煤层瓦斯含量及残存瓦斯量计算公式
煤层瓦斯含量井下直接测定方法
煤层瓦斯含量井下直接测定方法1、范围本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。
本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。
本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。
2、仪器设备a)煤样罐:罐内径大于60mm,容积足够装煤样400g 以上,在1.5MPa 气压下保持气密性;b)瓦斯解吸速度测定仪(简称解吸仪,如图1 所示):量管有效体积不小于800cm3,最小刻度2 cm3;c)空盒气压计:(80~106)Kpa,分度值0.1kPa;d)秒表;e)穿刺针头或阀门;f)温度计:(-30~50)℃;g)真空脱气装置或常压自然解吸测定装置;h)球磨机或粉碎机;i)气相色谱仪:符合GB/T 13610 要求;j)天秤:秤量不小于1000g,感量不大于1g;k)超级恒温器,最高工作温度(95~100)℃。
3、采样1)采样前准备(1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至表压1.5MPa 以上,关闭后搁置12h,压力不降方可使用。
禁止在丝扣及胶垫上涂润滑油。
(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min 量管内水面不动为合格。
2)煤样采集(1)采样钻孔布置同一地点至少应布置两个取样钻孔,间距不小于5m。
(2)采样方式在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。
(3)采样深度采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离应视岩性而定,但不得小于5m。
测定残余瓦斯含量时,取样不受此限制。
煤层瓦斯含量井下直接测定方法
煤层瓦斯含量井下直接测定方法1、范围本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。
本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。
本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。
2、仪器设备a)煤样罐:罐内径大于 60mm,容积足够装煤样 400g 以上,在 1.5MPa 气压下保持气密性;b)瓦斯解吸速度测定仪(简称解吸仪,如图 1 所示):量管有效体积不小于 800cm3,最小刻度 2 cm3;c)空盒气压计:(80~106)Kpa,分度值 0.1kPa;d)秒表;e)穿刺针头或阀门;f)温度计:(-30~50)℃;g)真空脱气装置或常压自然解吸测定装置;h)球磨机或粉碎机;i)气相色谱仪:符合 GB/T 13610 要求;j)天秤:秤量不小于 1000g,感量不大于 1g;k)超级恒温器,最高工作温度(95~100)℃。
3、采样1)采样前准备(1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至表压 1.5MPa 以上,关闭后搁置 12h,压力不降方可使用。
禁止在丝扣及胶垫上涂润滑油。
(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图 1),放置 10min 量管内水面不动为合格。
2)煤样采集(1)采样钻孔布置同一地点至少应布置两个取样钻孔,间距不小于5m。
(2)采样方式在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。
(3)采样深度采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离应视岩性而定,但不得小于5m。
瓦斯参数测定方法
煤层瓦斯含量的方法。方法的原理与地勘钻孔所用解吸法相同。 与在地勘钻孔中应用相比,该法在井下煤层钻孔应用的明显优点:
一是煤样暴露时间短,一般为3~5min,且易准确进行测定;
二是煤样在钻孔中的解吸条件与在空气中大致相同,无泥浆
和泥浆压力的影响。
5 瓦斯参数测试方法
瓦斯浓度
单位体积空气中所含有的瓦斯体积的体积百分数
称之为瓦斯浓度,常用%作单位,我们常说的瓦斯浓
度为1%表示的是井下每1m3大气中含有0.01m3的瓦斯。
