高分子的基本概念是

合集下载

高分子基本概念

高分子基本概念

1. 高分子:高分子也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成。

2. 单体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子。

3.结构单元:在大分子链中出现的以单体结构为基础的原子团称为结构单元。

4. 共聚物:由两种或两种以上的单体聚合而成的高分子则称为共聚物。

5. 加聚反应:烯类单体加成而聚合起来的反应称为加聚反应,反应产物称为加聚物。

6. 缩聚反应:是缩合反应多次重复结果形成聚合物的过程,兼有缩合出低分子和聚合成高分子的双重含义,反应产物称为缩聚物。

7. 高分子的聚集态结构:高分子的聚集态结构,是指高聚物材料整体的内部结构,即高分子链与链之间的排列和堆砌结构。

分为晶态、非晶态、液晶态。

8. 官能度:一分子中能参加反应的官能团的数目叫官能度9. 平均官能度:每一分子平均带有的基团数。

10. 反应程度:参加反应的基团数占起始基团数的分数。

11. 转化率:参加反应的单体量占起始单体量的分数12. 两者区别:转化率是指已经参加反应的单体的数目, 反应程度则是指已经反应的官能团的数目, 如:一种缩聚反应,单体间双双反应很快全部变成二聚体,就单体转化率而言,转化率达100%;而官能团的反应程度仅50%13. 凝胶化现象:体系粘度突然急剧增加,难以流动,体系转变为具有弹性的凝胶状物质,这一现象称为凝胶化。

14. 凝胶点:开始出现凝胶化时的反应程度(临界反应程度)称为凝胶点,用Pc表示,是高度支化的缩聚物过渡到体型缩聚物的转折点。

15. 引发剂:自由基聚合引发剂通常是一些可在聚合温度下具有适当的热分解速率,分解生成自由基,并能引发单体聚合的化合物。

16. 引发剂半衰期:引发剂分解至起始浓度一半所需要的时间。

17. 引发剂效率:引发剂用来引发单体聚合的部分占引发剂分解或消耗总量的分数。

18. 自动加速现象:随着反应进行,体系的粘度增大,活性端基可能被包埋,双基终止困难,速率常Kt下降,聚合反应速率不仅不随单体和引发剂浓度的降低而减慢,反而增大的现象。

