流式细胞仪的原理及应用

合集下载

流式细胞仪的应用及工作原理

流式细胞仪的应用及工作原理

流式细胞仪的应用及工作原理流式细胞仪的应用流式细胞仪在医学应用特别广泛,是一种能够对细胞进行相关处理的仪器,并且能够对细胞进行必要的分析,所以在医同学的应用特别的多。

下面介绍一下流式细胞仪的实在应用:流式细胞仪的应用1、DNA倍体分析DNA分析是流式细胞仪最初且是现在应用广泛检测项目。

由于恶性细胞DNA含量通常与正常细胞不同,存在异倍体细胞,所以现有很讨论评价异倍体细胞与肿瘤恶性度及其预后的关系。

DNA含量检测还可供应细胞周期方面的信息,这在细胞生物学中运用很广泛。

特别地,它可表示出细胞毒性药物对细胞作用过程。

这些DNA检测还可与细胞表面标志物标记同时进行,这样在细胞混合培育中,可通常追踪表达特异标志物的细胞显示其生长周期情况。

全部方法都是基于染料能与核酸起特异的化学反应并发射出荧光,常用的染料为PI,DAPI。

在该领域Partec公司的 CyFlow PA是一枝独秀。

2、细胞生存本领试验使用Heochest 33342染料与DNA特异性结合,后因细胞活力不同染料的结合程度也各异,故可评估细胞的活性度。

3、计数外周血中检测网织红细胞使用TO染料能够特异性地与RNA结合,结合系数高达3000,故具有很好的性价比。

4、外周血、骨髓采集物中CD34阳性干细胞计数,临床上用于骨髓移植前干细胞数理的测定。

使用标准ISHAG方案,需要DNA或其他核染料占用FITC通道,PE标记CD34抗体,PE—CY5标记CD45抗体。

5、交叉淋巴细胞、粒细胞毒试验检测识别供体血清中免疫球蛋白与受体粒细胞之间是否存在反应有侧紧要临床意义,由于这种反应会导致移植后发热、移植后肺损伤及免疫性粒细胞缺乏症。

流式细胞仪可检测全血样本与血清孵育后粒细胞上结合的人免疫球蛋白。

FITC标记人免疫球蛋白抗体、PE标记粒细胞表面标志物、PE—CY5标记HLA抗体。

6、血小板自身抗体检测血小板自身抗体识别人血小板抗原,会引起各种临床相关症状,如新生儿自免性血小板削减症、输血后紫癜、难治性血小板削减。

流式细胞仪的原理和应用

流式细胞仪的原理和应用

流式细胞仪的原理和应用1. 引言流式细胞仪是一种常用于细胞分析和分选的实验室仪器。

它通过光学技术和流体力学原理,能够快速、准确地测量和分析细胞的各种参数。

本文将介绍流式细胞仪的原理和应用。

2. 原理流式细胞仪的工作原理主要包括以下几个部分:2.1 光学系统流式细胞仪通过激光束照射待测细胞,细胞内的荧光标记物被激发后会发出特定波长的荧光信号。

光学系统通过透镜、滤光片和光散射装置等光学元件,将细胞的荧光信号收集并转换为电信号。

2.2 流体力学系统流式细胞仪通过一个微细管道使细胞以单个细胞为单位通过检测区域。

流体力学系统通过控制细胞的流速和方向,确保细胞以适当的速度和位置通过激光束照射点,以确保准确的测量结果。

2.3 信号处理系统流式细胞仪的信号处理系统主要由放大器、模数转换器和计算机组成。

放大器将收集到的电信号放大到适当的范围,并将其转换为数字信号。

模数转换器将数字信号转换为计算机可以处理的数据,计算机则对这些数据进行分析和图像处理。

3. 应用流式细胞仪广泛应用于生物医学领域,常用于以下几个方面:3.1 免疫表型分析流式细胞仪可以通过检测细胞表面的特定标记物,如细胞膜上的抗原或细胞内的特定蛋白,来对细胞进行免疫表型分析。

