七年级下册平方根练习题及答案
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
最新人教版初中七年级下册数学《平方根》同步练习题

《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。
七年级下册-平方根习题题精选含答案

6.1平方根习题题精选学校______班别______姓名______考号______一.选择题(共30小题)1.(2014?东营)的平方根是()3 9 9 ±±3 .A.C .DB.4的平方根是()2.(2014?鞍山)2 2 ±D .B.C.A.±)2014?陕西)4的算术平方根是(3.(2DC.A..﹣2 B.﹣)4.(2014?百色)化简得(0 100 1±10 D A..C B..20142y+2),则(=0x+y))等于(5.(2014?张家界)若+(20142014 1 .DC.A.1 ﹣B.3 3﹣)?6.(2014泸州)已知实数x、y满足+|y+3|=0,则x+y的值为(2 44 ﹣.﹣2B.DCA..2的值是(+=0,则m+n)7.(2014?福州)若(m﹣1)2 01 A.﹣1 B.DC..8.(2014?新泰市一模)的平方根是() 1.414 2 ±±2 ﹣.DCA...B的平方根是()|9.(2014?德州一模)﹣4| 22 ±B 2C.﹣存在.DA.不.2014?资阳一模)下列说法正确的是()10.(何数的平方根有两个.任A 只.B有正数才有平方根C.数既没有平方根,也没有立方根负.一个非负数的平方根的平方就是它本身D)201411.(?上城区二模)的算术平方根是(22 ±C.A...BD ±12.(2014的平方根是()?吉安模拟)9 33 9 ±±C ..B.A.D邻水县模拟)16的算术平方根的平方根是()?13.(2014 24 2 ±±4 .DA..B.C 的算术平方根的相反数是(2013.(?南充)0.49)14 0.7 00.7 ±DC..﹣A..B 0.7黄石模拟)算术平方根等于(2013?2的数是().154x=3 4 ±±.D.A. B C.2)(﹣?(16.2012滨湖区模拟)5的平方根是()55 ±5 ﹣..C A.B.D ±)m13m42m.若17﹣与﹣是同一个数两个不同的平方根,则的值(1 1.3 .A ﹣BC.1 或3﹣﹣.D18).下列说法正确的是(A..B 的平方根1是﹣﹣111是的算术平方根2C的平方根2是4 ..D1 的平方根是)1﹣(.)19.下列说法正确的是(A.9的平方根是±3 B.1的立方根是±1D.C.一个数的算术平方根一定是正数1 =±20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.0D.大于或等于等于0 C.小于021.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.B22.81的平方根是±9的数学表达式是()A D..B.C.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()100 25 A.B.C.10 或D.100或25 524.如果一个数的平方根是这个数本身,那么这个数是()0 1 ±1 A.B..﹣1C.D25.下列说法中正确的是()2A.B.3是的正平方根的负平方根3是﹣3﹣22D..C3是(﹣3))的平方根是﹣3 的正平方根(﹣326.若一个数的平方根是±8,则这个数是()16 64 ±±64 16 A.B.D.C.27.一个正数的平方根是2m+3和m+1,则这个数为()A.B.C.D.﹣1或28.下列说法正确的是()A.B.1的立方根是±1表示25的平方根 D 负数没平方根C..有平方根,而没有平方根)29.下列说法正确的是(2A..B 的平方根是a a﹣是a的平方根2.C.D一个实数总有两个平方根a的平方根是a )30.下列说法正确的是(2.B A.的正的平方根2是的负的平方根2 2﹣是﹣22D.C .(﹣2是(﹣22)的正的平方根)的平方根是﹣28小题)一.填空题(共_________.本溪)一个数的算术平方根是?(1.20142,则这个数是2.(2014?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为_________.3.(2014?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=_________.4.(2014?普陀区二模)._________的平方根是._________的算术平方根是?5.(2014道里区一模).?2013高港区二模)_________的平方根是(6.._________的值为ab的两个平方根,则9分别是b、a高淳县二模)如果?2013(.72.y=_________2x﹣4)互为相反数,那么2x﹣与(潮安县模拟)如果8.(2013?小题)二.解答题(共12.解方程:9222﹣15=0.10.解方程:0.25(3x+1(1)x﹣)﹣=0;(2)(x1)=36.22.1)=36(2)12.解方程:(1()x﹣=0;11.解方程:196x﹣1=0.2.﹣13.解方程:(2x+1)6=0b0.05477 0.1732 a 5.47717.3254.771.732结果的值;)求(1a和b (2)用一句话概括你发现的规律.15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 2256.00 259.21 262.44 265.69 268.96 272.25 275.56 278.89 282.24 285.61 289.00 x(1)268.96的平方根是多少?(2)≈_________.在哪两个数之间?为什么?)3(最接近的是哪个数?)表中与4(16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.17.计算:,=_________;)=_________1(;_________2(=).3(=)_________=,_________仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值.2的平方根.).若x+2,求(192的平方根.y﹣x,求=0)2﹣x(+.己知20.6.1平方根习题题精选(参考答案与试题解析)一.选择题(共30小题)1.(2014?东营)的平方根是()3 9 9 ±3 ±D .B.C.A.考点:平方根;算术平方根.计算题.专题:根据平方运算,可得平方根、算术平方根.分析:解答:,解:∵,的平方根是±39 .故选:A 本题考查了算术平方根,平方运算是求平方根的关键.点评:2.(2014?鞍山)4的平方根是()2 ±2 A.B.C.D.±平方根.考点:计算题.专题:利用平方根的定义计算即可.分析:2解答:=4解:∵(±2),2,∴4的平方根是±B故选此题考查了平方根,熟练掌握平方根的定义是解本题的关键.点评:3.(2014?陕西)4的算术平方根是()2 A.﹣2 B.C.D.﹣考点:算术平方根.专题:计算题.分析:根据算术平方根的定义进行解答即可.解答=解:的算术平方根故选:B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.4.(2014?百色)化简得()100 10 ±10 A.B.C. D .考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:=10,故答案为:B.点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.22014等于())y+22014?张家界)若+()=0,则(x+y5.(20142014 1 A.﹣1 B.C.D.3 ﹣3考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.2解答:解:∵+(y+2)=0,,∴.解得,20142014 =1,﹣2)∴(x+y)=(1 B.故选:0.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为点评:)的值为(、xy满足+|y+3|=0,则x+y6.(2014?泸州)已知实数 4 2 4 ﹣D.B.C.A.﹣2非负数的性质:算术平方根;非负数的性质:绝对值.考点:分类讨论.专题:的值,然后将代数式化简再代值计算.x、y分析:根据非负数的性质,可求出解:∵+|y+3|=0,解答:;1=0,y+3=0∴x﹣,﹣3∴x=1,y=2 ﹣)=∴原式=1+(﹣3 .故选:A .时,这几个非负数都为0点评:本题考查了非负数的性质:几个非负数的和为02),则m+n的值是(2014?福州)若(m﹣1)+=07.( 2 0 1.C.DA.﹣1 B.非负数的性质:算术平方根;非负数的性质:偶次方.考点:的值,然后将代数式化简再代值计算.根据非负数的性质,可求出m、n分析:2解答:=0),+解:∵(m﹣1 n+2=0;﹣1=0,∴m 2,,n=﹣∴m=11 ﹣2)=(﹣∴m+n=1+ .故选:A .0时,这几个非负数都为0点评:题考查了非负数的性质:几个非负数的和为8.(2014?新泰市一模)的平方根是()±2 ±1.414 A.B. C .D.﹣2考点:平方根;算术平方根.专题:探究型.分析:先把化为2的形式,再根据平方根的定义进行解答即可.解答:解:∵=2,2的平方根是±,∴.的平方根是±故选C.点评:本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.9.(2014?德州一模)|﹣4|的平方根是()2 ±2 A.B.C.﹣2 D.不存在考点:平方根.分析:先根据绝对值的性质求出|﹣4|的值,再根据平方根的定义得出答案即可.2解答:解:∵|﹣4|=4,(±2)=4,∴|﹣4|的平方根是±2.故选B.点评:本题考查的是绝对值和平方根的定义,如果一个数的平方等于a,这个数就叫做a的平方根,也叫的二次方根.a做10.