高分子化学基础知识

高分子化学基础知识

⾼分⼦化学基础知识 ⾼分⼦化学是⼀门新兴的综合性学科,熟知基础知识才能研究更深的学问。

下⾯是店铺为您带来的⾼分⼦化学基础知识,欢迎翻阅。

⾼分⼦化学基础知识:⾼分⼦的基本概念 ⾼分⼦化学:研究⾼分⼦化合物合成与化学反应的⼀门科学。

单体:能通过相互反应⽣成⾼分⼦的化合物。

⾼分⼦或聚合物(聚合物、⼤分⼦):由许多结构和组成相同的单元相互键连⽽成的相对分⼦质量在10000以上的化合物。

相对分⼦质量低于1000的称为低分⼦。

相对分⼦质量介于⾼分⼦和低分⼦之间的称为低聚物(⼜名齐聚物)。

相对分⼦质量⼤于1 000 000的称为超⾼相对分⼦质量聚合物。

主链:构成⾼分⼦⾻架结构,以化学键结合的原⼦集合。

侧链或侧基:连接在主链原⼦上的原⼦或原⼦集合,⼜称⽀链。

⽀链可以较⼩,称为侧基;也可以较⼤,称为侧链。

端基:连接在主链末端原⼦上的原⼦或原⼦集合。

重复单元:⼤分⼦链上化学组成和结构均可重复出现的最⼩基本单元,可简称重复单元,⼜可称链节。

结构单元:单体分⼦通过聚合反应进⼊⼤分⼦链的基本单元。

(构成⾼分⼦链并决定⾼分⼦性质的最⼩结构单位称为~)。

单体单元:聚合物中具有与单体的化学组成相同⽽键合的电⼦状态不同的单元称为~。

聚合反应:由低分⼦单体合成聚合物的反应。

连锁聚合:活性中⼼引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应⼤部分属于连锁聚合。

连锁聚合需活性中⼼,根据活性中⼼的不同可分为⾃由基聚合、阳离⼦聚合和阴离⼦聚合。

逐步聚合:⽆活性中⼼,单体官能团之间相互反应⽽逐步增长。

绝⼤多数缩聚反应都属于逐步聚合。

加聚反应:即加成聚合反应,烯类单体经加成⽽聚合起来的反应。

加聚反应⽆副产物。

缩聚反应:缩合聚合反应,单体经多次缩合⽽聚合成⼤分⼦的反应。

该反应常伴随着⼩分⼦的⽣成。

⾼分⼦化学基础知识:⾃由基聚合反应机理 1. ⾃由基的产⽣及其活性 某些有机化合物或⽆机化合物中弱共价键的均裂和具有单电⼦转移的氧化还原反应是产⽣⾃由的两种主要⽅式。

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。

高分子或称聚合物分子或大分子

高分子或称聚合物分子或大分子

功能高分子 具有特殊功能与用途的精细高分子材料
可编辑ppt
22
1.4 高分子的命名
(1)来源命名法 来源命名法是根据聚合物合成时所用单体进行命名,并不描述 聚合物分子的实际结构。命名时可有几种情形:
天然高分子 一般有与其来源、化学性能与作用、主要用途相关的专用名
称。如纤维素(来源)、核酸(来源与化学性能)、酶(化学 作用)。
12
逐步聚合反应是指在聚合反应过程中,聚合物分子是由体系中 的单体分子以及所有聚合度不同的中间产物分子之间通过缩合或 加成反应生成的,聚合反应可在单体分子以及任何中间产物分子 之间进行。
特征:单体分子及所有聚合度分子之间都能相互反应生成更高 聚合度的聚合物分子。
链式聚合反应是指在聚合反应过程中,单体分子之间不能发生 聚合反应,聚合反应只能发生在单体分子和聚合反应活性中心之 间,单体和聚合反应活性中心反应后生成聚合度更大的新的活性 中心,如此反复生成聚合物分子。
可编辑ppt
23
合成高分子
根据聚合物合成时所用单体进行命名,并不描述聚合物分子 的实际结构。可分几种情形。
(I)由一种单体合成的均聚物: 通常是在实际或假想的单体名称前加前缀“聚”,如
聚苯乙烯 聚乙烯醇
(II)由两种及以上的单体合成的高分子: 如果是由链式聚合反应,所得聚合物为共聚物,一般在两单体
Cl Cl Cl
实际上
聚氯乙烯
CH2 CH OH
聚乙烯醇
概念上
H2C CH 氯乙烯 Cl
CH2 CH “乙烯醇” OH
可编辑ppt
2
高分子化合物或称聚合物: 由许多单个高分子(聚合物分子)组 成的物质。
高分子与高分子化合物(或聚合物)是两个不同层面上的概念, 但在实际应用中常常并不对两者加以区分。

高分子

高分子

第一章 绪论一、高分子的基本概念:高分子:由许多简单的结构单元以共价键形式重复键结而成的大分子量(通常为104~107)的同系混合物.单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的起始原料。

结构单元:在大分子链中出现的以单体结构为基础的原子团称为结构单元。

重复结构单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节单体单元:单体分子通过聚合反应形成的,与单体的元素组成相同,只是电子结构不同的结构单元。

结构单元有时也称为单体单元,重复单元, 链节,但有时有区别 二、几个基本概念:聚合度:衡量高分子大小的指标。

以大分子链中的结构单元数目表示,记作以大分子链中的重复单元数目表示,记作 1.由一种结构单元组成的高分子(1)重复单元的元素组成与单体的元素组成相同 .例如:聚苯乙烯 两种聚合度相等,都等于nn DP X ==n由聚合度可计算出高分子的分子量:00M DP M x M n ⋅=⋅=式中: M 是高分子的分子量,M0 是结构单元的分子量(2)重复单元的元素组成与单体的元素组成不同,例如:尼龙-6 n DPX ==n 00M DP M Xn M ⋅=⋅=n x DP式中M0 是结构单元的平均分子量或重复单元的分子量,而不是单体的分子量 2.由两种结构单元组成的高分子 例如:合成尼龙-66,涤沦聚酯等n DP X 22n == 002M DP M Xn M ⋅=⋅=Mo 为两种结构单元的平均分子量 3.聚合物的分类碳链聚合物:主链(链原子)完全由C 原子组成。

