平行线及平行线的判定、性质辅导练习
平行线的判定与性质 专项强化练习 2022-2023学年人教版七年级数学下册
人教版七年级数学下册《平行线的判定与性质》专项强化练习一、选择题1.如图,AB∥CD,EF∥GH,且∠1=50°,下列结论错误的是( )A.∠2=130°B.∠3=50°C.∠4=130°D.∠5=50°2.如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°3.如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2=30°,∠4=35°4.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )A.135° B.125° C.115° D.105°5.一条公路两次转弯后又回到到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么∠C应是( )A.40°B.140°C.100°D.180°6.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个7.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F;三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0B.1C.2D.38.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°9.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°10.如图,直线AE∥CD,∠EBF=135°,∠BFD=60°,则∠D等于( )A.75°B.45°C.30°D.15°11.如图,l1∥l2,则下列式子成立的是( )A.∠α+∠β+∠γ=180°B.∠α+∠β-∠γ=180°C.∠β+∠γ-∠α=180°D.∠α-∠β+∠γ=180°12.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°. 则下列结论:①∠BOE=12(180-a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题13.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.14.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.15.如图,a∥b,∠1=110°,∠3=40°,则∠2=.16.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).17.已知一副三角板如图1摆放,其中两条斜边互相平行,则图2中∠1=________.18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.20.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并证明.21.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠2=∠DCB;(2)试证明DG∥BC;(3)求∠BCA的度数.22.如图,已知AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.23.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.24.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.25.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D ∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM.求证:∠CAM=∠BAN.答案1.C2.C.3.B.4.D.5.B6.A.7.D8.C9.C10.D11.B12.C13.答案为:本题答案不唯一,如∠1=∠B.14.答案为:63°30′15.答案为:70°.16.答案为:①③④17.答案为:15°.18.答案为:α+β﹣γ=90°.19.证明:(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.20.解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).21.(1)证明:∵CD⊥AB于D,FE⊥AB,∴CD∥EF,∴∠2=∠DCB(2)证明:∵∠2=∠DCB,∠1=∠2,∴DG∥BC(3)解:∵DG∥BC,∠3=80°,∴∠BCA=∠3=80°22.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°.∵AB∥CD,∴∠C=∠3=25°.23.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.24.解:(1)当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1.∴∠PAC=∠APE,∠PBD=∠BPE.∴∠APB=∠APE+∠BPE=∠PAC+∠PBD.(2)当点P在C,D两点的外侧运动时,在l2下方时,则∠PAC=∠PBD+∠APB;在l1上方时,则∠PBD=∠PAC+∠APB.25.(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.。
平行线的判定和性质证明题基础+提高(含答案)
∴∠APC=∠APE+∠CPE=50°+60°=110°
(1) ;过点P作 ,
又因为 ,所以 ,
则 , ,
所以 ;
(2)情况1:如图所示,当点P在B、O两点之间时,
∵AB∥CD
∴PM∥CD
∴∠2+∠PFD=180°
∵∠PFD=130°
∴∠2=180°﹣130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
[探究]如图②AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是°
(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
参考答案(基础)
1. ∠ABC;角平分线的定义; ∠BCD;∠ABC+∠BCD;180°;两直线平行,同旁内角互补.
2. ,同旁内角互补,两直线平行,∠1,两直线平行,内错角相等,∠CBG,同位角相等,两直线平行。
3.证明:∵∠E=∠F∴AE∥CF∴∠A=∠ABF∵∠A=∠C∴∠ABF=∠C∴AB∥CD.
∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°
如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线
∴∠AEG= AEP=25°,∠GFC= PFC=60°
过点G作GM∥AB∴∠MGE=∠AEG=25°∵AB∥CD(已知)∴GM∥CD∴∠GFC=∠MGF=60°∴∠G=∠MGF﹣∠MGE=60°﹣25°=35°
平行线的性质与判定大题专练
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】专题1.8平行线的性质与判定大题专练(拔高篇,重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2022春·浙江温州·七年级校联考阶段练习)如图,已知BC平分∠ABD交AD于点E,∠1=∠3.(1)证明:AB∥CD;(2)若AD⊥BD于点D,∠CDA=38°,求∠3的度数.【答案】(1)见解析(2)26°【分析】(1)由角平分线的定义得到∠1=∠2,即得∠2=∠3,即可判定AB∥CD;(2)由垂直的定义得出∠ADB=90°,可得∠CDB=128°,由平行线的性质得出∠ABD=52°,根据角平分线的定义即可得解.(1)证明:∵BC平分∠ABD∴∠1=∠2又∠1=∠3∴∠2=∠3∴AB∥CD;(2)解:∵AD⊥BD,∴∠ADB=90°,∵∠CDA=38°,2.(2022春·浙江杭州·七年级统考期末)如图,直线MN分别与直线AB和CD交于点E,F,且满足∠1+∠2=180°.(1)试判断直线AB与CD的位置关系,并说明理由.(2)作∠AEF的平分线EG交CD于点G,过点G作GH⊥EG交MN于点H.若∠DGH=40°,求∠1的度数.【答案】(1)AB∥CD,理由见解析(2)80°【分析】(1)已知∠1+∠2=180°,且∠CFE与∠2构成平角,通过等量代换即可得出互为内错角的∠1与∠CFE 相等,因此可求出AB∥CD;(2)已知GH⊥EG,通过已知条件求出∠EGF的度数,再根据平行线的性质和角平分线的性质求出∠AEF的度数,最后用180°减去∠AEF的度数即可求得∠1的度数.(1)解:AB∥CD,理由如下:∵∠1+∠2=180°又∵∠2+∠CFE=180°∴∠1=∠CFE∴AB∥CD.(2)∵GH⊥EG,∠DGH=40°,∴∠EGF=50°∵AB∥CD∴∠AEG=∠EGF=50°∵EG平分∠AEF∴∠AEF=100°∴∠1=180°−100°=80°故∠1的度数为80°.【点睛】本题考查了平行线的判定和平行线的性质,将已知角的度数通过平行线的性质转换为所求问题的相关角是本题的关键.3.(2022春·浙江绍兴·七年级统考期末)如图,CE平分∠BCF,∠DAC=126°,BC∥EF,∠ACF=∠FEC=18°.(1)求证:AD∥EF;(2)若∠AEC=72°,求∠DAE的度数.【答案】(1)证明见解析(2)54°【分析】(1)先根据平行线的性质可得∠BCE=∠FEC=18°,再根据角平分线的定义可得∠BCF=36°,从而可得∠ACB=54°,然后根据平行线的判定可得AD∥BC,最后根据平行公理推论即可得证;(2)先根据角的和差可得∠AEF=54°,再根据平行线的性质即可得.(1)证明:∵BC∥EF,∠FEC=18°,∴∠BCE=∠FEC=18°,∵CE平分∠BCF,∴∠BCF=2∠BCE=36°,∵∠ACF=18°,∴∠ACB=∠BCF+∠ACF=54°,又∵∠DAC=126°,∴∠DAC+∠ACB=180°,∴AD∥BC,又∵BC∥EF,∴AD∥EF.(2)解:∵∠AEC=72°,∠FEC=18°,∴∠AEF=∠AEC−∠FEC=54°,由(1)已证:AD∥EF,∴∠DAE=∠AEF=54°.【点睛】本题考查了平行线的判定与性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的判定与性质是解题关键.4.(2022春·浙江湖州·七年级校联考阶段练习)已知:如图,AD∥BE,∠1=∠2,∠3=∠4.(1)求证:AB∥CD;(2)若∠B=∠3=2∠2,求∠D的度数.【答案】(1)见解析(2)72°【分析】(1)根据平行线的判定和性质即可解决问题.(2)根据三角形内角和求解即可.(1)∵AD∥BE,∴∠3=∠CAD,∵∠3=∠4,∴∠4=∠CAD,∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠4=∠BAE,∴AB∥CD;(2)∵∠B=∠3=2∠2,∠1=∠2,∠B+∠3+∠1=180°,∴5∠1=180°,∴∠1=36°,∴∠2=36°,∴∠3=72°,∵∠3=∠4,∠4=∠AFD,∴∠AFD=72°,∴∠D=180°-∠2-∠AFD=72°.