矿井相对瓦斯涌出量 矿井绝对瓦斯涌出量
A)用于民用(甲烷浓度在30%-80%) 仅限于高浓度瓦斯的应用,但由于我国大部分煤矿地处偏远, 利用起来存在非常大的的局限性。 B) 工业瓦斯锅炉(甲烷浓度在30%-80%)。 该种方式采用的燃料的直接燃烧,燃料的利用效率相对较低, 且适合于离城市相对较近的煤矿。 C) 瓦斯发电(甲烷浓度在>4%) 投资低,建设周期短,就地消化,就地应用或远距离输送, 规模可大可小,灵活方便。 D) 地面抽采,做LNG或CNG(甲烷浓度>80%) 起步阶段,目前仅有中石油、中联煤两家公司正在开展该方 面的研发。 E)氧化销毁甲烷浓度<1%, 目前仅有几个示范项目,主要是风排。
[e
k t1
1]
式中
r0——钻屑开始解吸瓦斯时的解吸瓦斯速度; k——常数;
t1——煤样从脱离煤体至开始解吸测定所用时间。
5 瓦斯参数测试方法
5.井下煤层瓦斯含量测定方法—钻屑解吸法(C)
无论是钻屑解吸法A或B,均要计算取样损失量、残存 量这些测定在需要在专门的实验室完成,因此测定周期长。 为了实现井下煤层瓦斯含量快速测定,抚顺分院在1993~ 1995年期间提出了一种新的钻屑解吸法—钻屑解吸法(C), 研制了WP-1型井下煤层瓦斯含量快速测定仪。 计算公式:
瓦斯流量、含量、涌出量、衰减系数
瓦斯含量、涌出量、抽放量、衰减系数(一)1、单孔瓦斯流量(m 3/min )(钻孔瓦斯抽放量)Q=K 1.S=K πDL K 1------瓦斯涌出速度或强度以(m 3/min.m 2)D----钻孔直径L-----钻孔长度K 1值计算方法 K 1=q 0e -αtq 0-----钻孔瓦斯涌出初速度 m 3/min.m 2α- 钻孔瓦斯流量衰减系数t---时间q 0计算方法 q 0=aX[0.0004V ad 2+0.16] m 3/min.m 2式中a 取0.026X 为煤层瓦斯含量V ad 煤层挥发分或者:q 0=0.59/1440 X钻孔瓦斯涌出衰减系数可以通过实测进行计算而得3、钻孔抽放时间决定因素①采掘布置允许的抽放时间,要达到抽采掘平衡②瓦斯抽放率。
与瓦斯涌出量有关系,国家有相应规定4、计算瓦斯含量两种方法:①直接法 采用钻孔取芯的地质钻孔取煤样方法采用解 吸仪进行计算。
②间接法。
利用实测某处瓦斯压力用公式反推瓦斯含量X=bp 1abp +×e 31.011W+n(t s -t) +k 10KP(二)第一节:瓦斯含量计算1.1 主要原理是利用瓦斯压力计算瓦斯原始含量瓦斯压力利用和深度的关系公式:P=(2.03-10.13) H (开采垂深及压力系数) 计算: 开采垂深取550m,,压力系数取2.6通过间接法公式计算得在最低水平时:1#煤的瓦斯含量为:12.29m 3/min第二节:区域抽采前的瓦斯含量2.1回采工作面瓦斯涌出量计算:q 采=q 1+q 2开采层相对瓦斯涌出量q 1=K 1 ×K 2 ×K 3 ×m(W 0-W C )/MW0由上式可得;W C残存瓦斯含量由公式计算而得,它与原煤的水分、灰分有直接关系K1和K2和K3由围岩瓦斯涌出、工作面丢煤系数、采区内准备巷道预排瓦斯有关残存瓦斯量为:W C为4.2m3/t (1#);2.25 m3/t(2#);2.37 m3/t(3#)q1=9.21m3/t邻近层瓦斯:开采1#煤时2#煤层涌入吨煤瓦斯量为: 3.26m3/t√√开采1#煤层时,3#煤层涌入吨煤瓦斯量为:4.41m3/t开采1#煤层时,围岩涌入瓦斯量为:9.21×15%=1.38m3/t邻近层总计:q2= 3.26+4.41+1.38=9.05m3/t累计:q采=18.26m3/t另外考虑瓦斯涌出不均匀性取回采工作面涌出系数为1.3总相对瓦斯涌出量为:1.3×18.26=23.74m3/t(与产量大小无关)折合绝对瓦斯涌出量:23.74×910/1440=15m3/min(与产量大小有直接关系)2.2掘进工作面瓦斯涌出量:(1)掘进煤壁瓦斯涌出量q3=D×V×q0 ×2(√L/V-1)=0.95m3/min(2)落煤瓦斯涌出量q4=S.V.r(W0-W c)=0.59m3/min绝对瓦斯涌出量总计q掘=1.54m3/min相对瓦斯涌出量总计1.54×1440/63.2=35.09m3/t(掘进的产量每天推算按63.2T)2.3采区的瓦斯涌出量计算(工作面和2个掘进面)q区=K’(∑q回Ai+1440∑q掘i)/A0此处K’瓦斯采区涌出不均匀系数1.3q回采面相对瓦斯涌出量Ai为采面平均日产量q掘为掘进面瓦斯相对涌出量A0为采区产量.与回采面的日产量相同.经计算二采区相对瓦斯涌出量为34.03m3/t2.4矿井瓦斯涌出量计算(矿井以一个采区二个掘进面达产)瓦斯除了本身一个采面之外,和两个掘进面之外,另还要考虑其它采区涌入瓦斯q=K’’’’(∑q区Ai)/∑A i矿井相对涌出量为:1.3×(34.3×910)/910=44.24m3/t(考虑其它涌入系数)矿井绝对涌出量:44.24×910/1440=27.96m3/min2.5抽采率的确定:因矿井绝对瓦斯涌出量为27.96m3/min在20-40之间故选择矿井抽采率达到35%为目标。