(2014?资阳一模)下列说法正确的是()A.任何数的平方根有两个只有正数才有平方根B.负数既没有平方根,也没有立方根C.D.一个非负数的平方根的平方就是它本身考点:平方根.专题:常规题型.分析:本题根据平方根的定义即可解答.用排除法作答.解答:解:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如﹣1的立方根为﹣1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.点评:本题考查了平方根和立方根的定义,考查了考生对正负数的立方根理解.11.(2014?上城区二模)的算术平方根是()2 ±2 A.B.C.D.±考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.12.(2014?吉安模拟)的平方根是()9 3 ±9 ±3 A.B.C.D.考点:算术平方根;平方根.分析求=,求的平方根即可解答:解:∵=9,∴的平方根是±3,故选D.点评:本题考查了对算术平方根,平方根的定义的应用,主要考查学生的计算能力.13.(2014?邻水县模拟)16的算术平方根的平方根是()4 2 ±4 ±2 A.B.C.D.考点:算术平方根;平方根.分析:先求出16的算术平方根,再根据平方根定义求出即可.解答:解:∵16的算术平方根是4,∴16的算术平方根的平方根是±2,故选D.点评:本题考查了对平方根和算术平方根的应用,主要考查学生的计算能力.14.(2013?南充)0.49的算术平方根的相反数是()0.7 0 0.7 ±.D﹣0.7 C ..A.B算术平方根;相反数.:考点的算术平方根,然后求其相反数即可.分析:先算出0.49解答:,0.49的算术平方根为=0.7解:的算术平方根的相反数为:﹣则0.490.7..B故选.本题考查了算术平方根及相反数的知识,属于基础题,掌握各知识点概念是解题的关键.点评:)黄石模拟)算术平方根等于2的数是(15.(2013?4x=3 4 ±±D.A.B .C.考点:算术平方根.(a≥0)的算术平方根就是平方是a的非负数,据此即可判断.分析:根据a2解答:=4.2的数是2解:算术平方根等于故选:A.点评:本题考查了算术平方根的定义,正确理解定义是关键.2)?滨湖区模拟)(﹣5)的平方根是(16.(201255 ±5﹣..C.DA.B ±:平方根.考点:计算题.专题2分析:的值,再根据平方根的定义得出±先求出(﹣5),求出即可.2解答:=25,解:∵(﹣5)5,±∴±= A.故选点评:,一个正数有两个平方根,它们互0)的平方根是本题考查了对平方根的定义的应用,注意:a(a≥为相反数.)1是同一个数两个不同的平方根,则m的值(﹣17.若2m4与3m﹣1 1 ﹣D3或1 .3 B.C.﹣A.﹣平方根.考点:互为相反数,即可列方程﹣1﹣4与3m﹣4与3m﹣1是同一个数两个不同的平方根,则2m分析:根据2m m的值.求得=0,﹣1)2m﹣4)+(3m解答:解:根据题意得:(m=1.解得:B.故选本题考查了平方根的定义,正确理解两个平方根的关系是关键.点评:).下列说法正确的是(1的算术平方的平方是的平方1的平方根考平方根;算术平方根分析根据平方根的定义,分别得出各选项的答案即可解答解:.负数没有平方根,∴是的平方根错误,故此选项错误.的算术平方根,故此选项正确.∵(=,的平方根,故此选项错误.的平方根,故此选项错误故选:B.点评:此题主要考查了平方根的定义和性质,注意平方根的定义与立方根进行区分,这是易错点.19.下列说法正确的是()A.9的平方根是±3 B.1的立方根是±1C.D.一个数的算术平方根一定是正数 1 ±=考点:平方根;立方根.分析:根据平方根、立方根以及算术平方根的定义分别进行判断即可.解答:解:A、9的平方根为±3,所以A选项正确;B、1的立方根为1,所以B选项错误;C、=1,所以C选项错误;D、0的算术平方根为0,所以D选项错误..A故选.点评:本题考查了平方根的定义:如果一个数的平方等于a,那么这个数就叫a的平方根,记作(a≥0).也考查了算术平方根以及立方根的定义.20.一个数如果有两个平方根,那么这两个平方根之和是()A.大于0 B.等于0 C.小于0 D.大于或等于0考点:平方根.分析:根据一个正数的平方根有两个,这两个数互为相反数得出即可.解答:解:∵一个正数的平方根有两个,这两个数互为相反数,∴一个数如果有两个平方根,那么这两个平方根之和是0,故选B.点评:本题考查了平方根和相反数的应用,注意:互为相反数的两个数相加等于0.21.下列说法正确的()(1)9的平方根是±3 (2)平方根等于它本身的数是0和1(3)﹣2是4的平方根(4)的算术平方根是4.1 2 3 4 A.B.C.D.考点:平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,算术平方根的定义对各小题分析判断后进行解答即可.解答:解:(1)9的平方根是±3,正确;(2)平方根等于它本身的数是0,故本小题错误;(3)﹣2是4的平方根,正确;(4)∵=4,4的算术平方根是2,故本小题错误.所以正确的有(1)(3)正确.故选B.点评:本题主要考查了平方根与算术平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.22.81的平方根是±9的数学表达式是()A.B.C.D.考平方根分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.解答:解:∵“81的平方根是±9”,根据平方根的定义,即可得出±=±9.故选:D.点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键.23.已知3m﹣1和m﹣7是数p的平方根,则p的值为()0055025考平方根专计算题分析根据一个数的平方根互为相反数或相等,从而可得的值,进而可得的值解答解:3是的平方根31=31+7=∵31=时,解m∴3m﹣1=﹣10,∴p=100,当3m﹣1+m﹣7=0时,解得m=2,∴3m﹣1=5,∴p=25.故选D.点评:本题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.).如果一个数的平方根是这个数本身,那么这个数是(24 1 0 1 ±1 ﹣D.B.C.A.平方根.考点:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有分析:.0 .0的平方根是0解答:解:.故选这个数为0 .故选A;负数00的平方根是点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;没有平方根.)25.下列说法中正确的是(2..B A 的正平方根3是的负平方根是﹣3﹣322..DC 的正平方根﹣3)3的平方根是﹣3 )3是(﹣(:平方根.考点根据平方根的定义即可解答.分析:2解答:93,负数没有平方根,故本选项错误;=﹣解:A、﹣、是的正平方根,故本选项错误;B 2 3,故本选项错误;3)的平方根是±C、(﹣2)的正平方根,故本选项正确;3是(﹣3D、D.故选;负数的平方根是0 本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0点评:没有平方根.),则这个数是(26.若一个数的平方根是±84 6 16 64 ±±16 D..C.A.B 平方根.考点:分析根据平方根的定义,求解即可解答=6解:这个故本题考查了平方根的知识,属于基础题,掌握平方根的定义是关键点评:)和m+1,则这个数为(27.一个正数的平方根是2m+3.DC.A.B.或1 ﹣考点:平方根.分析:根据互为相反数的两个数的和为0,可得m的值,根据平方,可得答案.解答:解:(2m+3)+(m+1)=0,m=﹣,m+1=﹣,(m+1)=,故选:C.点评:本题考查了平方根,先求出m的值,再求出平方根,最后求出这个数.28.下列说法正确的是()A.B.1的立方根是±1的平方根表示25D数没平方根负.C.没有平方根有平方根,而考点:平方根;算术平方根;立方根.分析:根据平方根以及立方根的定义,结合选项进行判断.解答:解:A、表示25的算术平方根,故本选项错误;B、1的立方根是﹢1,故本选项错误;C、负数没平方根,该说法正确,故本选项正确;D、=9,有平方根,也有平方根,故本选项错误.故选C.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.29.下列说法正确的是()2A.B.a的平方根是﹣a是a的平方根2一个实数总有两个平方根C.D.a的平方根是a考点:平方根.分析:根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根可得到答案.2解答:的平方根,故此选项正确;是a解:A、﹣a B、a的平方根是±,故此选项错误;C、一个实数总有两个平方根,说法错误,负数没有平方根,故此选项错误;2D、a的平方根是±a,故此选项错误;故选:A.点评:此题主要考查了平方根,关键是掌握平方根的性质.30.下列说法正确的是()2B.A.2是的正的平方根2的负的平方根﹣2是﹣22C.D .(﹣的正的平方根2)的平方根是﹣22是(﹣2)考点:平方根;算术平方根.分析:本题是一道运用平方根的性质解答的选择题,利用逐一推敲的方法和排除法解答本题.解答:解:A、应该是是2的正的平方根,故本选项错误;2B、﹣2是负数,没有平方根,故本选项错误;D、一个正数有两个平方根,并且互为相反数,故本选项错误.排除法故选C.点评:本题是一道涉及平方根和算术平方根的选择题,考查了平方根的性质和算术平方根的意义.一.填空题(共8小题)1.(2014?本溪)一个数的算术平方根是2,则这个数是4.考算术平方根专题:计算题.分析:利用算术平方根的定义计算即可得到结果.解答:解:4的算术平方根为2,故答案为:4点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.