绝大部分烯类、双烯类聚合物属于这一类。

如:PE ,PP ,PS ,PVC 等。

杂链聚合物:链原子除C 外,还含O,N,S 等杂原子。

如:聚酯、聚酰胺、聚氨酯、聚醚 元素有机聚合物:链原子由Si,B,Al,O,N,S,P 等杂原子组成,没有C 原子。

侧基则由有机基团组成。

如:有机硅橡胶。

无机高分子:主链和侧链均无碳原子,如:硅酸盐等。

高分子的基本概念

高分子的基本概念
n
H
36
2021/5/21
聚甲醛 POM Polyformaldehyde
O CH 2 n
聚乙炔 PA polyacetylene
-CH=CH-n
37
聚氧化乙烯
PEO
Polyethyleneoxide
(聚环氧乙烷)
2021/5/21
O CH 22 n
聚己内酰胺 Nylon 6 Poly(-caprolactam) or caprone
1.2 高 分 子 基 本 概 念
16
2021/5/21
根据IUPAC1996年之建议( International Union of Pure and Applied Chemistry 1996, 68, 2287 –2311)
高 分 子 Polymer, Macromolecule
具有高的相对分子量,其结构必须是由多个重复单元 所组成,并且这些重复单元实际上或概念上是由相应的小 分子衍生而来。
O
O
O
O
O
O
聚甲醛
O
CH2
C
CH2

CH2 CH2 CH2 NH CH2 CH2 C

NH CH2 CH2
O
尼龙
28
(C) 元素高分子(主链不含C)
2021/5/21
CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3
Si
Si
Si
Si
Si
Si
O
O
O
O
O
O
聚二甲基硅氧烷
其实并无明确界限一般1000000低分子低分子过渡区齐聚物过渡区齐聚物高聚物高聚物超超高聚物高聚物一般高分子的分子量在一般高分子的分子量在10101010范围范围超高分子量的聚合物的分子量高达超高分子量的聚合物的分子量高达1010以上以上高分子的强度与分子量密切相关高分子的强度与分子量密切相关点是初具强度的最低聚合度a点以上强度随分子链迅速增加点以后强度不再明显增加不同高分子初具强度的聚合度和临界点的聚合度不同如尼龙纤维素乙烯基聚合物尼龙40150纤维素60250乙烯基100400聚合物聚合度聚合度常用的聚合物的分子量万常用的聚合物的分子量万塑料塑料分子量分子量纤维纤维分子量分子量橡胶橡胶分子量分子量聚乙烯聚乙烯663030涤纶涤纶18182323天然橡胶天然橡胶20204040聚氯乙烯聚氯乙烯551515尼龙尼龙661366131818丁苯橡胶丁苯橡胶15152020聚苯乙烯聚苯乙烯10103030维尼纶维尼纶667575顺丁烯胶顺丁烯胶2525303012??分子量具有多分散性分子量具有多分散性polydispersitypolydispersity即使是一种即使是一种纯粹纯粹的高分子也是由化学组成相同的高分子也是由化学组成相同分子量不等结构不同的同系聚合物的混合物所组成分子量不等结构不同的同系聚合物的混合物所组成这种高分子的分子量不均一这种高分子的分子量不均一即分子量参差不齐的即分子量参差不齐的特性就称为特性就称为分子量的多分散性分子量的多分散性因此应注意