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.5.(2022春·浙江绍兴·七年级校联考期中)如图,已知BC平分∠ABD交AD于点E,∠1=∠3.(1)说明AB∥CD的理由;(2)若AD⊥BD交于点D,∠CDA=34°,求∠2的度数.【答案】(1)详见解析(2)28°【分析】(1)由角平分线的定义得到∠1=∠2,即得∠2=∠3,即可判定AB∥CD;(2)由垂直的定义得出∠ADB=90°,可得∠CDB=∠CDA+∠ADB=124°,由平行线的性质得出∠ABD=56°,根据角平分线的定义即可得解.(1)∵BC平分∠ABD,∴∠2=∠1,∵∠1=∠3,∴∠2=∠3,∴AB∥CD.(2)∵AD⊥BD,∴∠ADB=90°,∵∠CDA=34°,∴∠CDB=∠ADB+∠CDA=124°,∵AB∥CD.∴∠ABD=180°−∠CDB=56°,∵BC平分∠ABD,∴∠2=28°.【点睛】此题主要考查了平行线的判定与性质、角平分线的性质,熟记“内错角相等,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.6.(2022春·浙江绍兴·七年级校联考期末)如图,点P在∠ABC内,点E,F分别在∠ABC的边BA,BC上,ED平分∠AEP,连结PE,PF.若∠B=∠PFC,∠PED=36°,求∠P的度数.【答案】72°【分析】根据角平分线的定义求出∠AEP=72°,由∠B=∠PFC,得出AB∥PF,然后根据平行线的性质求∠P 的度数即可.【详解】解:∵ED平分∠AEP,∴∠AEP=2∠PED,∵∠PED=36°,∴∠AEP=72°,∵∠B=∠PFC,∴AB∥PF.∴∠P=∠AEP=72°.【点睛】本题考查的是角平分线的定义,平行线的判定与性质,掌握“同位角相等,两直线平行与两直线平行,内错角相等”是解本题的关键.7.(2022春·浙江·七年级统考期末)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连结OF.(1)ED是否平行于AB,请说明理由;(2)若OD平分∠BOF,∠OFD=80°,求∠1的度数.【答案】(1)ED//AB,利用见详解;(2)40°【分析】(1)利用已知证得∠D+∠AOD=180°,进而得出答案;(2)由平行线的性质得到∠BOF=110°,根据角平分线的定义得到∠BOD=55°,最后根据平角的定义得出答案.8.(2021春·浙江·七年级期末)如图所示,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试猜想∠2与∠3的数量关系,并说明理由.9.(2021春·浙江·七年级期中)如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=70°,求∠BAD的度数.【答案】(1)AC∥EF,理由见解析;(2)∠BAD=55°【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的定义得到∠2的度数,利用角的和差关系可得结论.(1)解:AC∥EF.理由如下:∵∠1=∠BCE,∴AD∥CE,∴∠2=∠4,∵∠2+∠3=180°,∴∠4+∠3=180°,∴EF∥AC;(2)解:∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2,∵∠1=70°,∠1=∠2+∠ACD,∴∠2=35°,∵EF∥AC,EF⊥AB于F,∴∠BAC=∠F=90°,∴∠BAD=∠BAC﹣∠2=55°.【点睛】本题考查平行线的性质与判定,角平分线的定义,熟练掌握平行线的性质与判定定理是解题的关键.10.(2021春·浙江金华·七年级浦江县实验中学校联考期末)如图,点E,F分别在直线AB,CD上,点P,Q在直线AB,CD之间,AB//CD.(1)如图,∠P=∠Q,①∠AEP与∠QFD的关系,并说明理由;②∠BEP和∠DFQ的角平分相交于点M,求∠EMF的度数.(2)若∠P-∠Q=30°,∠Q=α则∠BEP和∠DFQ的角平分相交于点M,则∠EMF的度数为.(用含α或具体数字表示)【答案】(1)①∠AEP=∠QFD,理由见解析;②90°(2)75°【分析】(1)①根据两直线平行内错角相等,计算角的和差即可解答;②利用等角的补交相等,角平分线的定义,进行角的计算即可解答;(2)由∠P-∠Q=30°利用(1)①得出∠AEP-∠QFD=30°,再由(1)②求∠EMF即可;(1)解:如图,过P作PG∥AB,过Q作QH∥AB,过M作MN∥AB,①∵AB∥PG,∴∠AEP=∠EPG,∵AB∥CD,QH∥AB,∴QH∥CD,∴∠QFD=∠HQF,∵PG∥AB,QH∥AB,∴PG∥QH,∴∠GPQ=∠HQP,∵∠EPQ=∠FQP,∴∠EPG+∠GPQ=∠HQF+∠HQP,∴∠EPG=∠HQF,∴∠AEP=∠QFD;②∵∠AEP=∠QFD,∠AEP+∠BEP=180°,∴∠BEP+∠QFD=180°;11.(2018秋·七年级单元测试)如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【答案】(1)见解析;(2)∠2=36°【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠3,根据垂直推出BD//EF,根据平行线的性质即可求出∠2.【详解】(1)证明:∵∠ABC=180°−∠A,∴∠ABC+∠A=180°,∴AD//BC;(2)解:∵AD//BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD//EF,∴∠2=∠3=36°【点睛】本题考查了平行线的性质和判定的应用,解题的关键是掌握①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.12.(2020·浙江金华·七年级期中)如图,已知BC//GE,AF//DE,∠1=45°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=20°,求∠ACB的度数.【答案】(1)45°;(2)85°.【分析】(1)先根据BC∥EG得出∠E=∠1=45°,再由AF∥DE可知∠AFG=∠E=45°;(2)作AM∥BC,由平行线的传递性可知AM∥EG,故∠FAM=∠AFG,再根据AM∥BC可知∠QAM=∠Q,故∠FAQ=∠FAM+∠QAM,再根据AQ平分∠FAC可知∠MAC=∠QAC+∠QAM=80°,根据AM∥BC即可得出结论.【详解】解:(1)∵BC∥EG,∴∠E=∠1=45°.∵AF∥DE,∴∠AFG=∠E=45°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠FAM=∠AFG=45°.∵AM∥BC,∴∠QAM=∠Q=20°,∴∠FAQ=∠FAM+∠QAM=65°.∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠QAM=85°.∵AM∥BC,【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等.熟记平行线的各种性质是解题的关键.13.(2020春·浙江温州·七年级统考开学考试)如图,∠ABD和∠BDC的角平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB//CD.(2)若∠2=28°,求∠3的度数.【答案】(1)见解析;(2)62°【分析】(1)根据角平分线的定义,结合∠1+∠2=90°,可得∠ABD+∠BDC=180°,进而即可得到结论;(2)由∠2=28°,得∠1=62°,进而得∠ABF=62°,结合AB//CD,即可得到答案.【详解】(1)∵∠ABD和∠BDC的角平分线交于点E,∴∠ABD=2∠1,∠BDC=2∠2,又∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB//CD;(2)∵∠2=28°,∠1+∠2=90°,∴∠1=62°,又∵BF平分∠ABD,∴∠ABF=∠1=62°,又∵AB//CD,【点睛】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.14.(2020春·浙江·七年级期中)如图所示,在ΔABC中,CE⊥AB于点E,DF⊥AB于点F,AC//FD,CE是ΔABC的角平分线.求证:∠EDF=∠BDF.【答案】详见解析【分析】先运用垂直于同一条直线的两直线平行,再根据平行线的性质进行做题.【详解】证明:∵CE⊥AB于E,DF⊥AB于F∴DF∥CE∴∠BDF=∠BCE∠FDE=∠DEC又∵AC∥ED,∴∠DEC=∠ACE∵CE是∠ACB的角平分线∴∠ACE=∠ECB∴∠EDF=∠BDF.【点睛】本题主要运用了平行线的性质和角平分线的定义,证明角的关系.15.(2021春·浙江·七年级期末)如图,AC∥EF,∠1+∠3=180°.(1)猜想AF与CD的位置关系,并说明理由.(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°,求∠BCD的度数.16.(2022春·浙江湖州·七年级校考阶段练习)已知:如图,∠1=∠C,∠E=∠B.(1)判断AB与DE的位置关系,并说明理由;(2)若AB⊥AC于点A,∠1=36°,求∠E的度数.【答案】(1)AB∥DE,见解析(2)∠E=54°【分析】(1)根据平行线的判定得出AB∥DE,根据平行线的性质得出∠E=∠EDC,求出∠B=∠EDC,根据平行线的判定得出即可;(2)求出∠BAE度数,根据平行线的性质即可求出∠E.(1)解:AB∥DE,理由如下:∵∠1=∠C,∴AE∥BC,∴∠E=∠EDC,又∵∠E=∠B,∴∠B=∠EDC,∴AB∥DE;(2)∵AB⊥AC,∠1=36°,∴∠BAE=126°,∵AB∥DE,∴∠E+∠BAE=180°,∴∠E=54°,【点睛】本题考查了平行线的性质和判定定理,垂线的性质,活运用平行线的性质和判定定理进行推理是解此题的关键.17.(2022春·浙江杭州·七年级校考期中)如图,将一张上、下两边平行(即AB∥CD)的纸带沿直线MN折叠,EF为折痕.(1)试说明∠1=∠2;(2)已知∠2=54°,求∠BEF的度数.18.(吉林省延边朝鲜族自治州敦化市红石乡中心校2021-2022学年七年级下学期6月月考数学试题)如图,在四边形ABCD中,∠ADC+∠ABC=180°,∠ADF+∠AFD=90°,点E、F分别在DC、AB上,且BE、DF分别平分∠ABC、∠ADC,判断BE、DF是否平行,并说明理由.19.(广东省东莞市石龙第二中学2021-2022学年七年级下学期期中数学试卷)如图,点B,C在线段AD的异侧,点E,F分别是线段AB,CD上的点,已知∠1=∠2,∠3=∠C.(1)求证:AB∥CD;(2)若∠2+∠4=180°,求证:∠BFC+∠C=180°;(3)在(2)的条件下,若∠BFC−30°=2∠1,求∠B的度数.【答案】(1)见解析(2)见解析(3)∠B=50°【分析】(1)已知∠1=∠2,所以∠3=∠2,又因为∠3=∠C,可以得出∠1=∠C即可判定AB∥CD;(2)已知∠2=∠3,∠2+∠4=180°,可以得出BF//EC,即可得出∠BFC+∠C=180°;(3)由(1)(2)可知AB∥CD,BF//EC,可以得出∠1=∠C,∠BFC+∠C=180°;可以得出∠BFC−30°=2∠1=2∠C,可以得出∠C,又因为∠C=∠1=∠B,即可求出∠B的度数.