人教版高中数学必修4 任意角的三角函数

合集下载

人教高中数学必修四 第一章 三角函数公式及推导

人教高中数学必修四 第一章 三角函数公式及推导

sin(-α)=-sinα
sin(π-α)=sinα
cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
大家好
3
1-----诱导公式(之二):
公式五: 利用公式一和公式三可以得到2πα与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
正弦三倍角公式推导(证明)
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan3α
所以:tan3α= ——————
1-3tan2α
大家好
14
三倍角公式推导
正切三倍角公式推导:(证明) tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
公式二:
设α为任意角,π+α的三角函数值 与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα

必修四任意角的三角函数(附规范标准答案)

必修四任意角的三角函数(附规范标准答案)

任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt

cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义;同理当()k k Z απ=∈时,y x =αcot 无意义;(4)除以上两种情况外,对于确定的值α,比值y r 、x r 、yx、x y 分别是一个确定的实数。

正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

新人教版必修4第1章第1节任意角的三角函数(第二课时)

新人教版必修4第1章第1节任意角的三角函数(第二课时)

sin y cos x y tan x 0
x
问题 2:角的概念推广以后,我们应该如何推广到 任意角呢? 新知:任意角三角函数的定义
设α 是一个任意角,它的终边与单位圆交于点P(x,y), 那么:
(1)y叫做的正弦,记作sinα
(2)x叫做的余弦,记作cosα y (3) 叫做的正切,记作tanα x
思考:对于确定的角α ,上述三个比值是否随 点P在角α 的终边上的位置的改变而改变呢?为 什么?
二、新课导学 探究任务一:任意角的三角函数的定义.
问题1 能否通过取适当点而将表达式简化?
新知:在直角坐标系中,我们称以原点O 为圆心,以单位长度 为半径的圆叫做单位圆.
y r
O

P (x,y)

M 1x
变式练习
(其中r x y )
2 2
已知角的终边过点 P(12,5), 求角的三角函数值。
如果角的终边落在坐标轴呢?请完成下表。
角Байду номын сангаас 角的弧度数
sin cos tan
0。
90。
π 2
180。 270。

3π 2
360。
2
0 0 1 0
1
0
1
0
不存在
1 0
不存在
0
1 0
0
三、总结提升
§1.2.1任意角的三角函数(第一课时)
y
o
x
一、复习引入 锐角的三角函数如何定义? A
P (x,y)
y r
O
y 对边 MP sin r 斜边 OP

M
B
x
邻边 OM x cos 斜边 OP r 对边 MP y x 0 tan 邻边 OM x

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

高中数学必修4《第一章三角函数》精品课件:1.1.1任意角

S={α|α=45°+k·180°,k∈Z}.
S={ -315°,-135°,45°,225°, 405°,585°}
课堂小结
Office组件之word2007
1.角的概念推广 正角、负角、零角、象限角
2.终边相同的角
3.终边在x轴、y轴上的角的表示
4.终边在各个象限上的角的表示
Office组件之word2007
思考2:终边在x轴上的角的集合表示
终边在x轴上:S={α|α=k·180°,k∈Z};
新课教学
Office组件之word2007
思考3:终边在y轴非正半轴、非负半轴
上的角分别如何表示?
y轴非负半轴:α= 90°+k·360°,k∈Z ; y轴非正半轴:α= 270°+k·360°,k∈Z .
思考4:终边在y轴上的角的集合表示
y
x o
知识探究(三):终边相同的角 Office组件之word2007
思考1:-32°,328°,-392°是第几 象限的角?这些角有什么内在联系?
y
328° o
-392° x
-32°
新课教学
Office组件之word2007
思考2:与-32°角终边相同的角有多 少个?这些角与-32°角在数量上相 差多少?
Office组件之word2007
1.1.1 任意角
知识探究(一):角的概念的推广
Office组件之word2007
复习:角的定义 角是由平面内一条射线绕其端点从
一个位置旋转到另一个位置所组成的 图形(如图).
B
始边
终边
A O
顶点
新课教学
Office组件之word2007
思考1:你认为将一条射线绕其端点按逆时针方向旋

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)

高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)


tan 3
例5.求下列三角函数值
sin1480 10

'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin

y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?