高分子的基本概念教案

高分子的基本概念教案

高分子的基本概念教案高分子是由重复单元结构组成的大分子化合物。

它们由许多聚合单体通过化学键连接而成,具有高分子量和较长的链状结构。

高分子化合物的基本概念包括高分子的定义、分类、聚合反应以及高分子材料的性质和应用等方面。

首先,高分子的定义是指分子量较大的化合物,通常为几千至数百万个原子量单位。

高分子通常由聚合单体通过共价键连接而成,并形成长链状结构。

高分子的命名通常根据其聚合单体的名称以及聚合方法,如聚乙烯、聚苯乙烯等。

根据结构和形态的不同,高分子可以分为线性高分子、支化高分子、交联高分子以及共聚高分子等。

线性高分子由一个个聚合单体依次连接而成,链状结构较为简单。

支化高分子在线性结构的基础上增加了支链,使得分子更为复杂。

交联高分子中含有交联键,使得分子形成网状结构,从而增加了高分子的机械强度和稳定性。

共聚高分子是由两种或多种不同的单体共同聚合而成,可以调节高分子的性质以及应用领域。

高分子的聚合反应是将聚合单体转变为高分子的过程。

聚合反应分为自由基聚合、离子聚合、缩聚聚合以及环氧树脂聚合等不同类型。

自由基聚合是最常见的聚合反应,通过自由基引发剂引发自由基聚合反应,如自由基聚合聚合物的形成。

离子聚合是通过离子引发剂引发单体的离子聚合反应,例如阴离子聚合以及阳离子聚合。

缩聚聚合是通过缩聚反应来形成高分子,如酯缩聚反应、醚缩聚反应等。

环氧树脂聚合是通过环氧树脂的开环反应来形成高分子。

高分子材料具有许多独特的性质,包括高分子链的柔韧性和可延展性、化学稳定性、热稳定性以及电绝缘性等。

高分子材料的性质可以通过聚合单体的选择、聚合方法的控制以及添加剂的引入进行调节。

根据不同的应用需求,高分子材料可以具有不同的性能特点,如强度高、耐磨性好、耐高温、抗腐蚀等。

高分子材料在各个领域都有广泛的应用。

例如,聚乙烯、聚氯乙烯等高分子材料广泛用于塑料制品的生产;聚酰胺纤维、涤纶纤维等高分子材料用于纺织品的制造;丙烯酸树脂、环氧树脂等高分子材料在涂料和粘合剂中得到广泛应用;高分子凝胶材料在生物医学领域用于药物传递和组织工程等。

高分子化学教案

高分子化学教案

第一章绪论【掌握内容】1. 高分子基本概念:单体、高分子、聚合物、低聚物、结构单元、重复单元、单体单元、链节、主链、侧链、端基、侧基、聚合度、相对分子质量等。

2. 聚合反应;加成聚合与缩合聚合;连锁聚合与逐步聚合。

3. 从不同角度对聚合物进行分类。

4. 常用聚合物的命名、来源、结构特征。

5. 聚合物相对分子质量及其分布。

【熟悉内容】1. 系统命名法。

2. 典型聚合物的名称、符号及重复单元。

【了解内容】1. 高分子化学发展历史。

2. 聚合物相对分子质量及其分布对聚合物性能的影响。

【教学难点】1. 结构单元、重复单元、单体单元、链节的辨析。

2. 加成聚合与缩合聚合的区别与联系;连锁聚合与逐步聚合的区别与联系。

【教学目标】1. 掌握高分子化学相关基本概念。

2. 能对几对重要概念进行辨析。

3. 能按规范写出正确的聚合物名称、分子式、聚合反应式。

4. 树立对高分子化学学科正确的认识观。

前言【教学内容】一、高分子化学课程简介二、高分子发展与应用三、我国高分子科学发展现状【授课时间】1学时【教学目标】了解高分子科学体系范畴及分子化学发展简史,了解高分子化学课程【教学手段】课堂讲授,辅以多媒体幻灯图片【教学过程】1.绪论1.1 高分子基本概念【教学内容】一高分子二高分子化学三单体四有关组成结构的概念五大分子结构式六聚合反应方程式:【授课时间】2学时【教学重点】高分子、结构单元、重复单元、单体单元、链节等概念,聚合反应式的书写【教学难点】结构单元、重复单元、单体单元的辨析【教学目标】1 掌握高分子、结构单元、重复单元、单体单元、链节、聚合度等概念的区别与联系2 能正确写出具体聚合物的结构式与反应式【教学手段】课堂讲授,辅以多媒体幻灯图片及实例【教学过程】一高分子1 名称:macromolecule compound;macromolecule;polymer;high polymer2 概念的形成3 定义(1) 相对分子质量很大(2) 共价键连接(3) 相同的化学结构重复多次而成4 基本特点(1) 相对分子质量很大(2) 化学组成比较简单,分子结构有规律性(3) 分子形态多样:长链线型,三维网状,星型,梯形,环形….(4) 相对分子质量具有多分散性(5) 物理性质不同于低分子:高软化点,高强度,高弹性,熔体高黏度二高分子化学研究聚合反应和高分子化学反应原理,选择原料、确定路线、寻找催化剂、制订合成工艺等。