这对于研究免疫系统、识别疾病标记物以及血液分析等应用具有重要意义。

3.2 细胞周期和凋亡分析流式细胞仪可以通过检测DNA含量的变化来研究细胞的分裂周期和凋亡过程。

这对于了解细胞生命周期、细胞增殖以及细胞死亡机制等方面的研究非常有帮助。

3.3 细胞分选与单细胞分析流式细胞仪还可以根据细胞的荧光信号和其他参数,对细胞进行分选。

通过设定合适的阈值,可以分别收集到不同亚群的细胞,从而进行后续的单细胞分析和研究。

3.4 体外受精和胚胎筛选流式细胞仪可以对体外受精过程中的精子和卵子进行分析和筛选,从而提高体外受精的成功率。

此外,对于胚胎的筛选和评估也可以使用流式细胞仪进行。

3.5 微生物学研究流式细胞仪对微生物的研究也具有重要意义。

流式细胞仪的原理及应用

流式细胞仪的原理及应用

流式细胞仪的原理与使用一、定义流式细胞仪(flow cytometer):是集光电子物理、光电测量、计算机、细胞荧光化学、单抗技术为一体的高科技细胞分析仪。

流式细胞术(flow cytometry , FCM):是以流式细胞仪为检测手段的一项能快速、精确的对单个细胞理化特性进行多参数定量分析和分选的新技术。

流式细胞仪的发展综合了激光技术、计算机技术、荧光光度测定技术、流体喷射技术、分子生物学和免疫学等多门学科的知识及技术。

二、基本结构1.流动室和液流系统流动室由样品管、鞘液管、喷嘴等组成,由透明稳定的材料(化学玻璃、石英等)制成,是液流系统的核心部分。

样品管贮放样品,单个细胞悬液在液流压力下从样品管射出。

鞘液由鞘液管由四周流向喷孔,包围在样品外周后由喷嘴射出。

2.激光源和光学系统光源根据被激发物质的激发光谱而定,常用弧光灯和激光。

常用的弧光灯为汞灯,激光器多为氩离子激光器、氪离子激光器或染料激光器。

经过特异荧光染色的细胞需要合适的光源照射激发荧光供收集检测。

3.光电管和检测系统荧光染色或荧光标记后的细胞受到合适的光激发后产生的荧光通过光电转换器转变为电信号进行测量。

通常使用光电倍增管(PMT)。

PMT响应时间短,为ns数量级,具有较强光谱响应特性,200~900nm光谱区内光量子产额较高,其增益从103到108可连续调节,有利于弱光的测量。

由PMT输出的电信号放大后输入分析仪器。

流式细胞仪中一般备有两类放大器。

一类为线性放大器,即输出信号辐度与输入信号成线性关系,适用于在较小范围内变化的信号以及代表生物学线性过程的信号,例如DNA测量。

另一类是对数放大器,输出信号和输入信号之间成常用对数关系。

在免疫学测量中常使用对数放大器。

免疫分析时需要同时显示阴性、阳性和强阳性三个亚群,其荧光强度相差1~2个数量级;在多色免疫荧光测量中,用对数放大器采集数据易于解释。

此外还有调节便利、细胞群体分布形状不易受外界工作条件影响等优点。

FCM(流式细胞术检测)原理及临床应用

FCM(流式细胞术检测)原理及临床应用
流式细胞术的概念
流式细胞术(flow cytometry FCM)是利用流式细 胞仪对单个生物颗粒(红细胞、白细胞、各类组织细 胞、血小板、微生物等)以及人工合成微球的物理和 生物学特性进行多参数定量分析,并能对特定细胞 群体加以分选的分析技术。
FCM的工作原理
流式细胞仪组成:
1.液流系统 2.光学系统 3.数据处理系统
双标记或多标记分析:目前使用的流式细胞仪 能用一个激光束激发检测三色甚至四色荧光信 号。检测时需注意荧光补偿。
常用免疫荧光染料组合
荧光染料 FITC+PE
激发波长 (nm)
488
发射波长(nm) 525、575
颜色 绿色、橙色
FITC+PeCy5
488
525、675
绿色、红色
FITC+ECD
488
实体瘤以多倍体居多;
G0 期:DNA 合成静止期 G1 期:DNA 合成前期 S 期: DNA 合成期 G2 期:DNA 合成后期 M 期: 细胞分裂期
DNA 倍体 2N 2N
2N-4N 4N 4N
DNA非2倍体出现是鉴别良性与恶性肿瘤的特异性指 标:
良性肿瘤和正常组织良性增生不出现DNA非2倍体细 胞而恶性肿瘤常可出现异倍体细胞;
过去认为 FCM测定残存白血病细胞不可靠, 因为现用的 McAb不能鉴别正常血细胞与白血 病细胞。虽然至今尚未发现白血病细胞特异抗 原,但近来有人提出根据白血病细胞的以下特 征, FCM检测的敏感度可明显提高
白血病细胞的某些抗原表达量明显高于相应 的正常血细胞
如小儿ALL,其CDl0+细胞的荧光强度可 高达3-4个对数值,而其 CD45则为弱阳性或 阴性。
525、625