关于煤层残存瓦斯含量与残余瓦斯含量的探讨
1 问题分析
1) 煤矿技术用语的国家标准中“ 残存瓦斯含
量”的定义是:“经过一段时间的瓦斯释放后ꎬ煤块或
煤体中残留的瓦斯”ꎮ 地勘瓦斯含量测定的国家标准
中“残存瓦斯含量”的定义是:“残存瓦斯含量是指煤
样解吸后在 1 个大气压(101 325 Pa) 条件下ꎬ残留在
( 下转第 61 页)
2020 年 5 月 朱桂芝等:空气能热水器在煤矿的应用浅析 第 29 卷第 5 期
的 1 / 4ꎬ和传统的燃气热水器相比ꎬ无须耗用任何燃
料ꎬ使用成本只是燃气热水器的 1 / 3ꎻ空气能热水器
不需要煤炭、不需要燃气、也不需要阳光ꎬ仅仅需要
很少的电能ꎬ安放位置也没有非常严格的要求ꎬ放在
户内户外都可以ꎬ可以非常方便地根据需要进行集
约 75% ꎬ据 2019« BP 世界能源统计年鉴» 数据显示ꎬ
2018 年世界煤炭产量为 80. 13 亿 tꎬ其中我国生产
煤炭 36. 8 亿 tꎬ约占世界的 46% ꎻ由此可见ꎬ煤矿在
煤层气资源储量、设计矿井通风与瓦斯抽采系统、评
瓦斯含量”来计算可解析瓦斯量ꎻ测定煤层瓦斯含量
时ꎬ要用到“常压不可解吸瓦斯量”ꎮ 显然ꎬ我国现行
的多个相关标准中对“残存瓦斯量” 的定义是不一致
价煤层瓦斯抽采效果和煤层突出危险性的主要依据ꎬ
然而目前二者在定义、取值及应用上存在不统一、不
的ꎬ若采用相应的测试或取值方法所得的数值也不尽
标准中“ 残存瓦斯量” 的定义是:“ 在常压状态下ꎬ煤
样在井下解吸后残留在煤样中的瓦斯量” [3] ꎮ 另外ꎬ
抽采达标评判工作常用“煤在标准大气压力下的残存
48
近似地按煤在0. 1 MPa压力条件下煤的吸附量取值”
煤层的瓦斯含量计算
煤层的瓦斯含量计算1.1计算原理 煤的瓦斯含量是指单位重量或体积的煤中所含有的瓦斯量,以33m m 或3m t 表示。
它包括游离瓦斯和吸附瓦斯两部分。
游离瓦斯可以按气体状态方程求得00y x VpT Tp ξ= (4-1)式中 y x —煤的游离瓦斯含量,m 3/t ; V —单位重量煤的孔隙容积,t m 3,11a bV γγ=-,a γ、b γ分别为煤样的假密度和真密度;p —绝对瓦斯压力,MPa ;0T 、0p —标准状况下的绝对温度(273K )与压力(0.101325MPa );T —瓦斯的绝对温度,T =273+t ,ξ—瓦斯压缩系数。
吸附瓦斯则根据朗格缪尔方程有()()01n t t x abp x e bp -=+ (4-2) 式中 x x —煤的吸附瓦斯含量;a 、b —煤的吸附常数;e —自然对数的底;0t —实验室测定煤的吸附常数时的实验温度,℃;t —煤层温度,℃;n —系数,按下式确定:pn 07.0993.002.0+=,0T =273K ,0p =0.101325MPa 。
则煤的瓦斯含量为()()t t n x y e bp abp Tp VpT x x x -++=+=0100ξ (4-3) 由于我们想要计算的是煤的瓦斯含量,因此不需要考虑诸如水分、可燃物百分比、温度的影响系数等因素,只需要对煤的吸附常数a,b值进行测定,并带入煤的其它相关参数,然后带入上式进行计算即可。
1.2 煤样的真密度和假密度测定在瓦斯含量计算过程中,需要给出煤样单位重量煤的孔隙容积,因此需要对煤的真密度和加密度进行测定。
1.2.1真密度与假密度测定原理假密度又称视相对密度,是指煤的质量与煤的体积(含煤中的孔隙)之比。
称取一定粒度的煤,表面用液体石蜡封闭,利用全自动密度测定仪间接求得煤样体积,求出煤的视密度。
真密度是指煤的质量与煤的体积之比。
称取一定粒度的煤利用全自动密度测定仪直接测得煤的真密度。
抽采后残余瓦斯含量计算
A3 抽采后煤的残余瓦斯压力计算方法:煤的残余相对瓦斯压力(表压)按下式计算:()()0.10.110011(0.1)10010.31d ad CY CY CY ad CY a ab P P A M W b P M P πγ++--=⨯⨯++++ (4)式中:W CY ─残余瓦斯含量,m 3/t ;(4.493,4.6804,6.8521,)b a ,─吸附常数;a=20.7739,b=1.6280CY P ─煤层残余相对瓦斯压力,MPa ;a P ─标准大气压力,(0. MPa) d A ─煤的灰分,%;(1.04)adM ─煤的水分,%;(11.09) π─煤的孔隙率,m 3/ m 3;(4.23)γ─煤的容重(假密度),t/ m 3。