(2014?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为﹣3或1.考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为0,根据解一元一次方程,可得答案.解答:解:2x﹣4与1﹣3x是同一个数的平方根,∴(2x﹣4)+(1﹣3x)=0,或2x﹣4=1﹣3x解得x=﹣3或x=1故答案为:﹣3或1.点评:本题考查了平方根,一个正数的平方根的和为0..1﹣x=,则x﹣4和2﹣3x江西模拟)已知一个正数的两个不同的平方根是?2014(.3:平方根.考点,可得一元一次方程,根据解方程,可得根据一个正数的平方根互为相反数,可得平方根的和为0分析:x的值.﹣x,解:已知一个正数的两个不同的平方根是3x﹣2和4解答:)=0,+(4﹣x2(3x﹣)﹣1,解得x= 故答案为:﹣1.本题考查了平方根,平方根的和为0是解题关键.点评:.±2014?普陀区二模)的平方根是4.(考点:算术平方根;平方根.分析:先根据算术平方根的定义求=6,再根据平方根的概念求6的平方根即可.解答:解:∵=6,∴的平方根是±.故答案填±.点评:本题考查了平方根的概念.注意:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(2014?道里区一模)的算术平方根是.考点:算术平方根.专题:常规题型.分析:根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.2解答:=25,解:∵5∴=5,∴的算术平方根是.故答案为:.点评:本题考查了算术平方根的定义,先把化简是解题的关键.6.(2013?高港区二模)的平方根是.考点:算术平方根;平方根.分析:首先算术平方根的定义化简,然后根据平方根的定义即可求得结果.解答解:=的平方根∴的平方根是.故答案为:.点评:此题主要考查了平方根算术平方根定义,解题时注意:本题求的是2的平方根,不是4的平方根.7.(2013?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为﹣9.考点:平方根.专题:计算题.分析:根据平方根的定义得到9的平方根为±3,然后计算这两个数的积.解答:解:∵9的平方根为±3,∴ab=﹣3×3=﹣9.故答案为﹣9.点评:本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0).2.1)﹣4互为相反数,那么2x﹣y=与((8.2013?潮安县模拟)如果2x考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:根据互为相反数的两个数的和等于0列出等式,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.2解答:解:∵与(2x﹣4)互为相反数,2,=0)4﹣2x(+∴∴y﹣3=0,2x﹣4=0,解得x=2,y=3,∴2x﹣y=2×2﹣3=4﹣3=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.二.解答题(共12小题)9.解方程:2=0;﹣(1)x2(2)(x﹣1)=36.考点:平方根.2分析:的值,再根据平方根的定义解答;x (1)求出(2)把(x﹣1)看作一个整体,然后利用平方根的定义解答即可.解答:2解:(1)x=,x=±;(2)x﹣1=6或x﹣1=﹣6,解得x=6或x=﹣5.点评:本题考查了利用平方根的定义求未知数的值,熟记概念是解题的关键.2.)﹣15=010.解方程:0.25(3x+1 平方根.考点:运用平方根解方程即可.分析:2解答:.﹣0.25(3x+1)15=0解:2.)=15移项得:0.25(3x+12=60 )(3x+1两边同时除以0.25得:2,开平方得:2x+1=±2x移项得:系数化为1得x=﹣+,x=﹣﹣.21点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.2.196x﹣1=011.解方程平方根考移项,根据平方根的定义两边开方,求出两个方程的解即可.分析:2解答:,=1解:移项得:196x 1,开方得:14x=±即方程的解是:x=,x=﹣.21点评:本题考查了平方根的应用,解此题的关键是能根据定义得出两个一元一次方程.12.解方程:(1)=0;2(2)(x﹣1)=36.考点:平方根.分析:运用开平方的定义解方程即可.解答:;=0)1(解:2,x得﹣46=0两边同时乘162,移项得,x=46.x=﹣开平方得,x=,212.1)=36(2)(x﹣,1=±6开平方得x﹣,x=1±6移项得.=﹣5解得x=7,x21本题主要考查了运用平方根解方程的知识,解题的关键是熟记开平方的定义.点评:2 6=0..解方程:(2x+1)﹣13 平方根.考点:运用平方根解方程即可.分析:2解答:6=0.解:(2x+1)﹣2 =6.移项得:(2x+1)±,开平方得:2x+1=±,移项得:2x=﹣1系数化为1得x=,x=.21点评:本题主要考查了利用平方根解方程,解题的关键是明确一个正数有两个平方根.b1.732 a 0.05477 0.1732 17.325.477 54.77结果的值;和b(1)求a )用一句话概括你发现的规律.(算术平方根考规律型专倍,可得答案1分析根据被开方数扩10倍,算术平方根扩大解答:解:(1)=0.05477,,a==0.5477=17.32;b==173.2 倍.(2)被开方数扩大100倍,算术平方根扩大10 100 本题考查了算术平方根,注意被开方数扩大倍,算术平方根扩大10倍.点评:15.根据下表回答下列问题:x 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 2256.00 259.21 262.44 265.69 268.96 272.25275.56 278.89 282.24 285.61 289.00 x(1)268.96的平方根是多少?(2)≈17.在哪两个数之间?为什么?3)((4)表中与最接近的是哪个数?考点:算术平方根;平方根;估算无理数的大小.专题:规律型.分析:根据观察表格,可得相应的答案.解答:解:(1)16.4;(2)=16.9≈17;(3)在16.4与16.5之间,∵=16.4,=16.5,∴在16.4与16.5之间;,259.21最接近260)∵4(.∴最接近,∴最接近16.1.点评:本题考查了算术平方根,观察表格发现律是解题关键.16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值.考点:算术平方根.分析:根据算术平方根的平方运算是被开方数,可得二元一次方程组,根据解二元一次方程组,可得答案.解答:解:2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,∴解得.点评:本题考查了算术平方根,先平方求被开方数,再解二元一次方程组.17.计算:(1)=3,=1;(2);0=0.6.,=(3)3=仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)考算术平方根专规律型分析原式各项利用平方根定义计算,归纳总结得到一个数的平方的算术平方根与这个数之间的关系可解答解)原=|3|=原式=|1|=1;(2)原式=|0|=0;(3)原式=|﹣3|=3;原式=|﹣0.6|=0.6,观察上面几道题的计算结果,一个数的平方的算术平方根与这个数之间的关系为=|a|..)3;0.631)3;;(2)0;(1故答案为:(点评:此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.b的值.144﹣b+1是的算术平方根,求a﹣3a2a+b18.已知的算术平方根是9,算术平方根.:考点根据算术平方根平方运算,可得二元一次方程组,根据解方程组,可得答案.分析:144的算术平方根,﹣的算术平方根是解:已知2a+b9,3ab+1是解答:,解得,a﹣b==﹣.本题考查了算术平方根,利用了乘方运算,开方运算.点评:2)的平方根.19.若,求(x+2 算术平方根;平方根.考点:计算题.专题:x 的值,代入原式计算求出平方根即可.分析:已知等式两边平方求出,,即解:已知等式两边平方得:x+2=4x=2解答:2.的平方根为±4则(x+2)=16,16 此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.点评:2y的平方根.=0,求x﹣﹣20.己知+(x2)非负数的性质:算术平方根;非负数的性质:偶次方;平方根.考点:计算题.:专题的值,代入所求代数式计算即可.x、y分析:根据非负数的性质列出方程求出2解答:=0,x﹣2)+解:∵(∴,,解得∴x﹣y=﹣2+7=5.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.。
2022-2023学年人教版七年级数学下册《6-1平方根》同步达标测试题(附答案)