【详解】(1)证明:∵∠1=∠2,∠3=∠C,∠2=∠3,∴∠1=∠C,∴AB//CD;(2)证明:∵∠2+∠4=180°,∠2=∠3,∴∠3+∠4=180°,∴BF//EC,∴∠BFC+∠C=180°;(3)∵∠BFC+∠C=180°,∵∠BFC−30°=2∠1=2∠C,∴∠BFC=2∠C+30°,∴2∠C+30°+∠C=180°,∴∠C=50°,∴∠BFC=130°,∵AB//CD,∴∠B+∠BFC=180°,∴∠B=50°.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(辽宁省鞍山市第二中学2021-2022学年七年级下学期3月月考数学试题)如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1)判断DE与BF是否平行?并说明理由;(2)试说明:∠C=2∠P.【答案】(1)DE∥BF,理由见解析(2)说明见解析【分析】(1)根据平行线的判定得出BD∥CE,根据平行线的性质得出∠5=∠FAB,求出∠C=∠FAB,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠2=∠BGD即可;(2)求出∠BDP=∠PDH=∠P,根据三角形的外角性质得出即可.(1)解:(1)DE∥BF,理由是:∵∠3=∠4,∴BD∥CE,∴∠5=∠FAB,∵∠5=∠C,∴∠C=∠FAB,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴DE∥BF;(2)∵AB∥CD,∴∠P=∠PDH,∵DP平分∠BDH,∴∠BDP=∠PDH,∴∠BDP=∠PDH=∠P,∵∠5=∠P+∠BDP,∴∠5=2∠P,∵∠C=∠5,∴∠C=2∠P.【点睛】本题考查了平行线的性质和判定、三角形外角性质,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.21.(河南省信阳市浉河区信阳文华寄宿学校2021-2022学年七年级下学期期末数学试题)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD∥OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD∥OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD∥OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD∥OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关键.22.(江苏省扬州市江都区华君外国语学校2021-2022学年七年级下学期第二次教学专项调研数学试题)如图,已知AB∥CD,∠C=∠B.(1)求证:CF∥BD;(2)如果AB是∠FAD的平分线,且∠ADB=96°,求∠B的度数.【答案】(1)见解析(2)42°【分析】(1)利用平行线的性质定理和判定定理可得结论;(2)由∠ADB+∠FAD=180°,可得∠FAD,易得∠FAB=42°,由CF∥BD,再根据平行线的性质推出∠B=∠FAB=42°.(1)证明:∵AB∥CD,∴∠C=∠FAB,23.(江苏省徐州市丰县2021-2022学年七年级下学期期中数学试题)如图,已知在△ABC中,∠ACB=90°,CD是AB边上的高,点E在AC上,EF⊥AB,垂足为点F,若∠1+∠2=180°,则DG与BC有怎样的位置关系?请说明理由.【答案】DG⊥BC;理由见解析【分析】根据EF⊥AB,CD⊥AB,得出CD∥EF,根据平行线的性质得出∠2+∠DCE=180°,根据∠1+∠2=180°,得出∠1=∠DCE,即可得出DG∥AC,根据∠ACB=90°,即可得出结果.【详解】解:DG⊥BC;理由如下:∵EF⊥AB,CD⊥AB,∴CD∥EF,∴∠2+∠DCE=180°,∵∠1+∠2=180°,∴∠1=∠DCE,∴DG∥AC,∵∠ACB=90°,∴∠DGB=∠ACB=90°,∴DG⊥BC.【点睛】本题主要考查了平行线的判定和性质,垂线的定义,熟练掌握内错角相等,两直线平行,两直线平行同旁内角互补,是解题的关键.24.(河北省保定市阜平县2021-2022学年七年级下学期期中数学试题)如图,点E在直线DC上,射线EF、EB分别平分∠AED、∠AEC.(1)试判断EF、EB的位置关系,并说明理由;(2)若∠A=∠5,且∠4+∠5=90°,求证:AB∥EF.25.(陕西省渭南市韩城市2021-2022学年七年级下学期期末数学试题)如图,直线BC∥OA,∠C=∠OAB=108°,E,F在线段BC上(不与点B,C重合),且满足∠FOB=∠AOB,OE平分∠COF.(1)求证:OC∥AB;(2)求∠EOB的度数.26.(广东省江门市第二中学2021-2022学年七年级下学期期中考试数学试题)已知,AB∥CD.(1)如图1,求证:∠A﹣∠C=∠E;(2)如图2,EF平分∠AEC,CF平分∠ECD,∠F=105°,求∠A的度数.【答案】(1)证明见解析(2)150°【分析】(1)过点E作EF∥AB于点F,先根据平行线的性质可得∠A=180°−∠AEF,再根据平行公理推论可得EF∥CD,然后根据平行线的性质可得∠C=180°−∠CEF,最后计算∠A−∠C即可得证;(2)过点F作FG∥CE于点G,先根据平行线的性质可得∠EFG=180°−∠CEF,∠CFG=∠ECF,从而可得∠CEF+∠ECF=75°,再根据角平分线的定义可得∠AEC+∠ECD=150°,然后根据(1)的结论即可得.(1)证明:如图,过点E作EF∥AB于点F,∴∠A=180°−∠AEF,∵AB∥CD,∴EF∥CD,∴∠C=180°−∠CEF,∴∠A−∠C=180°−∠AEF−(180°−∠CEF)=∠AEC.(2)解:如图,过点F作FG∥CE于点G,∴∠EFG=180°−∠CEF,∠CFG=∠ECF,∵∠EFC=105°,∴∠EFG−∠CFG=180°−∠CEF−∠ECF=105°,解得∠CEF+∠ECF=75°,∵EF平分∠AEC,CF平分∠ECD,∴∠AEC=2∠CEF,∠ECD=2∠ECF,∴∠AEC+∠ECD=2(∠CEF+∠ECF)=150°,由(1)已得:∠A−∠ECD=∠AEC,∴∠A=∠AEC+∠ECD=150°.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义,熟练掌握平行线的性质是解题关键.27.(浙江省杭州市上城区建兰中学2021-2022学年七年级下学期期中数学试题)如图,已知C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE的角平分线相交于F.(1)当∠FDC+∠ABC=180°时:①判断直线AD与BC的关系,并说明理由.②若∠ABC=130°求∠DFB的度数.(2)当∠C=α时,直接写出∠DFB的度数(用含α的代数式表示).【点睛】本题考查了平行线的判定和性质,平行公理的应用,作出辅助线,熟练掌握平行线的判定方法,是解题的关键.28.(湖北省宜昌市第九中学2021-2022学年七年级下学期期中考试数学试题)如图,∠1=∠2,∠D=∠CMG.(1)求证:AD∥NG;(2)若∠A+∠DHG=180°,试探索:∠ANB,∠NBG,∠1的数量关系;(3)在(2)的条件下,若∠ANB:∠BNG=2:1,∠1=100°,∠NBG=130°,求∠A的度数.【答案】(1)见解析(2)∠NBG+∠1−∠ANB=180°(3)∠A=105°【分析】(1)由∠1=∠2,∠1=∠GFC,得到∠2=∠CFG,于是得到CM∥DE,根据平行线的性质得到∠D=∠ACM,等量代换得到∠CMG=∠ACM,于是得到结论.(2)过B作BP∥AN交NG于P,由于AD∥NG,于是得到∠D=∠DHG,等量代换得到∠A+∠D=180°,得到AN∥DH,根据平行线的判定得到BP∥CM,由平行线的性质得到∠PBG+∠1=180°,等量代换即可得到结论;(3)由∠1+∠PBG=180°,∠1=100°,得到∠PBG=80°,由于∠NBG=130°,于是得到∠ANB=∠NBP=50°,根据已知条件得到∠ANB:∠BNG=2:1,即可得到结论.【详解】(1)证明:∵∠1=∠2,∠1=∠GFC,∴∠2=∠CFG,∴CM∥DE,∴∠D=∠ACM,∵∠D=∠CMG,∴∠CMG=∠ACM,∴AD∥NG;(2)解:∠NBG−∠ANB+∠1=180°;理由如下:过B作BP∥AN交NG于P,∴∠ANB=∠NBP,∵AD∥NG,∴∠D=∠DHG,∵∠A+∠DHG=180°,∴∠A+∠D=180°,∴AN∥DH,又∵CM∥DH,∴BP∥CM,∴∠PBG+∠1=180°,∵∠PBG=∠NBG−∠NBP=∠NBG−∠ANB,∴∠NBG−∠ANB+∠1=180°;(3)解:∵∠1+∠PBG=180°,∠1=100°,∴∠PBG=80°,∵∠NBG=130°,∴∠ANB=∠NBP=50°,∵∠ANB:∠BNG=2:1,∴∠BNP=25°,∴∠ANG=75°,∴∠A=105°.【点睛】本题考查了平行线的判定和性质,对顶角的性质,正确的作出辅助线是解题的关键.29.(陕西省汉中市略阳县2021-2022学年七年级上学期数学期末试题)解答下列问题(1)(问题情景)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.过点P作PM∥AB,求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,点E,F分别在AB,CD上,连接PE,PF,过P点作PN∥AB,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,过点G作GH∥AB,用含有α的式子表示∠EGF的度数.30.(浙江省杭州市采荷中学教育集团2021-2022学年七年级下学期期中数学试题)将一副三角板中的两块直角三角尺顶点C按照如图①方式叠放在一起(其中∠ABC=∠CDE=90°,∠ACB=60°,∠A=30°,∠E=∠ECD=45°)设∠ACE=α.(1)若α=30°,说明AB∥CE;(2)将三角形CDE绕点C顺时针转动,若DE∥BC,求α的度数.【答案】(1)见解析(2)15°或165°【分析】(1)根据内错角相等,两直线平行证明即可;(2)分两种情形:如图②中,当DE∥CE时,如图③中,当DE∥BC时,分别求解即可.【详解】(1)解:如图①中,∵∠ACE=α=30°,∠A=30°,∴∠ACE=∠A,∴AB∥CE;(2)解:如图②中,当DE∥CE时,则∠BCE=∠E=45°,∴α=∠ACE=∠ACB−∠BCE=60°−45°=15°;如图③中,当DE∥BC时,则∠BCD=∠D=90°,∴α=∠ACE=360°−∠ACB−∠ECD−∠BCD=360°−60°−45°−90°=165°.综上所述,α的值为15°或165°.【点睛】本题考查旋转的性质,平行线的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.。
平行线的判定及性质
平行线的判定、性质专练
姓名:
例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.