(1.45)求CYP ─煤层残余相对瓦斯压力,MPa ;共三个数。
2009年全国二级建造师执业资格考试《建设工程施工管理》试卷一、单项选择题(共70题,每题1分。
每题的备选项中,只有1个最符合题意。
) 1.编制项目建议书属于建设工程项目全寿命周期( )。
P2A.决策阶段的工作 B.实施阶段的工作C.设计准备阶段的工作 D.施工阶段的工作2.在建设工程施工总承包管理模式下,施工分包合同的主体一般是施工分包方和项目( )。
P5A.总承包管理方 B.业主方C.设计方 D.咨询机构3.某住宅小区工程施工前,施工项目管理机构绘制了如下框图。
该图是( )。
P8 A.项目结构图B.组织结构图C.工作流程图D.合同结构图4.组织结构模式反映了一个组织系统中各子系统之间或各元素之间的( )。
P13 A.逻辑关系 B.协作关系C.合同关系 D.指令关系5.下图反映的是某建设项目业主、项目总承包人、分包人之间的( )。
P13 A.协作关系B.指令关系C.管理关系D.合同关系6.施工项目管理机构编制项目管理任务分工表之前要完成的工作是( )。
P17 A.明确各项管理工作的工作流程B.落实各工作部门的具体人员C.对项目管理任务进行详细分解D.对各项管理工作的执行情况进行检查7.某建设工程项目施工前,业主方制定了工程款支付审批程序:施工方申报一监理方审批一业主现场代表审查一业主项目负责人审核一业主分管副经理审批支付。
瓦斯抽采指标计算方法
附录瓦斯抽采指标计算方法A1 预抽时间差异系数计算方法:预抽时间差异系数为预抽时间最长得钻孔抽采天数减去预抽时间最短得钻孔抽采天数得差值与预抽时间最长得钻孔抽采天数之比。
预抽时间差异系数按式(1)计算:(1)式中:-预抽时间差异系数,%;—预抽时间最长得钻孔抽采天数,d;—预抽时间最短得钻孔抽采天数,d。
A2 瓦斯抽采后煤得残余瓦斯含量计算按公式(2)计算:(2)式中:—煤得残余瓦斯含量,m3/t;(7。
9594)-煤得原始瓦斯含量,m3/t;—评价单元钻孔抽排瓦斯总量,m3;—评价单元参与计算煤炭储量,t、评价单元参与计算煤炭储量按公式(3)计算:(3)式中:—评价单元煤层走向长度,m;—评价单元抽采钻孔控制范围内煤层平均倾向长度,m;、—分别为评价单元走向方向两端巷道瓦斯预排等值宽度,m。
如果无巷道则为0;、—分别为评价单元倾向方向两侧巷道瓦斯预排等值宽度,m、如果无巷道则为0;—抽采钻孔得有效影响半径,m;—评价单元平均煤层厚度,m;—评价单元煤得密度,t/m3、、、、应根据矿井实测资料确定,如果无实测数据,可参照附表1中得数据或计算式确定、A3 抽采后煤得残余瓦斯压力计算方法:煤得残余相对瓦斯压力(表压)按下式计算:()()0.10.110011(0.1)10010.31d ad CY CY CY ad CY a ab P P A M W b P M P πγ++--=⨯⨯++++(4)式中:W CY─残余瓦斯含量,m 3/t;(7、9594)─吸附常数;a=20、7739,b=1。
6280─煤层残余相对瓦斯压力,MP a;─标准大气压力,(0。
101325 MPa)─煤得灰分,%;(1.04)─煤得水分,%;(11、09)─煤得孔隙率,m3/ m3;(4。
23)─煤得容重(假密度),t/ m 3、(1。
45)A 4 可解吸瓦斯量计算方法:按公式(5)计算:(5)式中:─煤得可解吸瓦斯量,m3/t;─抽采瓦斯后煤层得残余瓦斯含量,m 3/t;─煤在标准大气压力下得残存瓦斯含量,按公式(6)计算。
掘进工作面瓦斯涌出量计算
掘进工作面瓦斯涌出量计算参考《采矿工程设计手册》3355页公式计算。
计算式一:q j=q m+q Lq m=n〃m〃V〃q V(21L)/0Vq L=s〃v〃γ(W h-W c)式中 q j—掘进工作面瓦斯涌出量,m3/min;q m--掘进煤壁瓦斯涌出量,m3/min;q L—落煤瓦斯涌出量,m3/min;n—暴露煤面个数,单巷掘进时n=2;v—平均掘进速度,m/min;q V—煤壁瓦斯涌出初速度,m3/min(参照公式q V=0.026[0.0004(v r)2+0.16]〃W h取值);v r—煤的挥发分,%;W h—煤层瓦斯含量,m3/t;L0—巷道瓦斯涌出量达到最大稳定值时的巷道长度,m;s—掘进端头见煤面积,㎡;γ—煤的容重,t/m3;W c—煤层残存瓦斯量,m3/t。