人教版数学必修4第一章1.2.1《任意角的三角函数》课件

人教版数学必修4第一章1.2.1《任意角的三角函数》课件
公式作用:可以把求任意角的三角函数值,
转化为求 0 到 2 或 0 到 角3 的三 6 角函0数值 .
例3 求下列三角函数值:
(1) cos9
4
(2) tan( 11)
6
解:(1)co 9 4 sco 4 s 2 ( ) co 4 s2 2
(2)ta 1 n )1 ( ta n 2 ) (ta n ta n 3
A.4 3
B.4 3
C.4 3
D. 3
例2、已知角 的终边经过点P0(3,4),求角
的正弦、余弦和正切值 .
解:由已知可得:
rx2y2 3 2 ( 4 )2 5
于是,sin y 4 r5
cosx 3 r5
tan y 4 x3
合作 演练
变式1、已知角 的终边过点 P1,2 5 ,
求 的三个三角函数值.
规律: “一全正、二正弦正、三正切正、四余弦正”
“一全二正弦,三切四余弦”
例1 确定下列三角函数值的符号:
(1)co2s50(2)tan(67)2(3)sin
4
解:(1)因为 250是第三象限角,所以co 2s5 0 0;
(2)因为 tan(67)2= ta 2 n 3 ( 6 4 ) 0 8 ta 4 ,n 8
r
第 二 象 限 : x 0 ,r 0 ,故 r x 为 负 值 ; o
x
第 三 象 限 : x 0 ,r 0 ,故 x 为 负 值 ; r
第 四 象 限 : x 0 ,r 0 ,故 x 为 正 值 ; r
三角函数在各象限内的符号:
交叉正负
第 3一 、 象 正 限 切 : 函 x 数 0 ,值 y t0 a,n 故 y 为 x y 正 值 ; y x

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

1.2 任意角的三角函数-人教A版高中数学必修四讲义(解析版)

1.2 任意角的三角函数-人教A版高中数学必修四讲义(解析版)

知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦、正切分别等于什么?答案sin α=yr,cos α=xr,tan α=yx.思考2对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案sin α=y,cos α=x,tan α=yx.梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.(2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:教材要点学科素养学考高考考法指津高考考向1.三角函数的定义数学抽象水平1 水平11.以锐角三角函数的定义来推广记忆任意角的三角函数的定义。

