中考数学二次函数最后一道大题理解练习卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图1,已知抛物线的顶点为,且经过原点,与轴的另一个交点为.(1)求抛物线的解析式;

(2)若点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标;

(3)连接,如图2,在轴下方的抛物线上是否存在点,使得与相似?若存在,求出点的坐标;若不存在,说明理由.

2、如图9(1),在平面直角坐标系中,抛物线经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.

(1)求该抛物线的解析式及点C、D的坐标;

(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;

(3)如图9(2)P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.

3、随着我市近几年城市园林绿化建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,如图①所示;种植花卉的利润y 2与投资成本x 成二次函数关系,如图②所示(注:利润与投资成本的单位:万元)

图① 图②

(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;

(2)如果这位专业户计划以8万元资金投入种植花卉和树木,请求出他所获得的总利润Z 与投入种植花卉的投资量x 之间的函数关系式,并回答他至少获得多少利润?他能获取的最大利润是多少?

4、如图,为正方形的对称中心,,,直线交于,于,点

从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿方向以

个单位每秒速度运动,运动时间为.求:

(1)的坐标为;

(2)当为何值时,与相似?

(3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及的最大值.

5、如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.

(1)求正方形ABCD的边长.

(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.

(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标.

(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ 的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ 的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点有

个.

6、如图,在梯形中,厘米,厘米,的坡度

动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.

(1)求边的长;

(2)当为何值时,与相互平分;

(3)连结设的面积为探求与

的函数关系式,求为何值时,有最大值?最大

值是多少?

7、已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点与的坐标,则;

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

8、已知抛物线y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.

(1)确定A.C.D三点的坐标;

(2)求过B.C.D三点的抛物线的解析式;

(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M.N两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.

(4)当<x<4时,(3)小题中平行四边形的面积是否有最大值,若有,请求出,若无,请说明理由.

9、如图,直线AB过点A(m,0),B(0,n)(m>0,n>0)反比例函数的图象与AB交于C,D两点,P

为双曲线一点,过P作轴于Q,轴于R,请分别按(1)(2)(3)各自的要求解答闷题。

(1)若m+n=10,当n为何值时的面积最大?最大是多少?

(2)若,求n的值:

(3)在(2)的条件下,过O、D、C三点作抛物线,当抛物线的对称轴为x=1时,矩形PROQ的面积是多少?

10、已知A1、A2、A3是抛物线上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C。

(1)如图1,若A1、A2、A3三点的横坐标依次为1、2、3,求线段CA2的长。

(2)如图2,若将抛物线改为抛物线,A1、A2、A3三点的横坐标为连续整数,其他条件不变,求线段CA2的长。

(3)若将抛物线改为抛物线,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案)。

11、如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的,处,直角边在轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设与分别交于点,与轴分别交于点.

相关文档
最新文档