2022-2023学年人教版七年级数学下册《6.1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.64的平方根是()A.8B.±8C.4D.±42.下列计算正确的是()A.B.=±4C.=﹣4D.=43.的算术平方根是()A.B.C.D.4.若,则m n的值是()A.﹣1B.0C.1D.25.下列说法:(1)±3是9的平方根;(2)9的平方根是±3;(3)3是9的平方根;(4)9的平方根是3,其中正确的是()A.3个B.2个C.1个D.4个6.一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是()A.±B.a﹣1C.a2﹣1D.±7.已知与是一个正数的平方根,则这个正数是()A.1或9B.3C.1D.818.有一个数值转换器,原理如图所示:当输入的x=64时,输出的值是()A.2B.8C.D.2二.填空题(共8小题,满分40分)9.=;的算术平方根为.10.若,则xy的算术平方根是.11.若≈10.1,=3.19,则≈.12.小杰卧室地板的总面积为16平方米,恰好由64块相同的正方形的地板砖铺成,则每块地板砖的边长是米.(答案用小数表示)13.2m﹣4和6﹣m是正数a的两个平方根,则a的值为.14.如图,一个长方形被分割成四部分,其中图形①,②,③都是正方形,且正方形①,③的面积分别为16和3,则图中阴影部分的面积为.15.一个数值转换器,如图所示:8①当输入的x为2时,输出的y值是.②当输出的y值为时,请写出两个满足条件的x的值为和.16.观察等式2;3;4;…;根据规律写出第(n ﹣1)个等式为(n为自然数,且n≥2).三.解答题(共9小题,满分40分)17.求x的值.(1)8(x+1)2=27;(2)4x2﹣16=0.18.已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.19.(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(2)应用:已知≈2.236,则≈,≈;(3)拓展:已知≈2.449,≈7.746,计算和的值.20.交通警察通常根据刹车时后车轮滑过的距离估计车辆行驶的速度.在某高速公路上,常用的计算公式是v2=256(df+1),其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数,f=1.25.在调查这条高速公路的一次交通事故中,测得d=19.2m,求肇事汽车的速度大约是多少.21.如图,某校规划一块正方形场地ABCD,设计分别与AB,AD平行的横向通道和纵向通道,其余部分铺上草皮,这4块草坪为相同的长方形,每块草坪的长与宽之比是10:9,且草坪的总面积为90m².(1)求每块草坪的长为多少m?(2)若横向通道的宽是纵向通道的宽的3倍,求纵向通道的宽为多少m?22.为了切实减轻学生的课业负担,各地中小学积极响应,开展一系列形式多样的课后服务.某次晚托兴趣活动中:(1)小红用两个大小一样的小正方形纸片,剪拼出了一个面积400cm2的大正方形纸片.如图,则每个小正方形的边长是;(2)小美想用这块面积为400cm2的大正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为6:5,且要求长方形的四周至少留出1cm的边框.请你用所学过的知识来说明,能否用这块纸片裁出符合要求的纸片.参考答案一.选择题(共8小题,满分40分)1.解:64的平方根是±8,故选:B.2.解:A、±=±4,故A错误;B、=4,故B错误;C、负数没有算术平方根,故C错误;D、=4,故D正确.故选:D.3.解:原式=,的算术平方根是,故选:A.4.解:∵(m+1)2≥0,,∴当,则m+1=0,n﹣2=0.∴m=﹣1,n=2.∴m n=(﹣1)2=1.故选:C.5.解:由于9的平方根有两个,是3和﹣3,因此(1)±3是9的平方根,是正确的;(2)9的平方根是±3是正确的;(3)3是9的平方根是正确的;(4)9的平方根是3是错误的;综上所述正确的有:(1)(2)(3),共3个,故选:A.6.解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,∴与这个自然数相邻的上一个自然数的平方根是±,故选:D.7.解:∵≥0,≥0,而与是一个正数的平方根,∴=,即2a﹣1=﹣a+2,解得a=1,当a=1时,==1,∴这个正数是1,故选:C.8.解:当x=64时,∴=8,是有理数,∴=2,是无理数,∴输出的值是2,故选:D.二.填空题(共8小题,满分40分)9.解:=±7;∵=4,∴的算术平方根为2.故答案为:±7,2.10.解:∵,|3x﹣1|≥0,,∴3x﹣1=0,y﹣3=0,解得x=,y=3,∴xy==1,∴xy的算术平方根是.故答案为:1.11.解:==≈=1.01,故答案为:1.01.12.解:由题意知,每块地板砖的面积为16÷64=0.25(平方米),则每块地板砖的边长是=0.5(米),故答案为:0.5.13.解:∵2m﹣4和6﹣m是正数a的两个平方根,∴2m﹣4+(6﹣m)=0,解得m=﹣2,所以这两个平方根分别为:﹣8、8,∴a=64,故答案为:64.14.解:正方形①的边长是=4,正方形③的边长是,正方形②的边长是(4﹣),即阴影的宽是()=,阴影的长是:×()=,故答案为:.15.解:(1)当x=2时,输出y=.故答案为:;(2)当x=3时,y=,当x=9时,=3,3是有理数,不能输出,是无理数,y=;故答案可为:3;9.16.解:∵2;3;4;…;∴第(n﹣1)个等式为n(n为自然数,且n≥2),故答案为:n.三.解答题(共5小题,满分40分)17.解:(1)8(x+1)2=27,(x+1)2=,x+1=±,∴x=﹣1+或x=﹣1﹣;(2)4x2﹣16=0,4x2=16,x2=4,∴x=±2.18.解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=,(2)∵a=,b=2,∴4a﹣6b=,∴4a﹣6b的平方根为.19.解:(1)观察各式:≈0.1732,≈1.732,≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2)应用:已知≈2.236,则≈0.2236,≈22.36;故答案为:0.2236,22.36;(3)==≈2×7.746≈15.492,==×≈3×0.2449≈0.7347.20.解:将d=19.2m,f=1.25代入v2=256(df+1),得v2=256×(19.2×1.25+1)=6400,∴v=.答:肇事汽车的速度大约是80km/h.21.解:(1)设每块草坪的长为10xm,宽为9xm,根据题意得10x•9x=×90,解之得x=±0.5,∵x>0,∴x=0.5,∴10x=5;答:每块草坪的长为5m;(2)设纵向通道的宽为ym,则横向通道的宽为3ym,根据题意得3y+9×0.5×2=y+5×2,解之得y=0.5.答:纵向通道的宽为0.5m.22.解:(1)由拼图可知,每个小正方形的面积为200cm2,所以小正方形的边长为=10(cm),故答案为:10cm;(2)不能,理由:设长方形的长为6a,则宽为5a,由长方形的面积可得,6a•5a=300,解得a=(a>0),所以这个长方形的长为6,宽为5,因为6+2>20,所以,不能剪出符合条件的长方形.。
部编数学七年级下册专题07算术平方根的非负性(解析版)含答案

专题07 算术平方根的非负性【例题讲解】例1.已知a 、b 、c2+=c a b c ++的平方根为_________.例2.2|1|(1)0b c +++=,求a b c +-的平方根.【综合解答】1.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .A B>B .A B =C .A B <D .A B³【答案】D【解析】【分析】根据算术平方根的定义得出A 是一个非负数,且m-3≥0,推出3-m≤0,得出B≤0,即可得出答案,【详解】解:∵A =∴A 是一个非负数,且m-3≥0,∴m≥3,∵B =,∵3-m≤0,即B≤0,∴A≥B ,故选:D .【点睛】本题考查了算术平方根的定义,平方根和立方根,实数的大小比较等知识点,题目比较好,但有一定的难度.2()240y -=,则22x y +的平方根是______.【答案】【解析】【分析】根据算术平方根以及完全平方式的非负性得出,x y 的值,然后求出22xy +的值,最后求出平方根即可.【详解】解:()240y +-=,∴50,40x y +=-=,∴5,4x y =-=,∴2222(5)4251641x y =-=+=++,∴22x y +的平方根是故答案为:【点睛】本题考查了算术平方根以及完全平方式的非负性、平方根,解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.3.若()230x +=,则()2021x y +=______________.【答案】-1【解析】【分析】由平方与算术平方根的非负性解得x =-3,y =2,再代入计算即可.【详解】解:由题意得,3020,x y +=-=3,2x y \=-=()()20212021-32=-1x y \+=+故答案为:-1.【点睛】本题考查平方与算术平方根的非负性、有理数的乘方等知识,是基础考点,掌握相关知识是解题关键.4.若a __.【答案】2【解析】【分析】利用算术平方根的非负性,计算求值即可;【详解】解:,20a -£,∴a =0,∴=0+2,=2,故答案为:2;【点睛】此题主要考查了算术平方根:如果一个非负数b 的平方等于a ,那么b 叫做a 的算术平方根;非负数a a 叫做被开方数.5.若3y =,则xy =_________.【答案】18【解析】【分析】直接利用二次根式有意义的条件得出x ,y 的值进而得出答案.【详解】解:∴2﹣x ≥0,且x ﹣2≥0,解得:x =2,∴y =-3,∴31=2=8y x -.故答案为:18.【点睛】此题主要考查了二次根式有意义的条件和负指数幂法则,正确得出x 的值是解题关键.6.已知实数a 在数轴上的位置如图,则化简|1﹣_____.【答案】1-2a【解析】【详解】由图可知:10a -<<,∴10a ->,∴11()12a a a -=-+-=-.故答案为12a -.7.当x =______时,式子2018【答案】2017【解析】【分析】0³,然后求解即可.【详解】解:∵2018∴的值最小时,式子20180³,∴20170x -³,∴2017x ³,∴当2017x =时式子2018有最大值.故答案为:2017.【点睛】此题考查了算术平方根的非负性,当被减数为固定值时,要使差最大,则需使减数的值最小,解题的关键是熟练掌握算术平方根的非负性.8.已知a ,b ,c 满足2|(0a c +=.求a 、b 、c 的值【答案】a =5b ,c 【解析】【分析】利用绝对值非负性,算术平方根非负性,平方非负性可求得结果.