and sample rate fs:%% f = fft(s);% m = melfb(p, n, fs);% n2 = 1 + floor(n/2);% z = m * abs(f(1:n2)).^2;%% z would contain p samples of the desired mel-scale spectrum %% To plot filterbanks e.g.:%% plot(linspace(0, (12500/2), 129), melfb(20, 256, 12500)'),% title('Mel-spaced filterbank'), xlabel('Frequency (Hz)');f0 = 700 / fs;fn2 = floor(n/2);lr = log(1 + 0.5/f0) / (p+1);% convert to fft bin numbers with 0 for DC termbl = n * (f0 * (exp([0 1 p p+1] * lr) - 1));b1 = floor(bl(1)) + 1;b2 = ceil(bl(2));b3 = floor(bl(3));b4 = min(fn2, ceil(bl(4))) - 1;pf = log(1 + (b1:b4)/n/f0) / lr;fp = floor(pf);pm = pf - fp;r = [fp(b2:b4) 1+fp(1:b3)];c = [b2:b4 1:b3] + 1;v = 2 * [1-pm(b2:b4) pm(1:b3)];m = sparse(r, c, v, p, 1+fn2);***************************************************** Test.mfunction test(testdir, n, code)% Speaker Recognition: Testing Stage%% Input:% testdir : string name of directory contains all test sound files% n : number of test files in testdir% code : codebooks of all trained speakers%% Note:% Sound files in testdir is supposed to be:% s1.wav, s2.wav, ..., sn.wav%% Example:% >> test('C:\data\test\', 8, code);for k = 1:n % read test sound file of each speaker file = sprintf('%ss%d.wav', testdir, k);[s, fs] = wavread(file);v = mfcc(s, fs); % Compute MFCC'sdistmin = inf;k1 = 0;for l = 1:length(code) % each trained codebook, compute distortiond = disteu(v, code{l});dist = sum(min(d,[],2)) / size(d,1);if dist < distmindistmin = dist;k1 = l;endendmsg = sprintf('Speaker %d matches with speaker %d', k, k1);disp(msg);end。