计算式二:对于单巷 q j=4mυc1t0.5+bmυ(w h-w c)对于双巷 q j=8mυc2t0.5+m (w h-w c)[ υ(b1+b2)+υ1b1]式中 m—煤层厚度,m;υ-巷道的掘进速度,m/d;t—巷道掘进时间,d;b—单巷宽度,m;b1、b2 --分别为双巷主巷与副巷的宽度,m;w h、w c—分别为煤层的原始瓦斯含量与残余瓦斯含量,m3/t;υ1、b1 --分别为联络巷的掘进速度与宽度,m/d〃m;c1--单巷的瓦斯涌出量特性系数,m3/m2〃d0.5或m/d0.5;c2—双巷的瓦斯涌出量特性系数, m/d0.5;q j—单巷或双巷掘进工作面瓦斯涌出量,m3/d.瓦斯涌出特性系数计算方法:实测工作面掘进头③、中部②、开口处①的瓦斯涌出量q j、各测点的暴露时间m和巷道掘进速度υ,利用下式进行计算:q j①- q j②=4mυc1(1t-2t)q j②- q j③=4mυc1(2t-3t)。
瓦斯含量计算方法
瓦斯含量计算方法Ⅰ、游离瓦斯量的计算计算公式如下:n f P W ⨯10=游W 游----------游离瓦斯,M 3/t ;Ⅱ 吸附瓦斯①吸附瓦斯计算公式如下:)100)(1(100rr W A bP abP W --+=吸 W 吸 --------吸附瓦斯,M 3/t ;; a 、b-----------吸附常数;②若没有试验室的a 、b 常数,也可根据煤的工业分析采用下列经验公式计算:Ptn V b V a W e V b PaW A W rrr n r r r 07.0993.002.0004.0121.04.2100)31.01()10()1005.65146.0+=-=+=++--(=吸e------------自然对数。
目前我国采掘深度下游离瓦斯在瓦斯含量中所占的比重较大,约占75%以上,并随深度的增加而`加大,瓦斯含量(W含)根据实验室中的测定,在不同瓦斯压力下(相当不同埋藏深度),游离瓦斯和吸附瓦斯在煤的瓦斯含量中所占的比重见表:游离瓦斯和吸附瓦斯在煤的瓦斯含量中所占的比重表③利用瓦斯含量系数计算煤层瓦斯含量如果计算要求不高,可以用瓦斯含量与瓦斯压力的经验公式,根据煤层瓦斯压力确定煤层中的瓦斯含量。
瓦斯含量与瓦斯压力有下列关系式MpaP Mpa t m PW 煤层中的瓦斯压力,瓦斯含量系数,=含---•----5.03αα瓦斯含量系数α与煤的挥发分关系对照表④瓦斯含量的W 0的另一个公示。
W 0可按下列经验公式确定,当挥发分小于20%的煤层sd K s d P W A P t C P B At t W t a a ⨯-+--⨯-++-=)(1010010010)0027.0(110)000443.0(20当挥发分大于21%的煤层sd K s d P W A P t C P B At t W t a a ⨯-+--⨯-++-=)(1010010010)0022.0(110)000359.0(20 t----------------------煤层温度,摄氏温度p--------------------买深为H 处的瓦斯压力,Mpa ;可用下式确定2.0100+-=H H P H 0----------瓦斯风化带的深度,m A a ----------煤层的灰分,%; W a ----------煤层的水分,%; d-------------煤的密度(真比重),t/m 3; s-------------煤的视比重(假比重),t/m 3; 煤的密度可用下列经验公式求出;a rr A V V d 01.0665.00078.0+-= 当煤中A a <20%时a rA V S 0065.0543.106.0+=当煤中A a >20%时a r A V S 0065.0005.042.1+-=K t--------------沼气压缩系数,查表 沼气压缩系数K t 与温度及压力关系表A、B、C数据由下表查出瓦斯含量计算实例例如:某矿垂深(H )为400m ,瓦斯压力为3.9Mpa,挥发分(V r )为15%,灰分(A f )为4%,水分(W f )为1%,煤的含氢量(H 2)为4。
煤层瓦斯参数及其测定方法
防
量的方式与步骤为:①实测煤层瓦斯压力;②实
治 技
验测定煤样可燃基的瓦斯吸附常数;③用朗格缪
术
尔方程计算煤的可燃基瓦斯含量,并通过水分、
》 讲 座
灰分、温度、压力等校正得到原煤的瓦斯含量。 这一方法的计算基础都是来自实测值,而计算模
型又得到理论证明,故可信度较高,但测准煤层