【详解】解:∵|0a ³0³,2(0c ³且2|(0a c =,∴|=0a ,2(=0c ,即:a ,5=0b -,c ,解得:a =5b ,c 【点睛】本题主要考查的是非负性求值的应用,此类型题较为固定,同时也是常考点,掌握其解题步骤是解题关键.9.已知3y =,求(x +y )2022的值【答案】1【解析】【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.【详解】∵3y +-∴2020x x -³ìí-³î得22x x ³ìí£î∴2x =∴33y +=-∴202220222022()(23)(1)1x y +=-=-=∴2022()1x y +=.【点睛】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.10.已知实数a 、b 、c |1|a +=(1)求证:b c =;(2)求a b c -++的平方根.【答案】(1)见解析(2)3±【解析】【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0³0,0,0b c c b -³-³,b c \=;(2)解:Q |1|a +=b c =,,1,4a b \=-=,4c b \==,1449a b c \-++=++=,9的平方根是3±.【点睛】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.115的最小值,并求出此时a 的值.【答案】3a =【解析】【分析】根据非负数的性质即可得到结论.【详解】解:0³55³5的最小值是5.此时30a -=,即3a =.【点睛】12.若a ,b 为实数,且b =【答案】-3【解析】【分析】根据二次根式的被开方数为非负数,得到相应的关系式求出a 、b 的值,然后代入求解.【详解】因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0.所以a =±1.又因为a +1≠0,所以a =1.代入原式,得b =12.所以3.【点睛】此题主要考查了二次根式的性质和意义,关键是利用被开方数为非负数的性质求出a 、b 的值.13.已知数a 满足2016a =,求22016a -.【答案】2017.【解析】【详解】试题分析:由二次根式的意义可得20170a -³,即2017a ³,由此可得20162016a a -=-,从而原等式化为:2016a a -=,由此可得220172016a -=,即220162017a -=;试题解析:由二次根式的意义可得20170a -³,即2017a ³,∴20162016a a -=-,∴原等式可化为:2016a a -=,2016=,∴220172016a -=,∴220162017a -=.14.已知a,b (0b -=,求a2005-b2006的值.【答案】-2【解析】【详解】试题分析:根据被开方数大于等于0,求出b 的取值范围,再根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.试题解析:解:由题意得:1﹣b ≥0,∴b ≤1,∴(10b +-=,由非负数的性质得:1+a =0,1﹣b =0,解得a =﹣1,b =1,∴a 2005﹣b 2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.15.已知实数,b ,c 满足a +=(2a b +的值.【答案】4【解析】【分析】根据二次根式的非负性求得b 的值,然后根据非负数的性质求得,a c 的值,最后代入代数式求解即可.【详解】解:∵a +=∴5050b b -³ìí-³î,5b \=,\a +=0,3,2a c \=-=,\(2a b +()23504=-+-=.【点睛】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.。
平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.2平方根(基础篇)(专项练习)一、单选题1.4的平方根是()A .2B .2-C .16D .2±2.)A .﹣2B .2C .﹣12D .123的值().A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列计算正确的是()A2=B 5=±C .4D .7=±5.平方根是13±的数是()A .13B .16C .19D .19±6.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A .2B .4C .±2D .±47.下列命题是真命题的是()A .25的平方根是5B .0.01的平方根是0.001±C .只有正数才有算术平方根D .平方根是其本身的数只有08.实数a ,b ,c 在数轴上的对应点如图所示,化简a b a -+-+的结果是()A .b c --B .c b -C .222a b c -+D .2a b c++9.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是()A B .2C .1.5D .110.有一个如图的数值转换器,当输出值是4时,输入的是()A .8B .16C .D .二、填空题11.如果0x <,0y >且24x =,29y =,则x y +=___________.12.若2y ,则yx =________.13a ,小数部分为b ,则=a _________,b =_________.14 3.873≈ 1.225≈≈___.151=,则2x +6的平方根是______.16.某正数的平方根是a 和5a -,则这个数为_________.17.()29-的四次方根是______.18.七巧板被西方人称为“东方魔术”,下面的两幅图是由同一个七巧板拼成的.已知七巧板拼成的正方形(如图1边长为a (cm ).若图2的“小狐狸”图案中阴影部分面积为162cm ,那么a 的值为__.三、解答题19.求下列各式中的x .(1)29250x -=;(2)24(2)90x --=.20.计算:(1)()()2202131---;(2)233--21.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.22.(1=__________;(2=__________;(3)实数a 、b 、c 在数轴上的位置如图所示,请化简:a -23.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数.(1)若49与a 是关于2的关联数,则=a ________;(2)若21x -与53x -是关于2的关联数,求51x +的平方根;(3)若M 与N 是关于m 的关联数,53M mn n =++,N 的值与m 无关,求N 的值.24.发现:(1)面积为249cm 的正方形纸片,它的边长是______cm ;拓展:(2)面积为226cm 的长方形纸片,如果它的长是宽的2倍,则长和宽各是多少cm ?延伸:(3)在面积为249cm 的正方形纸片中能否沿着边的方向(如图所示)裁出一块面积为226cm 的长方形纸片,使它的长是宽的2倍?说明理由.参考答案1.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.【详解】∵()22=4±∴4的平方根为2±.故选:D.【点拨】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.2.C【分析】先化简,再计算倒数.【详解】解:=−2,-2的倒数是1 2-.故选:C.【点拨】本题考查了倒数,算术平方根,熟练掌握相关知识是解题的关键.3.C【分析】根据题意可直接进行求解.【详解】解:∵56<,5到6之间.故选C.【点拨】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分与小数部分是解题的关键.4.D【分析】A、根据负数没有平方根即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根的定义即可判定.【详解】解:AB5=,故选项错误;C、4==-,故选项错误;D、7=±,故选项正确.故选:D.【点拨】此题考查了平方根、算术平方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.C【分析】根据平方根的定义求解即可.【详解】解:∵211 39⎛⎫±=⎪⎝⎭,∴平方根是13±的数是19.故选C.【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6.C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是,故答案为C.【点拨】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.7.D【分析】根据平方根的概念判断即可.【详解】解:A、25的平方根是±5,故本选项命题是假命题;B、0.01的平方根是±0.1,故本选项命题是假命题;C、正数和0都有算术平方根,故本选项命题是假命题;D、平方根是其本身的数只有0,故本选项命题是真命题;故选:D.【点拨】本题考查的是平方根及算术平方根的概念,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【分析】先判断0b c a <<<,可得0b a -<,再结合算术平方根的含义可得0c <c =-,再化简绝对值即可.【详解】解:∵0b c a <<<,∴0b a -<,∴a b a -+-+()()a b a c =---+-a b a c=--+-b c =--.故选A .【点拨】本题考查的是算术平方根的含义,化简绝对值,整式的加减运算,掌握“算术平方根的含义与化简绝对值”是解本题的关键.9.