流式细胞术的原理和应用

流式细胞术的原理和应用

流式细胞术的原理和应用流式细胞术是一种广泛应用于生物医学领域的先进技术,它通过对细胞的特定特征进行高效、快速的检测和分析,为科学研究和临床诊断提供了强大的工具。

流式细胞术的原理和应用涉及到许多方面,包括仪器原理、标记技术、数据分析等,下面将对这些内容进行详细阐述。

一、流式细胞术的原理流式细胞术的原理基于细胞在流动液体中依次通过激光束后的单个检测区域,通过检测细胞在不同参数下的散射或荧光信号来获取关于细胞数量、大小、形态、表面标记物等信息。

流式细胞术通常包括以下步骤:1. 样本制备:将样本中的细胞进行适当的处理,如酶消化、离心、过滤等,以获得单细胞悬浮液。

2. 细胞标记:利用标记物(如荧光染料、抗体等)对待测细胞进行特异性标记,以便在流式细胞仪中对其进行检测和分析。

3. 流式细胞仪检测:将标记后的细胞悬浮液通过流式细胞仪,激光束依次照射每个细胞,并通过检测散射光和荧光信号来获得相关信息。

4. 数据分析:通过专门的流式细胞数据分析软件对获得的数据进行处理和分析,获取细胞的数量、特征等信息。

二、流式细胞术的应用1. 免疫学研究:在免疫学领域,流式细胞术可用于分析免疫细胞的类型、数量和功能,如淋巴细胞亚群的鉴定、T细胞的活化状态等,为免疫学研究提供了重要的数据支持。