瓦斯压力较难,工作量较大。
363
3.5
天府磨心坡矿
K2
513 633
4.8 7.5
1.5
防
652
7.85
40
0.57
治
白沙里王庙井
6
118
1.28
0.7
技 术
388
2.97
涟邵立新蛇形山井
4
214 252
2.18 2.6
1.1
》 讲 座
六枝四角田矿
7
70 207
0.45 1.91
1
南桐鱼田堡矿
4
218 432
1.52 4.95
xx=〔en(t0-t)〕〔1/(1+0.31W)〕〔(100-A-W)/100〕
讲
abp/(1+bp)
座
xy=VT0p/Tp0ξ
《
煤
式中, t0、t分别为测定吸附常数时的实验温度和煤层
矿
瓦斯的温度oC;
瓦 斯
n 为系数,按下式确定:n=0.02/(0.993+0.07p) ;
灾
W、A 分别为煤的水分和灰分,%;
一直沿用至今。
《
1000
地勘解吸法测定煤层瓦
解吸瓦斯量( ml)
煤
800
斯含量的基本原理及依据
矿井瓦斯防治
名词解释1.煤层瓦斯压力:是指煤层孔隙内气体分子自由热运动撞击所产生的作用力,在某一点上各向大小相等,方向与孔隙壁垂直。
2.残余瓦斯含量:相对原始煤层瓦斯含量而言,当煤体受到采动等因素的影响或瓦斯抽采后,煤层中剩余的瓦斯含量称为残余瓦斯含量,单位是m3/t或mL/g。
3.残存瓦斯含量:是指标准状态下,煤样自然解吸平衡后,残存在煤样中的瓦斯含量,单位是m3/t或mL/g。
4.瓦斯涌出量:是指在煤矿建设和生产过程中从煤层与岩层内涌出的瓦斯量。
5.钻屑瓦斯解吸指标△h2:煤样(10g)自煤体脱落暴露于大气之中第四分钟和第五分钟的瓦斯解吸所产生的压差,单位为Pa。
6.钻屑瓦斯解吸指标K1:煤样自煤体脱落暴露于大气之中解吸第一分钟内,每克煤样的瓦斯解吸总量,单位为mL/(g·min0.5)。
7.煤与瓦斯突出:是煤层中存储的瓦斯能和应力能的失稳释放,表现为在极短的时间内向生产空间抛出大量煤岩和瓦斯。
8.煤与瓦斯突出鉴定:指对矿井和煤层可能具有的煤与瓦斯突出危险性进行鉴定。
9.感应期:烃类从接触引火源起到可燃气体与空气混合物氧化反应转为快递燃烧时止的时间间隔。
10.石门和岩石井巷揭煤:石门和立井、斜井工作面从距突出煤层底(顶)板的最小法向距离10m开始到穿过煤层进入顶(底)板2m(最小法向距离)的过程均属于揭煤作业。
填空11.煤矿瓦斯爆炸的瓦斯(甲烷)浓度极限为5%—16%。
12.根据我国煤矿事故统计分类,煤矿瓦斯事故分为:瓦斯爆炸、煤与瓦斯突出、瓦斯燃烧和瓦斯窒息。
13.煤矿瓦斯治理工作要深入贯彻科学发展观,坚持“以人为本”和“安全发展”,坚持“安全第一、预防为主、综合治理”的安全生产工作方针和“先抽后采、监控检测、以风定产”的瓦斯治理工作方针,着力建立“通风可靠、抽采达标、监控有效、管理到位”的瓦斯治理工作体系。
14.煤层瓦斯在腐植型有机物在成煤的过程中经历2个成气时期:生物化学成气时期和煤化变质作用成气时期。
瓦斯参数测定及措施效果检验、消突评价相关要求
⽡斯参数测定及措施效果检验、消突评价相关要求防突及措施效果检验、消突评价等补充资料⼀、⽡斯基本参数测定⼀、⽡斯基本参数测定的内容及原则⼀)⽤于⽡斯涌出量预测及⽡斯抽采论证的⽡斯基本参数1.煤层⽡斯含量煤层⽡斯含量是指在矿井⼤⽓条件下(环境温度为20℃,环境⼤⽓压⼒为0.1 MPa)单位质量煤体中所含有的⽡斯⽓体(通常指甲烷)体积量,⼀般⽤m3/t表⽰其⼤⼩,即1 t煤中所含⽡斯的⽴⽅⽶数。
煤层⽡斯含量⼜可分为:煤层⽡斯原始含量——未受采矿采动及抽采影响的煤体内的⽡斯含量。
煤层⽡斯残存含量——受采矿采动及抽采影响的煤体内现存的⽡斯含量。
原煤⽡斯含量——单位质量原煤中含有的⽡斯量。
可燃基⽡斯含量——原煤中除去灰分和⽔分后的单位质量可燃部分煤中的⽡斯含量。
2.煤层⽡斯压⼒煤层⽡斯压⼒是指⽡斯赋存于煤层中所呈现的⽓体压⼒,即⽓体作⽤于孔隙壁的压⼒。
煤层⽡斯压⼒的单位⼀般⽤MPa表⽰。
煤层⽡斯压⼒⼜可分为:煤层⽡斯原始压⼒——未受采矿采动及抽采影响的煤体内的⽡斯压⼒。
煤层⽡斯残存压⼒——受采矿采动及抽采影响的煤体内现存的⽡斯压⼒。
⼆)⽤于突出危险性鉴定的⽡斯基本参数1.煤层⽡斯压⼒<(0.74mpa)2.煤层⽡斯含量<8m3/t)2.煤层的结构破坏类型(Ⅰ~V类):⽤煤层的构造特征、光泽、节理性质、断⼝性质及强度等指标综合反映的煤层被破坏程度。
4.煤样的⽡斯放散初速度(△P):实验室测定的吸附⽡斯煤样在突然卸压后最初⼀段时间内解吸⽡斯放出快慢的相对指标。
5.煤样的坚固性系数(∫):⽤捣碎法测定的煤样抗破碎强度指标。