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长.【详解】解:根据题意得:故选:A .【点拨】此题考查了算术平方根,弄清题意是解本题的关键.10.B【分析】设输入的数为x ,根据输出值是4即可求出答案.【详解】解:设输入的数为x ,∴4=,16x ∴=,故选:B .【点拨】本题考查的是算术平方根的概念和性质,解题的关键是掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数的概念.11.1【分析】24x =即x 是4的平方根,29y =即y 是9的平方根,因而根据0x <,0y >且24x =,29y =就可确定x ,y 的值,进而求解.【详解】解:∵24x =,29y =,∴2x =±,3=±y ,又∵0x <,0y >,∴2x =-,3y =,∴231x y +=-+=.故答案为:1.【点拨】本题考查平方根的意义,求代数式的值,有理数的加法运算.根据条件正确确定x ,y 的值是解题关键.12.94【分析】根据算术平方根的非负性求得,x y 的值,代入代数式即可求解.【详解】解:∵2y ,∴230,320x x -≥-≥,∴230x -=,解得32x =,∴2y =,∴23924yx ⎛⎫== ⎪⎝⎭,故答案为:94.【点拨】本题考查了算术平方根的非负性,掌握算术平方根的非负性是解题的关键.13.33【分析】根据34<首先确定a 的值,则小数部分即可确定.【详解】解:34<< ,3a ∴=,则3b =.故答案是:33.【点拨】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.14.12.25【分析】根据算术平方根与被开方数的关系:“被开方数每向左或向右移动2个位数,则它的算术平方根就向左向右移动1个位数”可知答案.1.225≈,≈12.25故答案为:12.25【点拨】本题考查了求算术平方根,掌握规律是解题的关键.15.±21=,解得=1x -,继而计算264x +=,再根据平方根的定义解答.【详解】解:1=,21x ∴+=1x ∴=-264x ∴+=4的平方根是±2故答案为:±2.【点拨】本题考查平方根与算术平方根,是基础考点,掌握相关知识是解题关键.16.254【分析】根据正数的两个平方根互为相反数可得50a a +-=,解方程求出a ,然后根据平方根的意义求出这个正数.【详解】解: 某正数的平方根是a 和5a -,50a a ∴+-=.解得52a =.2525()24±= .∴这个数为254.故答案为:254.【点拨】本题考查了平方根的性质与意义,解题的关键是掌握一个正数有两个平方根,且它们互为相反数.17.3±【分析】计算出()2981-=,再找出四次方等于81的数即可.【详解】解:∵()2981-=,又∵()4381±=∴()29-的四次方根是3±,故答案为:3±.【点拨】本题考查平方根的推广,有理数的乘方.解题的关键是正确找出四次方等于81的数.18.8【分析】设阴影小正方形的边长为x cm ,根据阴影部分的面积列出方程,求出x 的值,进而得出大正方形的对角线的长度是4x cm ,最后求出边长a 即可.【详解】设“小狐狸”脸部小正方形的边长为x cm ,由题意得:21(24)162x x x x +⨯-=,解得:x =x =-∴小正方形的边长为,∴大正方形的对角线为:,∴大正方形的边长为8(cm)=,8a ∴=.故答案为:8.【点拨】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键.19.(1)1255,33x x ==-(2)1271,22x x ==【分析】(1)先移项,然后利用平方根求解方程即可;(2)先移项,然后利用平方根求解方程即可.【详解】(1)解:29250x -=移项得:2925x =,∴2259x =,∴53x =±,∴1255,33x x ==-(2)24(2)90x --=24(2)9x -=,∴29(2)4x -=∴32=2x -±∴1271,22x x ==.【点拨】题目主要考查利用平方根解方程,熟练掌握解方程方法是解题关键.20.(1)5;(2)8--【分析】(1)先化简各式,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【详解】(1)解:22021(3)(1)--93(1)=-+-6(1)=+-5=;(2)解:233|-+932=-+8=-【点拨】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点拨】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.22.(1)5;5;(2)()0(0)a a a a ⎧≥⎨-<⎩;(3)b a -【分析】(1)根据算术平方根求解即可;(2)结合(1)中结果求解即可;(3)根据数轴得出0c a b <<<,且a b <,然后将各式化简合并同类项求解即可.【详解】解:(15=5==;故答案为:5;5;(2)当0a ≥a =;当0a <a =-;()0(0)a a a a ⎧≥=⎨-<⎩,故答案为:()0(0)a a a a ⎧≥⎨-<⎩;(3)由数轴得:0c ab <<<,且a b <,∴a +∴a -()()a abc c a =-++-+-a a b c c a=-++-+-b a =-.【点拨】题目主要考查算术平方根的化简及根据数轴判断式子的正负,整式的加减法等,理解题意,熟练掌握各个运算法则是解题关键.23.(1)47;(2)3±;(3)165.【分析】(1)根据关联数的含义,列方程求解即可;(2)根据关联数的含义,列方程求得x 的值,即可求解;(3)根据关联数的含义,可得M N m -=,可得N M m =-,根据题意,求解即可.【详解】(1)解:由题意可得:492a -=解得47a =,故答案为:47;(2)由题意可得:21(53)2x x ---=解得:85x =,519x +=9的平方根为3±(3)由题意可得:M N m -=,则53(51)3N M mn n m n m n m ++--==+=+-,∵N 的值与m 无关∴510n -=,解得15n =则116355N =+=【点拨】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.24.(1)7;(2,长为;(3)不能,理由见解析【分析】(1)根据正方形的面积公式和正方形的面积即可求出正方形的边长;26cm列出方程求解即可;(2)设长方形的宽为x cm,则长为2x cm,根据长方形的面积为2(3)根据题意比较正方形的边长和长方形的长即可判断.49cm,【详解】解:(1)∵正方形的面积为2∴边长7==cm.(2)设长方形的宽为x cm,则长为2x cm,根据题意得x·2x=26,x2=13,解得x=∵x∴x∴长为2x=,,长为,(3)不能.理由:因为7,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.【点拨】此题考查了正方形和长方形面积公式,算数平方根的性质,解题的关键是根据题意求出正方形的边长和长方形的长和宽.。
人教版七年级数学下册第六章第一节平方根复习试题(含答案) (49)

人教版七年级数学下册第六章第一节平方根复习试题(含答案)某地开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400000m2.(1)公园的宽大约是多少?它有1000m吗?(2)如果要求误差小于10m,它的宽大约是多少?(3)该公园中心有一圆形花坛,面积是800m2,它的半径大约是多少米(误差小于1m)?【答案】(1)公园的宽大约有400多m,没有1000m宽(2) 440 m或450 m(3) 15m或16m【解析】分析:(1)设公园的宽为xm,根据长方形的面积公式,可得关于x的方程,解方程可得答案;(2)由误差小于10m,根据四舍五入的方法,可得答案;(3)设它的半径为rm,根据圆的面积公式,可得关于r的方程,解方程可得答案.详解:(1)设公园的宽为x m,则x·2x=400 000,x因为4002=160 000<200 000,5002=250 000>200 000,所以400<x<500.答:公园的宽大约有400多m,没有1 000 m宽.(2)因为4402=193 600,4502=202 500,所以193 600<200 000<202 500.于是可知440<x<450.因为误差可以小于10 m,所以公园的宽可以是440 m或450 m.(3)设花坛的半径为R m,则πR2=800,可得R2≈254.6.因为225<254.6<256,所以152<R2<162.因为误差可以小于1 m,所以花坛的半径大约是15 m 或16 m.点睛:考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.也考查了估算无理数的大小.a的立方根是﹣2,求a+b的值.82.已知实数a+b的平方根是±4,实数13【答案】16【解析】分析:根据“a+b的平方根是±4”可求得a+b.详解:∵实数a+b的平方根是±4,∴a+b=16.点睛:本题考查了平方根的意义,如果一个数的平方等于a(a≥0),那么这个数叫做a的平方根;一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根.83.一个底为正方形的水池的容积是450m3,池深2m,求这个水池的底边长.【答案】水池的底边长为15米【解析】分析:设底面正方形的边长为xm,根据长方体的体积公式列出方程,解方程求得x的值,即可得这个水池的底边长.详解:设底面正方形的边长为xm,根据题意可得,2x ,2450解得x=±15,又因x>0,∴x=15.即水池的底边长为15米.答:水池的底边长为15米.点睛:本题考查了平方根的实际应用,利用长方体的体积公式列出方程是解决本题的关键.84.