2.充分理解同角三角函数的基本关系式,掌握公式成立的条件及公式的变形。

3.理解并记忆求值、化简及证明的模型,领会解题常用的方法技巧。

【考查内容】根据三角函数的定义求值,三角函数平方关系的应用。

【考查题型】选择题、填空题【分值情况】5分2.终边相同的角的同一三角函数值的关系数学运算水平1 水平23.单位圆数学直观水平1 水平24.同角三角函数的两个基本关系式数学运算水平1 水平2第二讲任意角的三角函数知识通关①y 叫做α的正弦,记作sin_α, 即sin α=y ;②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二 正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点三 诱导公式一思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢? 答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一知识点四 三角函数的定义域思考 正切函数y =tan x 为什么规定x ∈R 且x ≠k π+π2,k ∈Z?答案 当x =k π+π2,k ∈Z 时,角x 的终边在y 轴上,此时任取终边上一点P (0,y P ),因为y P0无意义,因而x 的正切值不存在.所以对正切函数y =tan x ,必须要求x ∈R 且x ≠k π+π2,k ∈Z .梳理 正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z .知识点五 三角函数线思考1 在平面直角坐标系中,任意角α的终边与单位圆交于点P ,过点P 作PM ⊥x 轴,过点A (1,0)作单位圆的切线,交α的终边或其反向延长线于点T ,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP ,OM ,AT 的关系吗?答案 sin α=MP ,cos α=OM ,tan α=AT . 思考2 三角函数线的方向是如何规定的?答案 方向与x 轴或y 轴的正方向一致的为正值,反之,为负值. 思考3 三角函数线的长度和方向各表示什么?答案 长度等于三角函数值的绝对值,方向表示三角函数值的正负. 梳理角α的终边与单位圆交于点P ,过点P 作PM 垂直于x 轴,有向线知识点六 同角三角函数的基本关系式 思考1 计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案 3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x . ∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2 由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系? 答案 ∵tan α=y x (x ≠0),∴tan α=sin αcos α(α≠π2+k π,k ∈Z ).梳理 (1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式=sin αtan α.此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.命题角度2已知角α终边所在直线求三角函数值规律方法例1-2已知角α的终边在直线y=3x上,则sin α,cos α,tan α的值分别为________.解析:因为角α的终边在直线y=3x上,所以可设P(a,3a)(a≠0)为角α终边上任意一点,则r=a2+(3a)2=2|a|(a≠0).若a>0,则α为第一象限角,r=2a,所以sin α=3a2a=32,cos α=a2a=12,tan α=3aa= 3.若a<0,则α为第三象限角,r=-2a,所以sin α=3a-2a=-32,cos α=-a2a=-12,tan α=3aa= 3.答案32,12,3或-32,-12, 3变式训练1-2在平面直角坐标系中,角α的终边在直线3x+4y=0上,求sin α-3cos α+tan α的值.解析:当角α的终边在射线y=-34x(x>0)上时,取终边上一点P(4,-3),所以点P到坐标原点的距离r=|OP|=5,所以sin α=yr=-35=-35,cos α=xr=45,tan α=yx=-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y=-34x(x<0)上时,取终边上一点P′(-4,3),所以点P′到坐标原点的距离r=|OP′|=5,所以sin α=yr=35,cos α=xr=-45,tan α=yx=3-4=-34.所以sin α-3cos α+tan α=35-3×⎝⎛⎭⎫-45-34=35+125-34=94.综上,sin α-3cos α+tan α的值为-154或94.题型二 三角函数值符号的判断 规律方法例2、 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5. 解析: (1)∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.变式训练2 sin1cos3tan5的值( ) A .小于0 B .大于0 C .等于0 D .不存在解析: π3π013π52π22<<<<<<,, ∴sin10cos30tan50><<,,.答案 B题型三 诱导公式一的应用 规律方法(1)sin390°+cos(-660°)+3tan405°-cos540°;变式训练3tan 405°-sin 450°+cos 750°=________. 解析: tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. 答案32题型四 三角函数线 规律方法sin ⎝⎛⎭⎫-5π8=MP ,cos ⎝⎛⎭⎫-5π8=OM , tan ⎝⎛⎭⎫-5π8=AT . 变式训练4、 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.解析: 已知角α的正弦值,可知P 点纵坐标为12.所以在y 轴上取点⎝⎛⎭⎫0,12,过这点作x 轴的平行线,交单位圆于P 1,P 2两点,则OP 1,OP 2是角α的终边,因而角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6或α=2k π+5π6,k ∈Z .题型五 利用同角三角函数的关系式求值 命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值则tan α的值为( )A.125 B .-125 C.512 D .-512 解析: ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.答案 D(2) 已知-π2<α<0,sin α+cos α=15,则tan α的值为( ) A .-43 B .-34 C.34 D.43解析: ∵sin α+cos α=15,等号两边同时平方得1+2sin αcos α=125,即sin αcos α=-1225,∴sin α,cos α是方程x 2-15x -1225=0的两根,又∵-π2<α<0,∴sin α=-35,cos α=45,∴tan α=sin αcos α=-34.答案 B变式训练5-1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.解析: 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 规律方法:例5-2已知cos α=-817,求sin α,tan α的值.解析: ∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则 sin α=-1-cos 2α=-1517,tan α=158.变式训练5-2 已知cos α=1213,求sin α,tan α的值.解析: ∵cos α=1213>0且cos α≠1,∴α是第一或第四象限角. (1)当α是第一象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫12132=513,tan α=sin αcos α=5131213=512.(2)当α是第四象限角时,则sin α=-1-cos 2α=-513,tan α=-512.题型六 齐次式求值问题 规律方法:例6 已知tan α=2,求下列代数式的值. (1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.解析: (1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330.变式训练6 已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.解析: 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611,解得tan θ=2.(1)原式=5tan2θ+2tan θ-3=55=1.(2)原式=sin2θ-4sin θcos θ+3cos2θ=sin2θ-4sin θcos θ+3cos2θsin2θ+cos2θ=tan2θ-4tan θ+31+tan2θ=-15.例8-1 ∴在单位圆中,利用三角函数线求出满足1sin 2α>的角α的范围.∴在单位圆中,利用三角函数线求出满足1sin 2≤α的角α的范围.解析:∴如图所示,π5π2π2π66k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ,. ∴如图所示,5π132ππ2π66k k k αα⎧⎫++∈⎨⎬⎩⎭Z ≤≤,.(1)(2)变式训练8-1 已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.解析: 图中阴影部分就是满足条件的角θ的范围, 即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .命题角度2 利用三角函数线求三角函数的定义域 规律方法例8-2 求函数y =lg ⎝⎛⎭⎫sin x -22+1-2cos x 的定义域.解析: 由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.12(1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α=左边,∴原等式成立.一、选择题1.已知角α的终边过点(-2,1),则cos α的值为()A.55 B.255C.-55D.-255答案 D2.如果角α的终边过点P(2sin 30°,-2cos 30°),则sin α等于()A.12B.-12C.-32D.-33解析:由题意得P(1,-3),它与原点的距离r=12+(-3)2=2,∴sin α=-32. 答案 C3.如图在单位圆中,角α的正弦线、正切线完全正确的是()A.正弦线为PM,正切线为A′T′B.正弦线为MP,正切线为A′T′C.正弦线为MP,正切线为ATD.正弦线为PM,正切线为AT答案 C4.函数y=tan⎝⎛⎭⎫x-π3的定义域为()A.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π3,x∈R B.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+π6,k∈ZC.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+5π6,k∈Z D.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ-5π6,k∈Z解析:∵x-π3≠kπ+π2,k∈Z,∴x≠kπ+5π6,k∈Z.答案 CA组基础演练5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫5π3,2πD.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 解析: 角α的取值范围为图中阴影部分, 即⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π.答案 D7.已知tan θ=2,则1sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.45答案 B 8.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°解析: 1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.答案 B9.若α是第四象限角,5tan 12α=-,则sin α等于( ) A .15B .15-C .513D .513-解析:因为5tan 12α=-,所以sin 5cos 12αα=-,即12cos sin 5αα=-,因为22sin cos 1αα+=, 所以22144sin sin 125αα+=,即225sin 169α=,因为α是第四象限角,所以5sin 13α=-。