6.煤的⽡斯解吸特征曲线:现场采取煤样经实验室真空脱附后,给定不同的吸附⽡斯压⼒使其吸附平衡,然后令其在⼤⽓压⼒状态下进⾏⽡斯解吸量随解吸时间关系的测定,统计分析得出解吸特征参数。
改变吸附平衡的⽡斯压⼒,得出不同的解吸特征参数,得到吸附平衡⽡斯压⼒与解吸特征参数之间的关系曲线,该曲线即为煤样的⽡斯解吸特征曲线。
瓦斯参数测试数据意义及方法(可编辑)
瓦斯参数测试数据意义及方法瓦斯参数测试1煤层瓦斯压力测定瓦斯压力: 煤层中瓦斯所具有的气体压力游离瓦斯,p,单位MPa。
煤层原始瓦斯压力: 当煤层未受采动影响而处于原始赋存状态时,煤中平衡瓦斯压力称之为煤层原始瓦斯压力,其物理单位为MPa。
煤层残存瓦斯压力: 当煤层受采动影响涌出一部分瓦斯后,此时煤层中残留瓦斯的压力大小称之为煤层残存瓦斯压力,单位为MPa。
煤层的残存瓦斯压力总小于原始瓦斯压力。
1.1 间接法测定瓦斯压力1.1.1根据煤层瓦斯涌出量间接推测瓦斯压力1.1.2根据煤层原始瓦斯合量测定瓦斯压力这一方法是利用特制的密闭钻头从煤体内部预定测量瓦斯压力的地点,采取煤样。
然后将煤样中的瓦斯全部抽出,则可根据煤样的重量或体积和总的抽出瓦斯量求出单位重量或体积的瓦斯量,再按瓦斯容量曲线或瓦斯含量计算公式求出其瓦斯压力。
式中 X?纯煤(煤中可燃质)的瓦斯含量,m3/t; p?煤层瓦斯压力,MPa;a?吸附常数,试验温度下煤的极限吸附量,m3/t;b?吸附常数,MPa-1;ts?试验室作吸附试验的温度,℃;t?井下煤体温度,℃;Mad?煤中水分含量,%;优点:井下操作少,且可适用于煤层测压;缺点:室内工作量大,且煤样经过反复吸收和放散后,瓦斯在煤体结构上恐有所变化。
1.1.3用煤样在实验室测定瓦斯压力这一方法是采用在井下采集需要测压地点的煤祥,放入密封的铁罐中,罐中充满水,并装有压力表,利用水的不可压缩性,当煤样中瓦斯排出时,则罐中压力提高并通过压力表显示出来,而压力表显示的压力认为即是测定地点的瓦斯压力。
1.1.4按照测压地点的深度估计瓦斯压力1.2直接测定煤层瓦斯压力直接法测定瓦斯压力概念:由岩层巷道或煤层巷道中向预定测量瓦斯压力的地点,用钻机打一钻孔.然后从钻孔中引出一条管子及测压装置.再将钻孔严密封闭堵塞,用压力表和引出的管子或测压装置相连,从而测出煤层中的瓦斯压力。
(1)测压地点选择要求a、同一地点应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20 m。
煤层瓦斯含量井下直接测定方法
煤层瓦斯含量井下直接测定方法(GB/T23250---2009)一.范围:采样方法、解吸瓦斯含量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。
二.术语(GB/T15663.8)1.残存瓦斯量:常压状态下,煤样解吸后残留在煤样中的瓦斯量。
2.损失瓦斯量:煤样从暴露到开始测定解吸量期间所遗失的瓦斯量。
3.粉碎前自然解吸瓦斯量:在常压状态下,煤样井下解吸后运送到实验室粉碎前所解吸的瓦斯量。
4.粉碎前脱气量:在负压状态下,煤样在粉碎前所解吸的瓦斯量。
5.粉碎后自然解吸瓦斯量:在常压状态下,煤样在粉碎机中粉碎到95%以上煤样粒度小于0.25mm时所解吸的瓦斯量。
6.粉碎后脱气量:在负压状态下,煤样在粉碎机中粉碎到80%以上煤样粒度小于0.25mm时所解吸的瓦斯量。
7.常压不可解吸瓦斯量:在常压状态下,粉碎解吸后仍残存在煤样中不可解吸的瓦斯量。
三.煤样采集1.同一地点至少2xx,间距﹤5m。
2.石门或岩巷,首选煤芯采取器或定点取样装置定点采集煤样。
3.采样xx:原始瓦斯含量:采掘面﹥12m;石门或岩巷:﹥5m。
残余瓦斯含量:符合AQ1026(局部防突的范围适应,而区域须按防突规定的范围执行)4.采样时间:暴露到装罐﹤5min。
5.采样要求:柱状煤芯:要不含矸、完整部分;粉状及块状煤芯:剔除矸石及研磨烧焦部分;不用水清洗煤样,不压实(罐口留约10cm)。
6.采样记录:见附表。
四.井下自然解吸瓦斯量测定:同工作面钻屑现场测定方法。
五.残存瓦斯含量测定1.脱气法:经常xx脱气→恒温脱气→粉碎后脱气→气体体积计算。
2.常压自然解吸法:经粉碎前自然解吸→粉碎后自然解吸→粉碎后脱气→气体体积计算。
六.气样组分分析:可井下采取气样,也可脱气法实验室采取气样,然后在实验室GB/T13610进行气体各种成分分析。
七.数据处理1.气体体积校正:包括井下自然解吸瓦斯量的换算和两次脱气气体体积的换算。
2.损失瓦斯量的计算:有t法和幂函数法。
煤层瓦斯含量井下直接测定方法