如图是一块面积为144cm2的正方形纸片,小欣想沿着边的方向用它裁出一块面积为98cm2无拼接的长方形纸片,且使它的长、宽之比为2:1,不知能否裁出来,正在发愁,小亮看见了说:“肯定能用一块面积大的纸片裁出一块面积小的纸片呀!”你同意小亮的观点吗?你能用这块正方形纸片裁出符合要求的长方形纸片吗?说说你的理由.【答案】小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片【解析】分析:设长方形的宽为xcm,则长方形的长为2xcm,根据面积的值列方程求x,长方形的长2x不能大于原正方形的边长.详解:不同意小亮的观点,不能用这块正方形的纸片裁出符合条件的长方形纸片.理由是:设长方形的宽为xcm,则长方形的长为2xcm,根据题意,得:2x2=98,解得:x=7(负值舍去),则长方形的长为2x=14(cm),∵cm,即12cm,∴14>12,∴小亮的观点错误,不能用这块正方形的纸片裁剪出符合条件的长方形纸片.点睛:本题考查了平方根的实际应用,与实际问题相关的应用中,求出的值要检验是否符合实际意义.85+(1-y)2=0.(1)求x,y的值;(2)求1xy +()()1x1y1+++()()1x2y2+++…+()()1x2016y2016++的值.【答案】(1)21xy=⎧⎨=⎩;(2)20172018分析:(1)由已知条件易得:2-xy=0且1-y=0,由此即可求得x 、y 的值;(2)将(1)中所求x 、y 的值代入(2)中的式子可得:111121324320182017++++⨯⨯⨯⨯,然后利用()11111n n n n =-++(n 为正整数)将所得式子变形即可完成计算得到所求结果.详解:(1)根据题意得2010xy y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩; (2)∵x=2,y=1,∴原式=121⨯+132⨯+143⨯+…+120182017⨯ =1-12+12-13+13-14+…+12017-12018=1-12018=20172018. 点睛:(1)知道:“①一个式子的算术平方根和平方都是非负数;②若两个非负数的和为0,则这两个非负数都为0”是解答第1小题的关键;(2)知道:“()11111n n n n =-++(n 为正整数),且能由此将原式变形化简”是解答第2小题的关键.86.(1)-(12)-1+20140; (2)求4x 2-100=0中x 的值.【答案】(1)3;(2)x=±5【解析】(1)结合“零指数幂的意义、负整数指数幂的意义和算术平方根的定义”进行分析计算即可;(2)按“平方根”的定义进行分析解答即可.详解:(1)原式=4-2+1=3;(2)∵4x2-100=0,∵4x2=100,∵x2=25,∵x=±5.点睛:熟记“零指数幂的意义、负整数指数幂的意义、平方根和算术平方根的定义”是正确解答本题的关键.87.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a,小数部分为b,求2+的值.a b【答案】(1)S=13,边长为(2)6【解析】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.88.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.【答案】(1)a=5,b=2,c=3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.89.已知(x-1)2 =4,求x 的值.【答案】x=3或x=-1.【解析】分析:先开平方求出(x ﹣1)的值,继而求出x 的值.详解:(x ﹣1)2=4,开平方得:x ﹣1=±2,解得:x =3或x =﹣1.点睛:本题考查了平方根的知识,解答本题关键是掌握开平方的运算.90.已知a ,b 满足4a -=0,解关于x 的方程2(3)15a x b --=.【答案】x=±6【解析】分析:利用非负性质求出a,b 的值,代入方程求解.详解:由题意得: a -4=0, b -7=0∵a =4,b =7将a =4,b =7代入(a -3)2x -1=5b ,得(4-3)2x -1=5×7∵2x =36x =±6点睛:0≥,0a ≥,20a ≥,所以题目经常就是这三种任意两种的和为0,或者三者的和为0.。
2021-2022学年七年级数学下册6.1《平方根》同步达标测试题(含答案)

2021-2022学年人教版七年级数学下册《6-1平方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各式中正确的是()A.B.C.D.2.下列关于数的平方根说法正确的是()A.3的平方根是B.2的平方根是±4C.1的平方根是±1D.0没有平方根3.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣54.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个5.若x+3是9的一个平方根,则x的值为()A.0B.﹣6C.0或﹣6D.±66.的算术平方根是()A.±3B.3C.﹣3D.97.数学式子±=±3表示的意义是()A.9的平方根是±3B.±9的平方根是±3C.9的算术平方根是±3D.±9的算术平方根是±38.有一个数值转换器,原理如下,当输入的x为81时,输出的y是()A.B.9C.3D.2二.填空题(共6小题,满分30分)9.已知某数的一个平方根为,则该数是,它的另一个平方根是.10.若+|y﹣1|=0,则(y﹣x)2022=.11.在做浮力实验时,小华用一根细线将一圆柱体铁块拴住,完全浸入盛满水的溢水杯中,并用量筒量得从溢水杯中溢出的水的体积为60立方厘米,小华又将铁块从溢水杯中拿出来,量得溢水杯的水位下降了0.8厘米,则溢水杯内部的底面半径为厘米(π取3).12.已知a2+=4a﹣4,则的平方根是.13.若|a﹣2021|+=2,其中a,b均为整数,则符合题意的有序数对(a,b)的组数是.14.若一个正数的两个平方根分别为x﹣7和x+1,则这个正数是.三.解答题(共6小题,满分50分)15.已知一个数m的两个不相等的平方根分别为a+2和3a﹣6.(1)求a的值;(2)求这个数m.16.解方程:(1)4x2=16;(2)9x2﹣121=0.17.(1)已知+|2x﹣3|=0,求x+y的平方根.(2)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x2﹣b2=a﹣1.18.已知a2=16,|﹣b|=3,解下列问题:(1)求a﹣b的值;(2)若|a+b|=a+b,求a+b的平方根.19.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)20.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.参考答案一.选择题(共8小题,满分40分)1.解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.2.解:A、3的平方根是±,原说法错误,故本选项不合题意;B、2的平方根是±,原式说法错误,故本选项不合题意;C、1的平方根是±1,原说法正确,故本选项符合题意;D、0的平方根是0,原说法错误,故本选项不合题意;故选:C.3.解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.4.解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.5.解:∵x+3是9的一个平方根,∴x+3=3或x+3=﹣3,解得:x=0或x=﹣6.故选:C.6.解:∵=9,∴的算术平方根是:=3.故选:B.7.解:根据平方根的定义,±=±3表示的意义是9的平方根是±3.故选:A.8.解:由题意可得:81的算术平方根是9,9的算术平方根是3,则3的算术平方根是,故输出的y是.故选:A.二.填空题(共6小题,满分30分)9.解:某数的一个平方根是,那么这个数是6,它的另一个平方根是﹣,故答案为:6,﹣.10.解:∵+|y﹣1|=0,∴x﹣2=0,y﹣1=0,∴x=2,y=1,∴(y﹣x)2022=(1﹣2)2022=(﹣1)2022=1.故答案为:1.11.解:设溢水杯内部的底面半径为x,由题意得:πx2×0.8=60.∴x2==25.∵x>0.∴x==5(厘米).故答案为:5.12.解:a2+=4a﹣4,,,a﹣2=0,b﹣2=0,解得a=2,b=2,∴,∴的平方根是.故答案为:.13.解:∵|a﹣2021|+=2,其中a,b均为整数,又∵|a﹣2021|≥0,≥0,∴可分以下三种情况:①|a﹣2021|=0,=2,解得:a=2021,b=﹣2017;②|a﹣2021|=1,=1,解得:a=2020或2022,b=﹣2020;③|a﹣2021|=2,=0,解得:a=2023或2019,b=﹣2021;∴符合题意的有序数对(a,b)的组数是5.故答案为:5.14.解:根据题意,(x﹣7)+(x+1)=0,解得x=3,∴x+1=3+1=4,∵42=16,∴这个正数是16.故答案为:16.三.解答题(共6小题,满分50分)15.解:(1)∵数m的两个不相等的平方根为a+2和3a﹣6,∴(a+2)+(3a﹣6)=0,∴4a=4,解得a=1;(2)∴a+2=1+2=3,3a﹣6=3﹣6=﹣3,∴m=(±3)2=9,∴m的值是9.16.解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.17.解:(1)∵+|2x﹣3|=0,又∵≥0,|2x﹣3|≥0,∴x=,y=﹣,∴x+y=1,∴x+y的平方根为±1.(2)∵+|b﹣|=0,又∵≥0,|b﹣|≥0,∴a=﹣4,b=,∴方程为﹣2x2﹣3=﹣5,∴x2=1,∴x=±1.18.解:(1)∵a2=16,|﹣b|=3,∴a=±4,b=±3.