高分子化工

高分子化工

聚苯乙烯命名为:聚(1-苯基乙烯)
3. 聚合物的分类
(1)以主链结构分 • 碳链聚合物 • 杂链聚合物 • 元素有机聚合物 (2)性能用途分类 • A.塑料 • B.橡胶 • C.纤维 • D.粘结剂 • E.涂料
碳链聚合物
大分子主链完全由碳原子组成。 大部分烯、双烯类聚合物
重复单元和结构单元也可以不一致
聚己二酰己二胺
尼龙-66
己二胺+己二酸→聚己二酰己二胺
二、高聚物的命名和分类
1. 习惯命名法
2. 系统命名法
3. 聚合物的分类
• (1)以主链结构分
• (2)性能用途分类
1. 习惯命名法
①以单体名为基础,前面冠以“聚”字。如:聚乙烯、聚 氯乙烯。 ②由两种不同单体合成的产物,取两单体简名,后缀“树 脂”。如: • 苯酚和甲醛——酚醛树脂
方向:低温、快速固化。
三、高分子材料的制备
三个过程、三个工业 • 基本有机合成:获得单体,同时获得溶剂、塑料添加、 橡胶配合剂。 • 高分子合成:将单体聚合。 • 高分子成型:将聚合物加工成制品。(示例:塑料成型
基本有机合成工业、高分子合成工业、高分子成型加工工
业是密切相联系的三个工业部门。
E.涂料
涂料是能涂敷于底材表面并形成坚韧连续膜的液体或固体物 料的总称。 组成:成膜物、颜料、填料、助剂、溶剂 成膜物质是涂料的基本组分,其作用是粘结颜料并能形成坚 韧连续的膜。 类型:溶剂型、水性型、粉末涂料。
环保型:无溶剂、水性、粉末、高固体粉末等涂料。(采用 辐射固化或常温干燥)
三、逐步聚合:
反应中逐步形成大分子的聚合。反应通过官能团

高分子的基本概念

高分子的基本概念

什么是高分子?高分子化合物、大分子化合物、高分子、大分子、高聚物、聚合物这些术语一般可以通用Macromolecules, High Polymer, Polymer高常用的高分子的分子量一般高达几万、几十万,甚至上百万,范围在104~106高分子也叫高分子化合物,是指分子量很高并由共价键连接的一类化合物1.由一种结构单元组成的高分子一个大分子往往是由许多相同的、简单的结构单元通过共价键重复连接而成。

例如:聚苯乙烯缩写成合成聚合物的起始原料称为单体(Monomer)在大分子链中出现的以单体结构为基础的原子团称为结构单元(Structure unit)结构单元有时也称为单体单元(Monomer unit)重复单元(Repeating unit), 链节(Chain element)结构单元=单体单元=重复单元=链节n 表示重复单元数,也称为链节数, 在此等于聚合度聚合度(Degree of polymerization聚合度是衡量高分子大小的一个指标。

有两种表示法:以大分子链中的结构单元数目表示,记作以大分子链中的重复单元数目表示,记作在这里,两种聚合度相等,都等于n由聚合度可计算出高分子的分子量:式中:M 是高分子的分子量M o是结构单元的分子量另一种情况:结构单元=重复单元=链节? 单体单元2.由两种结构单元组成的高分子合成尼龙-66则具有另一特征:结构单元结构单元重复结构单元此时,两种结构单元构成一个重复结构单元单体在形成高分子的过程中要失掉一些原子结构单元? 重复单元? 单体单元但, 重复单元=链节注意:M O两种结构单元的平均分子量3. 由无规排列的结构单元组成的高分子> 由一种单体聚合而成的高分子称为均聚物> 由两种或两种以上的单体聚合而成的高分子则称为共聚物例如:丁苯橡胶x, y为任意值,故在分子链上结构单元的排列是任意的:在这种情况下,无法确定它的重复单元,仅结构单元=单体单元1.分子量大分子量大是高分子的根本性质高分子的许多特殊性质都与分子量大有关,如:> 高分子的溶液性质:难溶,甚至不溶,溶解过程往往要经过溶胀阶段> 溶液粘度比同浓度的小分子高得多> 分子之间的作用力大,只有液态和固态,不能汽化> 固体聚合物具有一定的力学强度,可抽丝、能制膜分子量多大才算是高分子?其实,并无明确界限,一般低分子过渡区(齐聚物)高聚物一般高分子的分子量在104~106范围超高分子量的聚合物的分子量高达106以上A B尼龙40 150纤维素60 250乙烯基100 400聚合物高分子的强度与分子量密切相关A 点是初具强度的最低聚合度,A点以上强度随分子链迅速增加B 点是临界点,强度增加逐渐减慢C 点以后强度不再明显增加不同高分子初具强度的聚合度和临界点的聚合度不同,如高分子的加工性能与分子量有关量分子量过大, 聚合物熔体粘度过高, 难以成型加工,达到一定分子量,保证使用强度后,不必追求过高的分子常用的聚合物的分子量(万)塑料分子量纤维分子量橡胶分子量聚乙烯6~30 涤纶 1.8~2.3 天然橡胶20~40聚氯乙烯5~15 尼龙-66 1.2~1.8 丁苯橡胶15~20聚苯乙烯10~30 维呢纶6~7.5 顺丁烯胶25~302. 分子量具有多分散性什么是分子量的多分散性(Polydispersity)?> 高分子不是由单一分子量的化合物所组成,即使是一种“纯粹”的高分子,也是由化学组成相同、分子量不等、结构不同的同系聚合物的混合物所组成。