人教A版高中数学必修四任意角的三角函数教学PPT精品课件

人教A版高中数学必修四任意角的三角函数教学PPT精品课件

概念拓展
课堂小结
类比
当r=1
情景《引三入角函数概》整念体复设习计 概念探究
【概念再探】
概念形成
概念应用
概念拓展
课堂小结
y
单位圆:
r=1
直角坐标系中,以原点为圆
O
x
心,以单位长为半径的圆。
情景《引三入角函数概》整念体复设习计 概念探究
【概念形成】
概念形成
概念应用
概念拓展
课堂小结
y
O
x
情景《引三入角函数概》整念体复设习计 概念探究
【概念复习】
概念形成
概念应用
概念拓展
课堂小结
直角三角形中 线段比
情景《引三入角函数概》整念体复设习计 概念探究
【概念初探】
概念形成
概念应用
概念拓展
课堂小结
y
y
O
x
线段比--坐标比
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】
概念形成
概念应用
概念拓展
课堂小结
类比

演示,观察 相应的坐标比值。
人教A版必修四第一章
《任意角的三角函数》
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
O r=1 P
x
〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰〰 〰〰 〰〰 〰〰〰
情景《引三入角函数概》整念体复设习计 概念探究 概念形成 概念应用 概念拓展 课堂小结 y
情景《引三入角函数概》整念体复设习计 概念探究
【探究发现】

新人教版必修4第一章第二节任意角三角函数课件

新人教版必修4第一章第二节任意角三角函数课件

有向线段CD:方向C→D,等.
思考3:你能更好的利用有向线段的概念表示角α 的正弦吗?
sinα=MP cosα=0M O
y
P
M
x
思考4:类比的,你能在单位圆中用有向线段表 示角α的余弦吗?
思考5:设α 为锐角,你能根据正弦线和余弦线说明sinα y +cosα >1吗? P
MP+OM>OP=1 O M
A(1,0)
o
P α的终边
x
o
P T
x α的终边
(Ⅲ )
(Ⅳ )
思考6:若终边函数的一种几何表示,即用 有向线段表示三角函数值,是今后进一步研究三 角函数图象的有效工具.
2.正弦线的始点随角的终边位置的变化而变化, 余弦线和正切线的始点都是定点,分别是原点O 和点A(1,0).
例2.(1)试作出角α的终边,使sinα=0 . 5; (2)根据(1)求出所有满足sinα=0 . 5的角 α的集合. (3)根据(1)、(2)求出所有满足sinα≧ 0 . 5 的角α的集合.
变式:求y 2cos x 1的定义域.
正弦、余弦、正切的三角函数线。
设任意角顶点在原点O,始边与x轴非负半轴重合,终边
思考2:能不去掉绝对值符号,使得线段MP的值与 坐标的正负是一致呢?怎样规定?
有向线段:规定了方向的线段.
注意:
1)与坐标轴方向一致时为正,与坐标方向相反时为负.
2)有向线段的书写: 有向线段的起点字母在前,终点 字母在后面.
y C D 有向线段AB:方向A→B;记作AB x 值为正 A o B 有向线段BA:方向B→A ;记作 BA 值为负
y tan AT x
M O
A T