∴当a=4,b=3,则a﹣b=4﹣3=1;当a=4,b=﹣3,则a﹣b=4﹣(﹣3)=7;当a=﹣4,b=3,则a﹣b=﹣4﹣3=﹣7;当a=﹣4,b=﹣3,则a﹣b=﹣4﹣(﹣3)=﹣1.综上:a﹣b=±1或±7.(2)∵|a+b|=a+b,∴a+b≥0.∴a+b=1或7.∴当a+b=1时,a+b的平方根为±1;当a+b=7时,a+b的平方根为±.综上:a+b的平方根为±1或±.19.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.20.解:(1)裁剪方案如图所示:(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm,则3x•2x=300,解得:x=5或x=﹣5(舍),∴长方形纸片的长为15cm,又∵(15)2=450>202即:15>20,∴小丽不能用这块纸片裁出符合要求的纸片.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册平方根(一)填空1.16的平方根是________.3.49的平方根是____.5.4的平方根是_______7.81的平方根是________.8.25的算术平方根是_________.9.49的算术平方根是_________.]11.62的平方根是______.12.0.0196的算术平方根是________.13.4的算术平方根是________;9的平方根是________.14.64的算术平方根是________.15.36的平方根是________; 4.41的算术平方根是_______.18.4的平方根是____, 4的算术平方根是___.19.256的平方根是____.______.37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.0.1010010001…各数中,属于有理数的有________;属于无理数的有________.40.把下列各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________.(二)选择46.36的平方根是 [ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ]A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.下列语句中,正确的是 [ ]51.0是 [ ]A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.52.以下四种命题,正确的命题是[ ]A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为 [ ]A.整数; B.有理数; C.无理数; D.实数.54.和数轴上的点一一对应的数是 [ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合;C.无理数集合; D.实数集合.56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;(3)一个有理数与一个无理数的和一定是无理数.其中真命题是[ ]A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).数是[ ] A.4; B.3; C.6; D.5.A.2360; B.236 C.23.6; D.2.36.59.数轴上全部的点表示的数是[ ]A.自然数 B.整数; C.实数; D.无理数; E.有理数.60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数;B.无理数;C.实数.63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不论x,y为什么实数,x2+y2+40-2x+12y的值总是[ ]A.正数; B.负数; C.0; D.非负数.数为 [ ] A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.下列命题中,真命题是[ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ] A.0.0140; B.0.1410; C.4.459; D.0.4459.A.1.525; B.15.25; C.152.5; D.1525.A.4858; B.485.8; C.48.58; D.4.858.A.0.04858; B.485.8; C.0.0004858; D.48580.74.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是 [ ]A.a与b互为相反数;B.a+b<0; C.-a<0;D.b-a<0.练习题(二)一、填空、1.144的平方根是________.5.-216000的立方根是________.6.-64000的立方根是_________.8.0的平方根有_______个,其根值是_______.9.正数a的平方根有_______个,即为_______.10.负数有没有平方根?_______.理由_______.11.25=( )2.12.3=( )2.(二)计算16.求0.000169的平方根.20.求0.0064的平方根.22.求0.000125的立方根. 23.求0.216的立方根.1.求下列各数的平方根,算术平方根:(1)121(2)0.0049(3) (4)4 (5)|a|22.求下列各式中的x: (1)49x2=169 (2) 9(3x-2)2=(-7)2(3) =11 (4) 27(x-3)3=-643.判断正误: (1) 的平方根是±3。
() (2) =±。
()(3)16的平方根是4。
()(4)任何数的算术平方根都是正数。
()(5) 是3的算术平方根。
()(6)若a2=b2,则a=b。
()(7)若a=b,则a2=b2。
()(8)729的立方根是±9()(9)-8的立方根是-2。
()(10) 的平方根是±。
()(11)- 没有立方根。
()(12)0的平方根和立方根都是0()4.填空: (1)(-3)2的平方根是______,算术平方根是______。
(2)169的算术平方根的平方根是______。
(3) 的负的平方根是______。
(4)- 是______的一个平方根,(- )2的算术平方根是______。
(5)当m=______时, 有意义;当m=______时, 值为0。
(6)当a为______时,式子有意义。
(7) 是4的______,一个数的立方根是-4,这个数是______。
(8)当x为______时, 有意义。
(9)已知x2=11,则x=______。
(10)当a<0时, = ______。
5.选择题:(单选)(1)在实数运算中,可进行开平方运算的是( )。
(A)负实数 (B)正数和零 (C)整数 (D)实数(2)若=5,则x=( ) (A)0 (B)10 (C)20 (D)30(3)下列各式中无意义的是( )。
(A)- (B) (C) (D)(4)下列运算正确的是( )(A)- =13 (B) =-6 (C)- =-5 (D) =±(5)如果a<0,那么a的立方根是( )(A) (B) (C)- (D)±(6)下列各题运算过程和结果都正确的是( )(A) (B) =2× =(C) =7+ =7 (D) =a+b4.求下列各式中x的值:(1)4x2-100=0 (2)64(x+1)3+27=05.如果+|6y-5|=0,求xy的值。
选择题1.等式成立的条件是( ) A、a是任意实数 B、a>0 C、a<0 D、a≥02.一个自然数的算术平方根是x,则下一个自然数的算术平方根是() A、x+1 B、x2+1 C、+1 D、3.在实数范围内下列判断正确的是()A、若|m|=|n|,则m=n B,若a2>b2,则a>bC、若()2=|b|,则a=b D、若,则a=b4.下列四个命题中,正确的是()A、绝对值等于它本身的实数只有零B、倒数等于它本身的实数只有1C、相反数等于它本身的实数只有零D、算术平方根等于它本身的实数只有15.在实数范围内,A、无法确定B、只能等于2 C、只能等于1 D、以上都不对6.下面说法正确的是()A、-1的平方根是-1;B、若x2=9,则x=3;C、10-6没有平方根;D、6是(-6)2的算术平方根7.的平方根是()A、±2;B、2;C、±;D、8.的算术平方根是()A ;B、;C、;D、9.下列各式中,无意义的一个是()A、; B、; C、; D、10.若=0,则()A、x=2;B、x>2;C、x<2;D、x为任意数(三)在实数范围内分解因式75.x2-5.76.x4-4.77.x3-3x.78.x2+2xy+y2-7.79.x4-12x2+11.80.x2-2x-9.自测题答案(一)填空23.-2,2 24.4 25.5 26.3;4(二)选择46.B 47.D 48.C 49.C 50.C51.B 52.D 53.D 54.C 55.D56.D 57.B 58.D 59.C 60.C61.C 66.A 63.D 64.B 65.A66.B 67.C 68.A 69.D 70.D71.D 72.C 73.A 74.B(一)填空15.-1.提示:由非负数和为零的性质可知x+1=0,x+y=0,所以x=-1,y=1,所以2x+y=-2+1=-1.(二)计算(三)在实数范围内分解因式1.判断正误:(1)×(2)×(3)×(4)×(5)√(6)×(7)√(8)×(9)√(10)√(11)×(12)√2.填空:(1)±3;3 (2)±(3)-(4)3;(5)m≥;m=3 (6)a≥2且a≠3(7)立方根;-64 (8)x为任意实数(9) ±(10)-a3.选择题:(1)B (2)D (3)D (4)C (5)A (6)A4.求x的值:(1)x=±5 (2)x=-5.x= ,y=,xy= 。
答案:1、D 2、D 3、D 4、C 5、C 6、D 7、C 8、A 9、B 10、A。