变式:如图所示:AB∥DC,∠A=∠C,试说明AD∥BC.
变式2:如图,点E为DF上的点,点B为AC上的点,∠1= ∠2,∠C= ∠D,求证:DF ∥AC
变式3:如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,试问:∠A与∠F相等吗?请说出你的理由。
变式4:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.
例2:已知AB ∥CD,GP,HQ 分别平分∠EGB, ∠EHD,判断GP 与HQ 是否平行?
变式1:如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ.
F 2
A B C D Q E 1 P M N 图11
变式2:已知AB∥CD,GP,HQ分别平分∠AGF, ∠EHD,判断GP与HQ是否平行?
例3:如图,已知AB∥CD,∠1=∠2,求证∠E=∠F.
变式1:如图,已知∠E=∠F,∠1=∠2,:求证AB∥CD .
变式2:如图,已知AB∥CD,∠E=∠F,:求证∠1=∠2.
变式3:如图,已知AB∥CD, AF∥DE, :求证∠1=∠2.
变式4:如图,已知∠1=∠2, AF∥DE, :求证AB∥CD.。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定与性质(习题课)讲解学习
探究2、如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。 当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的 ∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为 多• 少度?你找到了什么规律吗?
1
2 3
1 2
3
1
2
3 4
1 2
3 4
n
求证: CD∥EF.
• 课堂练习6、 已知:如图∠1=∠2, ∠3=∠4,∠5=∠6,求证:EC∥FB
• 问题5、如图,AB∥CD,∠1=∠2,∠E=37°,求: ∠F。
A
B 问题探究 已知:AB∥CD,
1
E
2
C A
1
求证:∠A+ ∠ C+ ∠ AEC=
360°
F
证明:过E点作EF ∥ AB,则∠A+ ∠ 1= 180°
Z 形模式
next
应用模式
如图,若AB∥DF,∠2=∠A,试确定DE与AC的位置关系,并说明理由.
A
E
F
2
B
D
C
引入
建模
应用
小结
next
应用模式
如图,图中包含哪些基本模式?
A E D
B F O C
引入
建模
应用
小结
next
应用模式
已知,如图AB∥EF∥CD,AC∥BD,BC平分∠ABC,则图中 与∠EOD相等的角有( )个.
图形
同a 位 角b
1 2 c
内 错
a3
角b
2
c
平行线的判定与性质练习题
平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。
从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。
在几何学中,我们需要学会判定平行线,并掌握它们的性质。
下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。
练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。
A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。
A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。
A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。
2. 若两条平行线被一条横线所截,那么对应的外角相等。
3. 若两条直线分别与一条平行线相交,那么对应的内角相等。
4. 若两条直线分别与一条平行线相交,那么同旁内角互补。
练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。
2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。
3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。
4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。
通过以上练习题,我们可以加深对平行线的判定与性质的理解。
判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。
而平行线的性质则是通过观察线段之间的关系得出的。
掌握这些性质可以帮助我们解决更复杂的几何问题。
在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。
平行线的判定与性质(综合复习)练习课件
1
解:如图,过点P作PE∥AB.
2
∵AB∥CD,
∴PE∥CD,
∴∠A=∠1,∠2=∠C.
∵∠APC=∠1+∠2,
∴∠APC=∠A+∠C.
“拐点”问题
练习5 如图,将一副三角板和一张对边平行的纸条按
图中方式摆放,两个三角板的一条直角边重合,含
30°角的直角三角板的斜边与纸条一边重合,含45°
角的三角板的一个顶点在纸条的另一边上,则∠1的度
平行线判定的应用
练习1 已知∠1= ∠2, ∠D+∠3=1800,
求证:EF//BC
DF C
3
2
证明: ∵ ∠1= ∠2
∴ AD// BC ∵ ∠D+∠3=1800 ∴ AD// EF
1
B
E A
∴ EF// BC
平行线性质的应用
例2 如图,AB∥DE∥CF,∠B=70°,∠D=130°, 求∠BCD的度数.
A
D E B1
G
2
3
F
C
“拐点”问题
例4 如图,AB∥CD,探索∠APC与∠A,∠C之间的关系
解:如图,过点P作PE∥AB. ∵AB∥CD, ∴PE∥CD ∴∠A+∠1=180° ∠2+∠C=180° ∴∠A+∠1+∠2+∠C=360° ∴∠A+∠APC+∠C=360°
“拐点”问题
练习4 如图,AB∥CD,探索∠APC与∠A,∠C之间 的关系.