煤层瓦斯含量井下直接测定方法Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT煤层瓦斯含量井下直接测定方法1、范围本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。
本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。
本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。
2、仪器设备a)煤样罐:罐内径大于60mm,容积足够装煤样400g以上,在气压下保持气密性;b)瓦斯解吸速度测定仪(简称解吸仪,如图1所示):量管有效体积不小于800cm3,最小刻度2cm3;c)空盒气压计:(80~106)Kpa,分度值;d)秒表;e)穿刺针头或阀门;f)温度计:(-30~50)℃;g)真空脱气装置或常压自然解吸测定装置;h)球磨机或粉碎机;i)气相色谱仪:符合GB/T13610要求;j)天秤:秤量不小于1000g,感量不大于1g;k)超级恒温器,最高工作温度(95~100)℃。
3、采样1)采样前准备(1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至表压以上,关闭后搁置12h,压力不降方可使用。
禁止在丝扣及胶垫上涂润滑油。
(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min量管内水面不动为合格。
2)煤样采集(1)采样钻孔布置同一地点至少应布置两个取样钻孔,间距不小于5m。
(2)采样方式在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于。
(3)采样深度采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离应视岩性而定,但不得小于5m。
实验指导书瓦斯含量
实验项目煤层瓦斯含量测定一、实验目的测定煤层瓦斯含量(W)及可解吸瓦斯含量(W m)。
二、实验原理与实验仪器1.实验原理该测定装置将煤层瓦斯含量分为:瓦斯损失量W1、常压瓦斯解吸量W2、粉碎瓦斯解吸量W3和常压残存量W c。
通过向煤层施工取芯钻孔,用井下取芯系统将煤芯从煤层深部取出,及时封入煤样筒中;井下进行煤样瓦斯解吸速度测定以及损失时间的记录,利用公式at i进行瓦斯损失量W1的计算;把装有煤样的煤样筒带到实验室进行常压解吸,测量从煤样筒中释放出的瓦斯量W21, 与井下测量的瓦斯解吸量W22计算煤芯瓦斯解吸量W2;称量煤样总重后称取二次煤样进行常压粉碎解吸,并以此计算粉碎瓦斯解吸量W3;则可解吸瓦斯含量W m为:W m=W1+W2+W3。
采用朗格缪尔公式计算常压残存量W c,则可得出煤层瓦斯含量W= W m+W c。
2.实验仪器实验仪器采用DGC型瓦斯含量直接测定装置,该仪器是一套实验室结合井下使用的成套测定设备。
由井下测定装置和地面测定装置组成,分为井下取芯与井下解吸系统、地面瓦斯解吸系统、称重系统、煤样粉碎解吸系统、水分测定系统和数据处理系统,是目前精度最高、速度最快的煤层瓦斯含量(W)及可解吸瓦斯含量(W m)测定设备,属国家“十五”等多项科技攻关研发的国内独有专利技术,获得2009年度中国煤炭工业协会科学技术一等奖。
该装置具有测定工程量小、操作简单、维护量小、使用安全等特点。
产品性能:适用条件:工作环境温度(℃)5~38;工作相对湿度(%)≤95;大气压力(kPa)75~134;在无破坏金属绝缘和无干扰气体的环境中;取芯管:适用于煤质较硬且有一定角度上向孔的煤层;ZCY-Ⅰ型钻孔引射取样装置:适用于松软煤层,水平孔、上向孔或角度小于30°的下向孔。
主要技术指标:测定时间:<24h井下取芯与井下解吸系统:(1)取芯管:取芯管直径:φ73、φ89;取芯深度:>30m;取芯钻孔倾角:>12°;配套性:与φ50钻杆(重庆煤科院生产)相配套ZCY-Ⅰ型钻孔引射取样装置:钻杆直径:φ50;取样深度:下向孔不小于20m,上向孔不小于60m ;取样钻孔倾角:水平孔、上向孔、小于30°的下向孔井下解吸系统:井下解吸管量程:800ml ;井下解吸管精度:2ml地面瓦斯解吸系统:电源:220V ;解吸管精度:5ml ;解吸管有效量程:2000ml/组、3000ml/组;微型真空泵抽气速率:3L/min ;温度计:(-50~0~50)℃?;空盒气压表:750hPa ~1340hPa (三种量程,根据当地大气压选用合适的量程)。