新课标人教A版数学必修4全部课件:三角函数复习课

新课标人教A版数学必修4全部课件:三角函数复习课
2
2
2 tan 1 tan
注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别
cos
2

1 cos 2 2
sin
2
1 cos 2 2
三、三角函数的图象和性质
1、正弦、余弦函数的图象与性质 y=sinx
y
y=cosx
y
1

2
图 象
定义域 值 域 性 周期性 奇偶性 质 单调性

sin cos
sin cos 1

sin cos sin cos
2 2


tan tan 1
2

2 2 1
2

2 5
应用:关于 sin 与 cos 的齐次式
例3:已知 解: sin(
sin(

4
)
3 5
, cos(

y sin( x )
y A sin( x )
1
第二种变换:
横坐标不变
横坐标伸长(0 1 )或缩短( 1 )到原来的 倍 y sin x y sin x 纵坐标不变 图象向左( 0 ) 或
向右( 0 ) 平移
| |

个单位
[k
3 8
, k

8
]( k Z )
2

4 )
⑶ 当2x ⑷y


4
2 k

2
,即 x k


8
( k Z )时 , y 最大值 2
y 2 sin( 2 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知P (-3,y )为角β的终边上的一点,且sin β=13
13
,则y 的值为( ) A .±1
2
B.12 C .-12
D .±2
解析:选B.r =3+y 2,sin β=y r =y 3+y 2=13
13,
∴y >0,解得y =12,或y =-1
2
(舍去),故选B.
2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( ) A .y 轴上 B .x 轴上 C .直线y =x 上
D .直线y =-x 上
解析:选B.由题意,得|cos α|=1,即cos α=±1,故角α的终边在x 轴上,故选B. 3.若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( ) A.1
2 B .-12
C .-
32
D .-
33
解析:选C.∵角α的终边过点(2sin 30°,-2cos 30°), ∴角α终边上一点的坐标为(1,-3), 故sin α=
-312+(-3)2
=-
3
2
. 4.已知sin α=35,cos α=-4
5,则角α所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:选B.由sin α=35>0得角α的终边在第一或第二象限;由cos α=-4
5<0得角α的
终边在第二或第三象限.综上,角α所在的象限是第二象限.
5.函数y =1
1+sin x 的定义域为( )
A . {x |x ≠

2
+2k π,k ∈Z } B .{x |x ≠π
2
+2k π,k ∈Z }
C .{x |x ≠2k π,k ∈Z }
D .{x |x ≠-3π
2
+2k π,k ∈Z }
解析:选A.∵1+sin x ≠0,∴sin x ≠-1. 又sin
3π2=-1,∴x ≠3π
2
+2k π,k ∈Z . 6.5sin 90°+2cos 0°-3sin 270°+10cos 180°=__________. 解析:sin 90°=1,cos 0°=1,sin 270°=-1,cos 180°=-1. ∴原式=5×1+2×1-3×(-1)+10×(-1)=0. 答案:0
7.若α为第二象限角,则|sin α|sin α-cos α|cos α|=________.
解析:α为第二象限角,∴sin α>0,cos α<0. 答案:2
8.设MP 和OM 分别是角17π
18
的正弦线和余弦线,则给出的以下不等式:
①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM ,其中正确的是__________.(填序号)
解析:sin 17π18=MP >0,cos 17π
18=OM <0.
答案:②
9.计算:sin 390°-2cos 174π+3cos(-660°)-3tan(-11
6
π)+tan(-720°).
解:原式=sin(360°+30°)-2cos(4π+π4)+3cos(-720°+60°)-3tan(-2π+π
6)+tan 0°
=sin 30°-2cos π4+3cos 60°-3tan π
6
=12-2×22+3×12-3×33=12-1+3
2
-1=0. 10.已知角α的终边在直线y =3x 上,求α的三角函数值. 解:设P (a ,3a )(a ≠0)是其终边上任一点, 则tan α=3a
a
=3, r =
a 2+(3a )2=2|a |,
当a >0时,sin α=3a 2a =32,cos α=a 2a =12; 当a <0时,sin α=
3a -2a
=-3
2,
cos α=a -2a =-1
2.
所以tan α=3,sin α=32,cos α=1
2
,或tan α=3, sin α=-
32,cos α=-1
2
.。

相关文档
最新文档