A
B
平行线判定的应用
1
例1 如图:填空,并注明理由。
F3
5
∵ ∠1= ∠2 (已知)
∴ —AB—∥—E—D (内错角相等,两直线平行)E
4
C
专题2.5 平行线的判定与性质专项训练(30道)(举一反三)(北师大版)(解析版)
专题2.5 平行线的判定与性质专项训练(30道)【北师大版】1.(2021秋•砚山县期末)如图,AD⊥BC,EF⊥BC,DG∥BA,求证:∠BEF=∠ADG.【分析】由垂直的定义可得∠EFB=∠ADB=90°,从而可得AD∥EF,则有∠BEF=∠BAD,再由平行线的性质可得∠ADG=∠BAD,即可求得∠BEF=∠ADG.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴AD∥EF,∴∠BEF=∠BAD,∵AB∥DG,∴∠ADG=∠BAD,∴∠BEF=∠ADG.2.(2021秋•博兴县期末)如图,BC与AF相交于点E,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.【分析】根据平行线的性质推出∠1=∠ACD,求出∠2=∠ACD,根据∠2+∠CAF=∠ACD+∠CAF推出∠DAC=∠4,求出∠DAC=∠3,根据平行线的判定得出即可.【解答】证明:∵AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠2=∠ACD,∴∠2+∠CAE=∠ACD+∠CAE,∴∠DAC=∠4,∵∠3=∠4,∴∠DAC=∠3,∴AD∥BE.3.(2021秋•昆明期末)如图,已知CF⊥AB于点F,ED⊥AB于点D,∠1=∠2,求证:∠BCA+∠FGC=180°.【分析】根据平行线的判定定理得到CF∥ED,根据平行线的性质得到∠1=∠BCF,等量代换得到∠BCF =∠2,由平行线的性质即可得到结论.【解答】证明:∵CF⊥AB,ED⊥AB,∴CF∥ED,∴∠1=∠BCF,∵∠1=∠2,∴∠BCF=∠2,∴FG∥BC,∴∠BCA+∠FGC=180°.4.(2021秋•内江期末)如图,已知AB∥CD,AF平分∠BAD交CD于点E,交BC的延长线于点F,∠3=∠F.试说明:AD∥BC.【分析】先依据角平分线的定义以及行线的性质即可得到∠1=∠3,再由等量代换即可得出∠F=∠1,进而得出AD∥BC.【解答】证明:∵AF平分∠BAD,∴∠1=∠2,∵AB∥CD,∴∠2=∠3,∴∠1=∠3,∵∠3=∠F,∴∠1=∠F,∴AD∥BC.5.(2021秋•聊城期末)如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC.【分析】由AD⊥BC,EG⊥BC可得AD∥EG,从而得∠3=∠1,∠2=∠E,结合∠E=∠3,则有∠1=∠2,即可证明AD平分∠BAC.【解答】证明:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠3=∠1,∠2=∠E,∵∠E=∠3,∴∠1=∠2,6.(2021春•潍坊期末)如图,AC⊥BD,EF⊥BD,∠A=∠1.判断EF是否平分∠BED,并说明理由.【分析】可假设EF平分∠BED,欲证EF平分∠BED,需证∠2=∠3.由AC⊥BD,EF⊥BD,得EF∥AC,故∠2=∠A,∠1=∠3.又因为∠A=∠1,所以∠2=∠3.【解答】解:EF平分∠BED,理由如下:∵AC⊥BD,EF⊥BD,∴∠EFB=90°,∠ACB=90°.∴∠EFB=∠ACB.∴EF∥AC.∴∠2=∠A,∠1=∠3.又∵∠A=∠1,∴∠2=∠3.∴EF平分∠BED.7.(2021春•扶沟县期末)如图,AD∥BC,点F是AD上一点,CF与BA的延长线相交于点E,且∠1=∠2,∠3=∠4,求证:CD∥BE.【分析】依据AD∥BC,可得∠4=∠BCE,依据∠3=∠4,可得∠3=∠BCE,进而得到∠BCE=∠ACD,∠3=∠ACD,进而得出CD∥BE.【解答】证明:∵AD∥BC,∵∠3=∠4,∴∠3=∠BCE,∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,即∠BCE=∠ACD,∴∠3=∠ACD,∴CD∥BE.8.(2021春•汉阳区期中)如图,∠1=∠2,∠E=∠F,判断AB与CD的位置关系,并说明理由.【分析】延长BE交DC的延长线于点M,根据∠E=∠F即可判定BM∥FC,根据平行线的性质等量代换得到∠M=∠1,即可判定AB∥CD.【解答】解:AB∥CD,理由如下:延长BE交DC的延长线于点M,∵∠E=∠F,∴BM∥FC,∴∠M=∠2,∵∠1=∠2,∴∠M=∠1,∴AB∥CD.9.(2021春•绥中县期末)如图,点O在直线AB上,OC⊥OD,∠EDO与∠1互余.(1)求证:ED∥AB;(2)OF平分∠COD交DE于点F,若∠OFD=65°,求∠1的度数.【分析】(1)根据垂线的性质及角之间的互余关系推出∠1+∠DOB=90°,∠EDO+∠1=90°,从而得到∠DOB=∠EOD,再结合图形利用平行线的判定定理进行证明即可;(2)根据角平分线的性质得到∠COF=12∠COD,再根据平行线的性质得到∠OFD=∠FAO,从而结合图形根据角之间的和差关系进行求解即可.【解答】(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠EDO与∠1互余,即∠EDO+∠1=90°,∴∠DOB=∠EDO,∴ED∥AB;(2)∵OC⊥OD,∴∠COD=90°,∵OF平分∠COD,∴∠COF=12∠COD=45°,由(1)得ED∥AB,∴∠OFD=∠FOA,又∠OFD=65°,∴∠FOA=65°,∴∠1=∠FOA﹣∠COF=65°﹣45°=20°.10.(2021春•沂水县期末)如图,已知AB∥CD,CE平分∠ACD,CF⊥CE,∠1=34°.(1)求∠ACE的度数;(2)若∠2=56°,求证:CF∥AG.【分析】(1)根据平行线的性质和角平分线定义即可得到结论;(2)根据垂直的定义得到∠FCE=90°,由平行线的判定定理即可得到结论.【解答】解:(1)∵AB∥CD,∴∠1=∠DCE=34°,∵CE平分∠ACD,∴∠ACE=∠DCE=34°;(2)∵CF⊥CE,∴∠FCE=90°,∴∠FCH=90°﹣34°=56°,∵∠2=56°,∴∠FCH=∠2,∴CF∥AG.11.(2021春•大连期末)如图,∠EFC=∠ABC,∠BEF+∠A=180°.(1)求证:AD∥BE;(2)若BE平分∠ABC,AD⊥CD于点D,∠EFC=50°,求∠FEC的度数.【分析】(1)已知∠EFC=∠ABC,由平行线的判定可得EF∥AB,有平行线的性质可得∠BEF=∠ABE,由已知∠BEF十∠A=180°,等量代换可得∠ABE+∠A=180°,由平行线的判定即可得出答案;(2)由平行线的性质可得∠EFC=∠ABC,由角平分线的性质可得∠ABE=∠CBE=12∠ABC,因为∠ADC=90°,AD∥BE,可得∠BEC=∠ADC=90°.即∠FEC=∠BEC﹣∠BEF代入计算即可得出答案.【解答】(1)证明:∵∠EFC=∠ABC,∴EF∥AB.∴∠BEF=∠ABE,∵∠BEF十∠A=180°,∴∠ABE+∠A=180°,∴AD∥BE;(2)解:∵∠EFC=∠ABC=50°.又∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC=25°,∵AB∥EF,∴∠BEF=∠ABE=25°,∵AD⊥CD,∴∠ADC=90°.∵AD∥BE,∴∠BEC=∠ADC=90°.∵∠FEC=∠BEC﹣∠BEF.∴∠FEC=90°﹣25°=65°.12.(2021春•青秀区校级期末)如图,已知AB∥CD,∠B=∠D,AE交BC的延长线于点E.(1)求证:AD∥BE;(2)若∠1=∠2=60°,∠BAC=2∠EAC,求∠B的度数.【分析】(1)根据平行线的性质定理和判定定理即可得到结论;(2)根据AB∥CD,∠2=60°,得到∠BAE=∠2=60°,∠BAC=∠ACD,进而得出∠CAE+∠BAC=60°,又根据∠BAC=2∠EAC,得到∠BAC=∠ACD=40°,最后根据平角的定义可求出∠DCE的度数,从而可求得∠B的度数.【解答】解:(1)证明:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵AB∥CD,∠2=60°,∴∠BAE=∠2=60°,∠BAC=∠ACD,∠B=∠DCE,∴∠EAC+∠BAC=60°,∵∠BAC=2∠EAC,∴∠EAC=20°,∴∠BAC=∠ACD=40°,∵∠1+∠ACD+∠DCE=180°,∴∠DCE=180°﹣∠1﹣∠ACD=180°﹣60°﹣40°=80°,∴∠B=∠DCE=80°.13.(2021春•东昌府区期末)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)直线EF与AB有怎样的位置关系?说明理由;(2)若∠CEF=68°,则∠ACB的度数是多少?【分析】(1)由题意推出∠DCB=∠ABC=70°,结合∠CBF=20°,推出∠CBF=50°,即可推出EF ∥AB;(2)根据(1)推出的结论,推出EF∥CD,既而推出∠ECD=112°,根据∠DCB=70°,即可推出∠ACB的度数.【解答】解:(1)EF和AB的位置关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB;(2)∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=68°,∴∠ECD=112°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=42°.14.(2021春•漳平市月考)如图,已知∠1+∠2=180°,∠3=∠B.证明:(1)AB∥EF;(2)∠4=∠ACB;(3)∠1=∠B+∠5.【分析】(1)根据平行线的判定定理即可得到结论;(2)根据平行线的判定和性质定理即可得到结论;(3)根据平行线的性质定理及角的和差即可得到结论.【解答】证明:(1)∵∠1+∠2=180°,∠ADC+∠2=180°,∴∠1=∠ADC,∴AB∥EF;(2)由(1)得,AB∥EF,∴∠ADE=∠3,∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠4=∠ACB;(3)由(2)得,DE∥BC,∴∠B=∠ADE,∠5=∠EDC,∴∠ADC=∠ADE+∠EDC=∠B+∠5,由(1)得,AB∥EF,∴∠1=∠ADC,∴∠1=∠B+∠5.15.(2021秋•沙坪坝区期末)如图,∠1=∠2,∠3=∠4.(1)试说明AB∥CD;(2)若∠BAD=∠BDA,且∠EBF=110°,求∠ADC的度数.【分析】(1)根据平行线的判定定理得出BM∥CN,根据平行线的性质定理得出∠MBC=∠NCB,求出∠ABC=∠DCB,根据平行线的判定定理得出即可;(2))根据对顶角相等得出∠EBF=∠ABD=110°,根据三角形内角和定理得出∠BAD+∠BDA+∠ABD =180°,求出∠BAD=∠BDA=35°,根据平行线的性质定理得出∠ADC=∠BAD即可.【解答】解:(1)∵∠1=∠2,∴BM∥CN,∴∠MBC=∠NCB,∵∠3=∠4,∴∠MBC+∠3=∠NCB+∠4,即∠ABC=∠DCB,∴AB∥CD;(2)∵∠EBF=∠ABD,∠EBF=110°,∴∠ABD=110°,∵∠BAD+∠BDA+∠ABD=180°,∠BAD=∠BDA,∴∠BAD=∠BDA=12×(180°﹣110°)=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.16.(2021秋•建宁县期末)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于A,G,H,D,且∠1=∠2,∠B=∠C.求证:(1)BF∥EC;(2)∠A=∠D.【分析】(1)由∠1=∠2直接可得结论;(2)根据BF∥EC,∠B=∠C,可得∠B=∠BFD,从而AB∥CD,即得∠A=∠D.【解答】证明:(1)∵∠1=∠2(已知),∴BF∥EC(同位角相等,两直线平行);(2)∵BF∥EC(已证),∴∠C=∠BFD(两直线平行,同位角相等),∵∠B=∠C(已知),∴∠B=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等).17.(2021秋•南海区期末)如图,已知CD∥EF,MD平分∠ADC,∠2=∠3.(1)求证:MD∥BC.(2)若EF⊥AB,BD=2,求BC的长.