高分子的基本概念

高分子的基本概念

结构单元有时也称为单体单元(Monomer unit)。
2.1 由一种结构单元组成的高分子
聚氯乙烯 (PVC)
nCH2 CH Cl
单体
CH2 CH n Cl
结构单Байду номын сангаас、重复单元、单体单元
聚苯乙 n CH2 CH 聚合 烯 (PS)
缩写成
CH2-CH-CH2-CH-CH2-CH
CH2 CH n
结构单元=单体单元=重复单元
DP n
高分子的分子量(数均分子量):
M DP M0 n M0
式中: M ——高分子的分子量 M0 ——结构单元的分子量
由1种结构单元组成的高分子,高分子的分子量是结构单元的分子量与聚合度DP 或重复单元数n的乘积。
2.2 由2种结构单元构成1个重复结构单元的高分子
聚对苯二甲酸乙二醇酯,PET
分子量多大才算是高分子?其实,并无明确界限,一般分子量划分
< 1000~ 103 ~ 104 104 ~ 106 >106
低分子量化合物 中等分子量化合物(齐聚物) 高分子化合物 超高分子量化合物
- - - - - < 1000 < - - - - - - - - - - - - < 10000 < - - - - -
乙烯基 100 400
聚合物
高分子的加工性能与分子量有关
内 高分子化合物的命名和分类
容 聚合反应
学习要点
1. 高分子化合物的定义及其特点; 2.七种分类和五种命名方法; 3.大分子结构式和聚合反应方程式的书写规范; 4.相对分子质量及其多分散性。
第1.1节 高分子的基本概念 一、高分子化合物定义(macromolecule compound )

高分子化学知识要点

高分子化学知识要点

高分子化学知识要点一、高分子的基本概念高分子化合物,简称高分子,是指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在一万以上的化合物。

生活中常见的高分子材料有塑料、橡胶、纤维等。

高分子与小分子化合物相比,具有独特的性能。

例如,高分子材料通常具有较好的韧性、弹性和机械强度。

这是因为高分子的长链结构能够有效地分散和承受外力。

高分子的相对分子质量是一个重要的参数。

它不是一个确定的值,而是具有一定的分布范围。

这是由于聚合反应过程中的随机性导致的。

相对分子质量的大小和分布会显著影响高分子材料的性能。

二、高分子化合物的分类高分子化合物的分类方法有多种。

按照来源,可分为天然高分子和合成高分子。

天然高分子如纤维素、蛋白质等,是自然界中原本就存在的;合成高分子则是通过人工化学反应合成的,如聚乙烯、聚苯乙烯等。

根据高分子主链的结构,又可分为碳链高分子、杂链高分子和元素有机高分子。

碳链高分子的主链全部由碳原子组成,像聚乙烯、聚丙烯就属于此类;杂链高分子的主链除了碳原子,还含有氧、氮、硫等杂原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、铝等元素组成,不过侧基一般是有机基团。