【分析】(1)由平行线的性质可得∠DCB=∠3,从而可得∠2=∠DCB,即可判定MD∥BC;(2)由EF⊥AB,CD∥EF得∠BDC=90°,再由MD∥BC得∠2=∠BCD,从而可得∠BCD=∠B,故CD=BD=2,利用勾股定理可求BC的长度.【解答】(1)证明:∵CD∥EF,∴∠DCB=∠3,∵∠2=∠3,∴∠2=∠DCB,∴MD∥BC;(2)解:∵EF⊥AB,CD∥EF,∴∠BDC=∠AFE=90°,∵MD∥BC,∴∠2=∠BCD,∠1=∠B,∵MD平分∠ADC,∴∠1=∠2,∴∠BCD=∠B,∴CD=BD=2,在Rt△BCD中,BC==18.(2021秋•福田区期末)已知:如图,△ABC中,点D、E分别在AB、AC上,EF交DC于点F,∠3+∠2=180°,∠1=∠B.(1)求证:DE∥BC;(2)若DE平分∠ADC,∠3=3∠B,求∠2的度数.【分析】(1)由题意可得∠DFE+∠2=180°,从而得∠DFE=∠3,由平行线的判定条件可得BD∥EF,则有∠1=∠ADE,从而得∠ADE=∠B,即可判断DE∥BC;(2)由(1)可知∠ADE=∠B,再由角平分线的定义得∠ADC=2∠ADE=2∠B,再由∠3+∠ADC=180°,即可求∠ADC的度数,即可得∠2的度数.【解答】(1)证明:∵∠DFE+∠2=180°,∠3+∠2=180°,∴∠DFE=∠3,∴BD∥EF,∴∠1=∠ADE,∵∠1=∠B,∴∠ADE=∠B,∴DE∥BC;(2)解:由(1)知,∠ADE=∠B,BD∥EF,∴∠2=∠ADC,∵DE平分∠ADC,∴∠ADC=2∠ADE=2∠B,∵∠3+∠ADC=180°,∠3=3∠B,∴3∠B+2∠B=180°,解得:∠B=36°,∴∠ADC=72°,∴∠2=72°.19.(2021秋•济南期末)如图,已知∠DEB=100°,∠BAC=80°.(1)判断DF与AC的位置关系,并说明理由;(2)若∠ADF=∠C,∠DAC=120°,求∠B的度数.【分析】(1)利用对顶角的性质可得∠AEF=∠DEB=100°,由∠BAC=80°,可得∠AEF+∠BAC=180°,利用“同旁内角互补,两直线平行”可得DF∥AC;(2)由∠ADF=∠C,易得∠BFD=∠ADF,由平行线的判定定理和性质定理易得结果.【解答】解:(1)DF∥AC.理由:∵∠DEB=100°,∴∠AEF=∠DEB=100°,∵∠BAC=80°,∴∠AEF+∠BAC=180°,∴DF∥AC;(2)∵DF∥AC,∴∠BFD=∠C,∵∠ADF=∠C,∴∠BFD=∠ADF,∴AD∥BC,∴∠B=∠BAD,∵∠DAC=120°,∠BAC=80°,∴∠BAD=∠DAC﹣∠BAC=120°﹣80°=40°,∴∠B=40°.20.(2021秋•东营期末)如图,已知BC平分∠ABD交AD于点E,∠1=∠3.(1)证明:AB∥CD;(2)若AD⊥BD于点D,∠CDA=34°,求∠3的度数.【分析】(1)由角平分线的定义得到∠1=∠2,即得∠2=∠3,即可判定AB∥CD;(2)由垂直的定义得出∠ADB=90°,可得∠CDB=∠CDA+∠ADB=124°,由平行线的性质得出∠ABD=56°,根据角平分线的定义即可得解.【解答】(1)证明:∵BC平分∠ABD,∴∠1=∠2,∵∠1=∠3,∴∠2=∠3,∴AB∥CD.(2)解:∵AD⊥BD,∴∠ADB=90°,∵∠CDA=34°,∴∠CDB=∠CDA+∠ADB=34°+90°=124°,∵AB∥CD,∴∠ABD+∠CDB=180°,∴∠ABD=180°﹣124°=56°,∵BC平分∠ABD,∠1=∠3.∴∠3=∠1=∠2=12∠ABD=28°.21.(2021秋•淇县期末)如图,已知:AB∥CD,∠1+∠2=180°.(1)请你判断AD与EC的位置关系,并说明理由.(2)若CE⊥AE于点E,∠2=140°,试求∠FAB的度数.【分析】(1)根据平行线的性质得出∠1=∠ADC,求出∠2+∠ADC=180°,根据平行线的判定得出即可;(2)根据平行线的性质得出AD⊥AE,求出∠FAD=90°,求出∠1,再求出答案即可.【解答】解:(1)AD∥EC,理由是:∵AB∥CD,∴∠1=∠ADC,∵∠1+∠2=180°,∴∠2+∠ADC=180°,∴AD∥EC;(2)∵AD∥EC,CE⊥AE,∴AD⊥AE,∴∠FAD=90°,∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∴∠FAB=∠FAD﹣∠1=90°﹣40°=50°.22.(2021秋•沈丘县期末)如图,∠1=∠BCE,∠2+∠3=180°.(1)判断AC与EF的位置关系,并说明理由;(2)若CA平分∠BCE,EF⊥AB于F,∠1=72°,求∠BAD的度数.【分析】(1)由∠1=∠BCE,可得到直线AD与EC平行,可得到∠2与∠4间关系,再由∠2+∠3=180°判断AC与EF的位置关系;(2)由(1)的结论及垂直可得到∠BAC的度数,再由平行线及角平分线的性质得到∠2的度数,利用角的和差关系可得结论.【解答】解:(1)AC∥EF.理由:∵∠1=∠BCE,∴AD∥CE.∴∠2=∠4.∵∠2+∠3=180°,∴∠4+∠3=180°.∴EF∥AC.(2)∵AD∥EC,CA平分∠BCE,∴∠ACD=∠4=∠2.∵∠1=72°,∴∠2=36°.∵EF∥AC,EF⊥AB于F,∴∠BAC=∠F=90°.∴∠BAD=∠BAC﹣∠2=54°.23.(2021秋•舞钢市期末)如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解答】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.24.(2021秋•阳山县期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.【分析】(1)由平行线的性质可得∠BAD=∠1,从而可求得∠BAD+∠2=180°,即可判断;(2)由题意可求得∠1=38°,再由角平分线的定义可得∠CDG=∠1=38°,再利用平行线的性质即可求解.【解答】解:(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°,∵AD∥EF;(2)∵∠1+∠2=180°,∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.25.(2021秋•紫金县期末)如图,E,G分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,已知AB∥DG,∠1+∠2=180°.(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=145°,求∠B的度数.【分析】(1)由平行线的性质可得∠1=∠BAD,从而可求得∠2+∠BAD=180°,即可判定AD∥EF;(2)由题意可求得∠1=35°,再由角平分线的定义可得∠GDC=∠1=35°,利用平行线的性质即可得∠B的度数.【解答】(1)证明:∵AB∥DG,∴∠1=∠BAD,∵∠1+∠2=180°,∴∠BAD+∠2=180°,∴AD∥EF;(2)解:∵∠1+∠2=180°,∠2=145°,∴∠1=180°﹣∠2=35°,∵DG是∠ADC的平分线,∴∠GDC=∠1=35°,∵AB∥DG,∴∠B=∠GDC=35°.26.(2021春•浏阳市期末)如图,AE平分∠BAC,∠CAE=∠CEA.(1)如图1,求证:AB∥CD;(2)如图2,点F为线段AC上一点,连接EF,求证:∠BAF+∠AFE+∠DEF=360°.【分析】(1)根据角平分线的定义得出∠BAE=∠CAE,求出∠CEA=∠BAE,根据平行线的判定得出即可;(2)过F作FM∥AB,求出AB∥FM∥CD,根据平行线的性质得出∠BAF+∠AFM=180°,∠DEF+∠EFM=180°,即可求出答案.【解答】证明:(1)∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠CEA=∠BAE,∴AB∥CD;(2)过F作FM∥AB,如图,∵AB∥CD,∴AB∥FM∥CD,∴∠BAF+∠AFM=180°,∠DEF+∠EFM=180°,∴∠BAF+∠AFM+∠DEF+∠EFM=360°,即∠BAF+∠AFE+∠DEF=360°.27.(2021秋•和平县期末)如图,MN∥BC,BD⊥DC,∠1=∠2=60°,DC是∠NDE的平分线.(1)AB与DE平行吗?请说明理由;(2)试说明∠ABC=∠C;(3)求∠ABD的度数.【分析】(1)根据平行线的性质得出∠ABC=∠1=60°,求出∠ABC=∠2,根据平行线的判定得出即可;(2)根据平行线的性质得出∠NDE+∠2=180°,求出∠NDE=120°,根据角平分线的定义得出∠EDC=∠NDC=12∠NDE=60°,根据平行线的性质得出∠C=∠NDC=60°即可;(3)求出∠ADC=180°﹣∠NDC=120°,求出∠BDC=90°,求出∠ADB=∠ADC﹣∠BDC=30°,根据平行线的性质得出∠DBC=∠ADB=30°,再得出答案即可.【解答】解:(1)AB∥DE,理由如下:∵MN∥BC,∠1=60°,∴∠ABC=∠1=60°,又∵∠1=∠2,∴∠ABC=∠2,∴AB∥DE;(2)∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°,∵DC是∠NDE的角平分线,∴∠EDC=∠NDC=12∠NDE=60°,∵MN∥BC,∴∠C=∠NDC=60°,∴∠ABC=∠C;(3)∵∠ADC+∠NDC=180°,∠NDC=60°,∴∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°,∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°,∵MN∥BC,∴∠DBC=∠ADB=30°,∵∠ABC=∠C=60°,∴∠ABD=30°.28.(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:①∠ABC=2∠E;②∠E+∠F=90°.【分析】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∥BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∥EF;(3)①由AB∥EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;②由AD∥BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD=2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解答】解:(1)AD∥BC,理由如下:∵∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∴∠BCF=∠ADC,∴AD∥BC.(2)AB∥EF,理由如下:∵AF平分∠BAD,∠BAD=2∠F,∴∠BAF=12∠BAD=∠F,∴AB∥EF.(3)①∠ABC=2∠E,理由如下:∵AB∥EF,∴∠ABE=∠E.∵BE平分∠ABC,∴∠ABC=2∠ABE=2∠E.②∠E+∠F=90°,理由如下:∵AD∥BC,∴∠BAD+∠ABC=180°.∵∠BAD=2∠F,∠ABC=2∠E,∴2∠E+2∠F=180°,∴∠E+∠F=90°.29.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB∥CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.【分析】(1)由对顶角相等可得∠AGE=∠DGC,从而可得∠AEG=∠C,则可判定AB∥CD;(2)由平角的定义可得∠AGE+∠EGH=180°,从而可求得∠EGH=∠AHF,则可判定EC∥BF,则有∠B=∠AEG,从而可求证;(3)由(2)得BF∥EC,则有∠C+∠BFC=180°,从而可求∠C的度数,利用三角形的内角和即可求∠D的度数.【解答】(1)证明:∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC,∴∠AEG=∠C,∴AB∥CD;(2)证明:∵∠AGE+∠EGH=180°,∠AGE+∠AHF=180°,∴∠EGH=∠AHF,∴EC∥BF,∴∠B=∠AEG,∵AB∥CD,∴∠C=∠AEG,∴∠B=∠C;(3)解:∵BF∥EC,∴∠C+∠BFC=180°,∵∠BFC=4∠C,∴∠C+4∠C=180°,解得∠C=36°,∵∠C=∠DGC,∴∠DGC=36°,∴∠D=180°﹣∠C﹣∠DGC=108°.30.(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【分析】(1)根据,∠E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∥FP,进而可证明结论;(3)根据同旁内角互补可判定AB∥FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解答】(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.。