另外,还可以根据用途将高分子分为塑料、橡胶、纤维、涂料、胶粘剂等。

不同类型的高分子在性能和应用方面有着很大的差异。

三、高分子的合成方法高分子的合成方法主要包括加聚反应和缩聚反应。

加聚反应是指由不饱和单体通过加成反应相互结合形成高分子的过程。

在这个过程中,没有小分子副产物生成。

例如,乙烯在引发剂的作用下发生加聚反应生成聚乙烯。

缩聚反应则是由具有两个或两个以上官能团的单体,通过官能团之间的缩合反应逐步形成高分子,同时会产生小分子副产物,如水、醇、氨等。

聚酯的合成就是一个典型的缩聚反应。

此外,还有开环聚合、逐步加成聚合等合成方法。

开环聚合是指环状单体通过开环形成线性高分子的反应;逐步加成聚合则是通过逐步的加成反应形成高分子。

高分子化学

高分子化学
无机高分子-无论在主链还是侧链上均没有碳元素。例如玻璃、 陶瓷等均属此类。不在本课程讨论之列。
12
O ]n
2)根据高分子受热后的形态变化分类 根据受热后发生的形态变化,可将高分子化合物分为热 塑性高分子和热固性高分子两大类。 热塑性高分子-在受热后会从固体状态逐步转变为流动状态。
这种转变理论上可重复无穷多次。或者说,热塑性高分子是可以再生 的。聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性 高分子。
22
化学纤维一般为均聚物,其商业名称为取其结构单元名 称中的一个特征文字,然后在后面加上“纶”字。 例如,聚丙烯腈纤维称为“腈纶”;聚氨酯纤维称为 “氨 纶”;聚氯乙烯纤维称为“氯纶”;聚丙烯纤维称为“丙纶” 等。
醛 纤维称为“维尼纶”;聚对苯二酰对苯二胺纤维称为“芳 纶”。 尼龙—6纤维在我国首先是由锦西化工研究院研制而成, 因此命名为“锦纶”。
例如聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。
杂链聚合物-的主链上以碳元素为主,但存在其它元素,如O、
N、S、P等杂元素。主链上的苯环一般也看作为杂元素。
11
元素有机聚合物-的主链上没有碳元素,一般由Si、B、N、
P、Ge和O等元素组成,但侧链上含有有机基团。例如有机硅聚合 物。
CH3 [ Si CH3
其中n和m为分子链中两种单体单元的数量,但并不表 示n个氯乙烯单元后面接m个醋酸乙烯酯单元。两种单体单 元通常是无规分布的。
5
由两种或两种以上单体聚合而成的聚合物称为共聚物。 根据各种单体单元在分子链中的排列状况,可将共聚物分为 无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物等。 通过普通的聚合方法,只能得到无规共聚物和交替共聚 物,嵌段共聚物和接枝共聚物必须通过特殊方法制备。

高分子化学第一章(2)

高分子化学第一章(2)
5
--NH-(--CH2-)-CO-- + n H2O n 5
n
H2N(CH2)6NH2 + HOOC(CH2)4COOH
H--NH(CH2)6NH--CO(CH2)4CO--OH + (2n-1) H2O
n
8
单体单元、结构单元、重复单元、 单体单元、结构单元、重复单元、 高分子化学 链节有何关系? 链节有何关系?
3
聚氯乙烯PVC由什么组成? 由什么组成? 聚氯乙烯 由什么组成
4
高分子化学
一、 高分子化合物与单体
聚合物分子结构必须是由多个重复单元所组成, 聚合物分子结构必须是由多个重复单元所组成,并且这 些重复单元是由相应的小分子衍生而来。 些重复单元是由相应的小分子衍生而来。
C 2-C C 2-C C 2-C H H H H H H C l C l C l
其重复单元由 两种结构单元 组成, 组成,且结构 单元与单体的 组成不尽相同, 组成不尽相同, 所以, 所以,不能称 为单体单元。 为单体单元。
H--NH(CH2)6NH--CO(CH2)4CO--OH+ (2n-1) H2O
n
结构单元 结构单元 重复结构单元
但单体在形成高 分子的过程中要 失掉一些原子
----( C 2--C = H H2 -)--(-C 2--C -)---H H C --C H Hy x
n
说明: y为任意值,故在分子链上结构单元的排列是任意的: 说明: x, y为任意值,故在分子链上结构单元的排列是任意的:
∼ ∼M1M2M1M1M2M1M2M2M2 ∼ ∼ 在这种情况下,无法确定它的重复单元,仅 在这种情况下,无法确定它的重复单元,
说明:n 表示重复单元数,也称为链节数,, 在此等于聚合度。 表重复单元数,也称为链节数 在此等于聚合度。