平行线性质练习题30题
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
七年级数学-平行线的性质与判定的证明-练习题及答案
七年级数学-平行线的性质与判定的证明-练习题及答案--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________平行线的性质与判定的证明温故而知新可以为师以:重点1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:根据两直线平行,内错角相等及角平分线定义求解.(标注∠MND=∠AMN,∠DNP=∠EPN)答案:(标注∠MND=∠AMN=60°,∠DNP=∠EPN=80°)解:(1)∵AB∥CD∥EF,∴∠MND=∠AMN=60°,∠DNP=∠EPN=80°,∴∠MNP=∠MND+∠DNP=60°+80°=140°,又NQ平分∠MNP,∴∠MNQ=12∠MNP=12×140°=70°,∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步) (2)(标注∠MND=∠AMN,∠DNP=∠EPN)由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,∴∠MNQ=12∠MNP=12(∠AMN+∠EPN),∴∠DNQ=∠MNQ-∠MND=12(∠AMN+∠EPN)-∠AMN=12(∠EPN-∠AMN),即2∠DNQ=∠EPN-∠AMN.小结:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)证明:因为∠AGD=∠ACB,所以DG∥BC,所以∠1=∠DCB,又因为CD⊥AB,EF⊥AB,所以CD∥EF,所以∠2=∠DCB,所以∠1=∠2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF∥AB由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)答案:证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠1=∠ABC,∠2=∠CDE.∵∠BCD=∠1+∠2,∴∠ABC+∠CDE=∠BCD;(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.(标注∠ABC+∠1=180°,∠2+∠CDE=180°)答案:∠ABC+∠BCD+∠CDE=360°.证明:如图,过点C作CF∥AB,∵直线AB∥ED,∴AB∥CF∥DE,∴∠ABC+∠1=180°,∠2+∠CDE=180°.∵∠BCD=∠1+∠2,∴∠ABC+∠BCD+∠CDE=360°.小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:动画过点B作BD∥AE,答案:解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°∵∠A=120°,∠1+∠2=∠ABC=150°,∴∠2=30°,∴∠C=180°-30°=150°.小结:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°解析:∠AEG=180°-120°=60°,由外凸角和等于内凹角和有60°+30°+30°=x+48°,解得x=72°. 答案:B.2.已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.解析:解:∵AB∥EF∥CD,∴∠B=∠BEF,∠DEF=∠D.∵∠B+∠BED+∠D=192°,即∠B+∠BEF+∠DEF+∠D=192°,∴2(∠B+∠D)=192°,即∠B+∠D=96°.∵∠B-∠D=24°,∴∠B=60°,即∠BEF=60°.∵EG平分∠BEF,∴∠GEF=12∠BEF=30°.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.解析:标注AB∥EF,BC∥ED答案:证明:∵AB∥EF,∴∠E=∠AGD.∵BC∥ED,∴∠B=∠AGD,∴∠B=∠E.例5如图2-6,已知AB∥CD,试再添上一个条件,使∠1=∠2成立,并说明理由.解析:标注 AB∥CD,∠1=∠2答案:方法一:(标注CF∥BE)解:需添加的条件为CF∥BE ,理由:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠EBC,∴∠1=∠2;方法二:(标注CF,BE,∠1=∠2=∠DCF=∠ABE)解:添加的条件为CF,BE分别为∠BCD,∠CBA的平分线.理由:∵AB∥CD,∴∠DCB=∠ABC.∵CF ,BE 分别为∠BCD ,∠CBA 的平分线,∴∠1=∠2.小结:解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.例6 如图1-7,已知直线1l 2l P ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
平行线的判定定理和性质定理练习题
平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则a b .3.如图2,写出一个能判定直线a ∥b 的条件: . 4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ). 5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 . 7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB∥CD 的条件来: . 10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC∥ED( );(2)∵∠2 =∠ (已知), ∴AC∥ED( ); (3)∵∠A +∠ = 180°(已知), ∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知), ∴AC∥ED( ); 二、解答下列各题11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.∵∠D=∠A∴AB||DE (内错角相等,两直线平行)∵∠B=∠FCB ∴AB||CF (内错角相等,两直线平行) A C B 4 1 2 3 5 图4 a b c d 1 2 3 图3 A B C E D 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3A F C DB E图8EB AF D C 图9A D CB O 图5 图6 5 1 24 3 l 1 l 2 图75 4 3 2 1 A D C B∴DE||CF12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.证明:∵∠1∶∠2∶∠3 = 2∶3∶4又∵,∠1+∠2+∠3 =180度 ∴∠1=40度,∠2=60度,∠3 = 80度 ∵∠AFE = 60°=∠2,所以AB 平行ED又∵∠BDE =120°,∠BDE =120°+∠2=120°+60°=180°∴FE ∥BD13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。
7.3平行线的判定同步练习北师大版2024—2025学年八年级上册
7.3平行线的判定同步练习北师大版2024—2025学年八年级上册一、夯实基础:1、平行线的判定:⑴同位角,两条直线平行.⑵内错角,两条直线平行.⑶同旁内角,两条直线平行.2、如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行3、如图,直线a,b被直线c,d所截.下列条件能判定a∥b的是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠1=∠24、如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°5、如图,点E在CD延长线上,下列条件中能判定AB∥CE的是()A.∠5=∠C B.∠1=∠2C.∠B=∠C D.∠C+∠CAB=180°二、例题精讲:例1、如图,点D在△ABC的边AB上,DF经过边AC的中点E,且EF=DE.求证:CF ∥AB.变式1、如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.变式2、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,证明:AB∥CD.变式3、如图,∠1=∠2,∠3=∠4.试说明AB∥CD.变式4、如图,点A,B,C在同一条直线上,∠1=∠2,∠A=∠E,求证:AD∥BE.变式5、如图,已知∠1=∠ACB,∠2=∠3,求证:FH∥CD.例2、将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.变式1、如图所示,在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC交CD于点E,DF平分∠ADC交AB于点F.(1)求证:∠ABC+∠ADC=180°;(2)求证:BE∥DF.变式2、如图,已知△ABC,∠ACB=80°,点E,F分别在AB,AC上,ED交AC于点G,交BC的延长线于点D,∠FEG=32°,∠CGD=48°.求证:EF∥BC.变式3、如图,点G在AB上,点E在CD上,连接BE,CG,DG,BE与DG交于点F,∠2=∠C.(1)若∠1=60°,求∠ABF的度数;(2)若∠GBF+∠BFG=152°,∠D=28°,求证:AB∥CD.例3、根据图形填空:如图所示,完成推理过程.(1)∵∠1=∠3(已知),∴∥().(2)∵∠2=∠3(已知),∴EF∥AD().(3)∵∠DGA+∠BAC=180°(已知),∴DG∥BA().(4)∵∠B=∠CDG(已知),∴∥().变式1、已知:如图,EF⊥FG,垂足为F,且点F在直线CD上,FE与直线AB相交于点H,∠1+∠2=90°.求证:AB∥CD.(请完成下面的证明过程)证明:∵EF⊥FG(已知),∴∠EFG=°(垂直的定义),即∠EFD+=90°.又∵∠1+∠2=90°(已知),∴∠EFD=(),∴AB∥CD().变式2、按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知),∴∠1+=90°().∵∠1+∠2=90°(已知),∴=∠2().∴DE∥BC().变式3、如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,试说明:CE∥DF.请完成下面的解题过程.解:∵BD平分∠ABC,CE平分∠ACB(已知),∴∠,(角平分线的定义),又∵∠ABC=∠ACB(已知)∴∠=∠.又∵∠F=∠DBF(已知)∴∠F=∠,∴CE∥DF().三、能力提升:1、如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,且∠1+∠2=90°.(1)求证:AB∥CD;(2)若∠2:∠3=2:5,求∠AOF的度数.2、已知:如图所示,直线AB、直线DE被直线l所截,分别交直线AB、DE于点A、D.点C为其内部一点,连结AC,CD,且满足∠1+∠2=∠ACD.(1)求证:AB∥DE;(2)若∠ACD=90°,且AC平分∠BAD,说明∠1和∠ADC的数量关系.。
平行线判定与性质习题经典
∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行
2024八年级数学上册第七章平行线的证明4平行线的性质习题课件新版北师大版
∠ EFG ,∠ CED =∠ GHD .