高分子材料加工基础思考题答案

高分子材料加工基础思考题答案

复习思考题一、高分子的基本概念、高分子的结构一.名词解释链段:从高分子链中划分出来能够独立运动的最小单元。

柔顺性:大部分高分子链具有卷曲成不规则的无规线团状的倾向。

高分子链能够通过内旋转作用改变其构象的性能。

高分子链能形成的构象数越多,柔顺性越大。

.单键的内旋转是使高分子链具有柔顺性的根本原因。

均聚物:由一种单体聚合而成的高聚物。

如聚乙烯、聚氯乙烯、聚苯乙烯等。

共聚物:由两种或两种以上单体聚合而成的高聚物。

如丁苯橡胶、酚醛树脂、乙丙橡胶等。

近程结构:高分子链的化学组成,单体单元的键接方式,高分子的构型,高分子链的键合形状远程结构: 高分子链的远程结构主要是指单个高分子的大小及高分子在空间所存在的各种形态。

分为高分子的大小(分子量及分子量分布)和高分子链的柔顺性取向:在外力场作用下,分子链或链段沿外力作用方向做有序排列的现象。

取向态结构:由于大分子链的取向而形成的聚集态结构。

聚集态结构:高分子链之间的排列和堆砌结构,也称为超分子结构。

构象:分子链中由单键内旋转所形成的原子(或基团)在空间的几何排列图像。

构型:分子中由化学键所固定的原子或基团在空间的几何排列。

这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。

二.问答题1. 高分子有何特征?分子量很高或分子链很长——这是高分子化合物最根本的特点;高分子是由很大数目的结构单元通过共价键相连接而成的;(均聚物、共聚物)高分子的结构具有不均一性(多分散性);大多数高分子的分子链具有一定的柔顺性。

2. 试分析线型、支链型、交联型高分子的结构和性能特点?线型:整条高分子犹如一条又细又长的线,大分子既可卷曲成团,也可舒展成直线,这取决于高分子链本身的柔性及所处的外部条件。

通常各种橡胶、大多数的纤维、塑料等都属线形大分子。

特点:既可溶解又可熔融,易于加工成型。

支链型:链分子在二维空间键合增长所形成的高聚物。

其主链上带有长短不一的支链,支链的形状有星型、梳型、无规支链型等几种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子的基本概念是
高分子是由许多重复单元组成的大分子化合物。

它们具有相同或相似的化学结构单元,并以共价键或其他化学键相连。

高分子在自然界和人工合成中都广泛存在,包括蛋白质、核酸、纤维素等。

高分子具有许多特性和应用。

首先,它们通常具有高分子量和长链结构,这使得高分子具有良好的物理性质,如高强度和高韧性。

其次,高分子材料可以根据需要进行改性,以满足不同的应用要求。

例如,通过添加填充剂可以提高高分子材料的强度和刚度;通过添加增塑剂可以增加高分子材料的可塑性和柔软性。

高分子还具有良好的化学稳定性和耐热性。

大多数高分子材料在常规温度和环境下可以长时间稳定存在,不易分解或腐蚀。

这使得高分子材料在各种领域有着广泛的应用,如塑料制品、橡胶制品、纤维材料等。

高分子材料还具有良好的绝缘性能,广泛应用于电子器件、电缆、绝缘材料等领域。

高分子材料在生物学和医学领域中也有重要应用。

例如,可降解高分子材料可以作为药物传递系统,通过调控药物释放速率和目标定向,实现药物在体内的靶向治疗。

另外,高分子还可以用于人工器官和组织工程方面的研究,如人工血管、人工皮肤等的制备。

高分子科学是一个跨学科的研究领域,涉及化学、物理学、材料学、生物学等多个学科的知识。

在高分子领域中还有许多重要的概念和原理,如聚合反应、高分
子结构与性质关系、高分子合成和表征技术等。

总的来说,高分子是由重复单元组成的大分子化合物,具有良好的物理和化学性质,广泛应用于各个领域。

高分子科学的发展为我们提供了许多新材料和新技术,对人类社会的进步具有重要影响。

相关文档
最新文档