(2)试判断∠ AED 与∠ D 之间的数量关系,并说明理由;
1
2
3
4
5
6
7
8
9
10
(2)解:∠ AED +∠ D =180°.理由如下:
∵ CE ∥ GF ,∴∠ C =∠ FGD .
第七章
4
平行线的证明
平行线的性质
CONTENTS
目
录
01
1星题
落实四基
02
2星题
提升四能
03
3星题
发展素养
知识点1平行线的性质
1. 如图,已知直线 a ∥ b .
(1)根据“两直线平行,同位角相等”,可得
∠1=∠ 5
∠ 6
,∠4=∠ 8
,∠3=∠
1
2
3
,∠2=
7 ;
4
5
6
7
8
9
10
1. 如图,已知直线 a ∥ b .
(
C
)
A. 40°
B. 45°
C. 50°
D. 55°
1
2
3
4
5
6
7
8
9
10
3. [2023济宁]如图, a , b 是直尺的两边, a ∥ b ,把三角板
的直角顶点放在直尺的 b 边上,若∠1=35°,则∠2的度
数是(
B
)
A. 35°
1
2
3
4
5
6
7
8
9
10
知识点2平行线的性质与判定的关系
平行线的性质知识点及练习题
平行线的性质知识点及练习题1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。
几何符号语言:∵AB ∥CD∴∠1=∠2〔两直线平行,内错角相等〕∵AB ∥CD ∴∠3=∠2〔两直线平行,同位角相等〕∵AB ∥CD ∴∠4+∠2=180°〔两直线平行,同旁内角互补〕2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,那么称线段EF 的长度为两平行线AB 与CD 间的距离。
注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,那么垂线段GH 的长度也就是直线AB 与CD 间的距离。
3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两局部组成。
题设是事项;结论是由事项推出的事项。
命题常写成“如果……,那么……〞的形式。
具有这种形式的命题中,用“如果〞开场的局部是题设,用“那么〞开场的局部是结论。
有些命题,没有写成“如果……,那么……〞的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……〞的形式。
注意:命题的题设〔条件〕局部,有时也可用“……〞或者“假设……〞等形式表述;命题的结论局部,有时也可用“求证……〞或“那么……〞等形式表述。
4、平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。
其中,由角的相等或互补〔数量关系〕的条件,得到两条直线平行〔位置关系〕这是平行线的判定;由平行线〔位置关系〕得到有关角相等或互补〔数量关系〕的结论是平行线的性质。
典型例题:∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B 〔〕∴DE ∥BC 〔同位角相等,两直线平行〕 ∴∠2=∠C 〔两直线平行,同位角相等〕注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°求∠2、∠3的度数A B C DEF 1 2 3 4 A EG B C FH D A D F BE C 1 2 3解答:∵DE ∥BC 〔〕∴∠2=∠1=65°〔两直线平行,内错角相等〕∵AB ∥DF 〔〕∴AB ∥DF 〔〕∴∠3+∠2=180°〔两直线平行,同旁内角互补〕∴∠3=180°-∠2=180°-65°=115°平行线的性质练习题一、选择题:(每题3分,共12分)1、如图1所示,AB ∥CD,那么与∠1相等的角(∠1除外)共有( ) D C B A 1ED C BA O F E D C BA (1) (2) (3) 〔4〕2、如图2所示,DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )°°°°3、以下说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4、如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,那么∠BOF 为( )°°°°二、填空题:(每题3分,共12分)5、如图4所示,n m //,∠2=50°,那么∠1= °,∠3= °,∠4= °6、把命题“邻补角的平分线互相垂直〞改写成“如果……,那么……。
2022年人教版平行线的判定性质练习知识点考点典型例题
5.2平行线及其鉴定【知识要点】平行线旳鉴定(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)在同一平面内,垂直于同一条直线旳两条直线互相平行(5)平行公理旳推论:假如两条直线都与第三条直线互相平行,那么这两条直线也互相平行。
【配套练习】一.判断题:1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。
()2.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()二.填空题:1.∵a∥b,b∥c(已知)∴______ ∥______()2.如图:1234ab c(1)∵______=∠3,∴a∥b ()。
(2)∵∠2=∠4,∴______∥________()(3)∵∠2+∠3=180°,∴______∥________()3.如图③∵∠1=∠2,∴______∥________()∵∠2=∠3,∴______∥_______()4.如图④∵∠1=∠2,∴______∥________()∵∠3=∠4,∴______∥________()5.如图⑤∠B=∠D=∠E,那么图形中旳平行线有________________________________。
6.如图⑥∵AB⊥BD,CD⊥BD(已知)∴∠B=∠D=90°()∴∠B+∠D=180°∴AB∥CD ( )又∵∠1+∠2 =180°(已知)∴AB∥EF ( )∴CD∥EF ( )三.选择题:1.如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,鉴定AB∥CE旳理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE3.如图⑨,下列推理错误旳是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b旳是()A.①③B.②④C.①③④D.①②③④四.完毕推理,填写推理根据:1.如图⑩∵∠B=∠______,∴AB∥CD()∵∠BGC=∠____,∴CD∥EF()∵AB∥CD ,CD∥EF,∴AB∥_______()2.如图⑾填空:(1)∵∠2=∠3(已知)∴AB__________()(2)∵∠1=∠A(已知)∴__________()(3)∵∠1=∠D(已知)∴__________()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试4 平行线及平行线的判定课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB 交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( ) ∴∠1=_______.( )∴AB ∥CD .(___________,___________)(2)分析:如图,欲证AB ∥CD ,只要证∠3=∠4. 证法2:∵∠4=∠1,∠3=∠2,( ) 又∠1=∠2,(已知)从而∠3=_______.( )∴AB ∥CD .(___________,___________)拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( )∴∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)测试5 平行线的性质课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB ∥CD ,∠1=∠2.求证:BE ∥CF .证明思路分析:欲证BE ∥CF ,只要证______=______.证明:∵AB ∥CD ,( )∴∠ABC =______.(____________,____________) ∵∠1=∠2,( )∴∠ABC -∠1=______-______,( ) 即______=______.∴BE ∥CF .(__________,__________)9.已知:如图,AB ∥CD ,∠B =35°,∠1=75°.求∠A 的度数.解题思路分析:欲求∠A ,只要求∠ACD 的大小. 解:∵CD ∥AB ,∠B =35°,( )∴∠2=∠______=_______°.(____________,____________) 而∠1=75°,∴∠ACD =∠1+∠2=______°. ∵CD ∥AB ,( )∴∠A +______=180°.(____________,____________) ∴∠A =_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡.解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°.(____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.。