2. 癌症诊断和治疗:流式细胞术可用于检测肿瘤细胞的类型和数量,分析肿瘤细胞的表面标记物,评估肿瘤的侵袭性和预后,指导临床治疗方案的选择和疗效监测。

3. 干细胞研究:流式细胞术可用于干细胞的鉴定和分离,分析干细胞的表面标记物和多能性,为干细胞研究和应用提供重要的技术支持。

4. 病原微生物检测:流式细胞术可用于检测微生物感染,分析微生物的数量、类型和毒力,评估感染的严重程度和治疗效果。

5. 血液分析:流式细胞术可用于分析血液中各类细胞的数量和功能,如白细胞亚群的鉴定、血小板的活化状态等,为临床诊断和治疗提供重要信息。

流式细胞术作为一种高效、敏感的细胞分析技术,在生物医学领域有着广泛的应用前景。

流式细胞仪的原理和用途

流式细胞仪的原理和用途

流式细胞仪(Flow Cytometry)之老阳三干创作1 流式细胞仪的概念及其发展历史1.1 流式细胞仪的基本概念流式细胞仪(flow cytonletry,FCM)是对高速直线流动的细胞或生物微粒进行快速定量测定和分析的仪器,主要包括样品的液流技术、细胞的计数和分选技术,计算机对数据的收集和分析技术等.流式细胞仪以流式细胞术为理论基础,是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学和计算机等学科知识综合运用的结晶.流式细胞术是一种自动分析和分选细胞或亚细胞的技术.其特点是:丈量速度快、被测群体年夜、可进行多参数丈量,即对同一个细胞做有关物理、生物化学特性的多参数丈量,且在统计学上有效.1.2 流式细胞仪的发展简史最早的流式细胞仪雏形出生于1934年,Moldavan提出使悬浮的单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置丈量的设想.1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室.其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人的不竭改进,设计了光电检测设备和细胞分选装置、完成了计算机与流式细胞仪的物理连接及多参数数据的记录和分析、开创了细胞的免疫荧光染色及检测技术、推广流式细胞仪在临床上的应用.近20年来,随着流式细胞仪及其检测技术的日臻完善,人们越来越致力于样品制备、细胞标识表记标帜、软件开发等方面的工作,以扩年夜FCM的应用领域和使用效果.宋平根的《流式细胞术的原理和应用》是迄今为止对流式细胞仪及其技术论述的最为详尽和透彻的中文著作.这本书非常详细地介绍了流式细胞术的历史、结构、原理、技术指标等,例举了其在医学和生物工程中的应用,非常适合从事此方面专业研究的人.由于这本书是13年前出书的,所以基本上没有涉及植物流式细胞仪检测技术.另外对只需要对流式细胞仪有些基本认识的人士来说,这本书太复杂太深奥.谢小梅主要介绍了流式细胞仪在生物工程中的应用.杨蕊概括了流式细胞仪的工作原理,简单提及了流式细胞仪的应用.本文在分析这三篇论著或文章的优缺点后,用比力通俗的语言介绍了掌握流式细胞仪检测技术必需了解的一些原理,并对目前市场上的主流型号进行了客观的性能概括.2 流式细胞仪的工作原理和技术指标2.1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部份组成:流动室和液流系统:激光源和光学系统;光电管和检测系统;计算机和分析系统,其中流动室是仪器的核心部件.这四年夜部件共同完成了信号的发生、转换和传输的任务.流动室和液流系统流动室由样品管、鞘液管和喷嘴等组成,经常使用光学玻璃、石英等透明、稳定的资料制作.设计和制作均很精细,是液流系统的心脏.样品管贮放样品,单个细胞悬液在液流压力作用下从样品管射出;鞘液由鞘液管从四周流向喷孔,包围在样品外周后从喷嘴射出.为了保证液流是稳液,一般限制液流速度υ<10m/s.由于鞘液的作用,被检测细胞被限制在液流的轴线上.流动室上装有压电晶体,受到振荡信号可发生振动.激光源和光学系统经特异荧光染色的细胞需要合适的光源照射激发才华发出荧光供收集检测.经常使用的光源有弧光灯和激光;激光器又以氩离子激光器为普遍,也有配和氪离子激光器或染料激光器.光源的选择主要根据被激发物质的激发光谱而定.汞灯是最经常使用的弧光灯,其发射光谱年夜部份集中于300~400nm,很适合需要用紫外光激发的场所.氩离子激光器的发射光谱中,绿光514nm和蓝光488nm的谱线最强,约占总光强的80%;氪离子激光器光谱多集中在可见光部份,以647nm较强.免疫学上使用的一些荧光染料激发光波长在550nm以上,可使用染料激光器.将有机染料做为激光器泵浦的一种成分,可使原激光器的光谱发生改变以适应需要即构成染料激光器.例如用氩离子激光器的绿光泵浦含有Rhodamine6G水溶液的染料激光器,则可获得550~650nm连续可调的激光,尤在590nm处转换效率最高,约可占到一半.为使细胞获得均匀照射,并提高分辨率,照射到细胞上的激光光斑直径应和细胞直径相近.因此需将激光光束经透镜会聚.光斑直径d可由下式确定:d=4λf/πD.λ为激光波长;f为透镜焦距;D为激光束直径.色散棱镜用来选择激光的波长,调整反射镜的角度使调谐到所需要的波长λ.为了进一步使检测的发射荧光更强,并提高荧光讯号的信噪比,在光路中还使用了多种滤片.带阻或带通滤片是有选择性地使某一滤长区段的光线滤除或通过.例如使用525nm带通滤片只允许FITC(Fluoresceinisothiocyanate,异硫氰荧光素)发射的525nm绿光通过.长波通过二向色性反射镜只允许某一波长以上的光线通过而将此波长以下的另一特定波长的光线反射.在免疫分析中常要同时探测两种以上的波长的荧光信号,就采纳二向色性反射镜,或二向色性分光器,来有效地将各种荧光分开. 光电管和检测系统经荧光染色的细胞受合适的光激发后所发生的荧光是通过光电转换器转酿成电信号而进行丈量的.光电倍增管(PMT)最为经常使用.PMT的响应时间短,仅为ns数量级;光谱响应特性好,在200~900nm的光谱区,光量子产额都比力高.光电倍增管的增益从10到10可连续调节,因此对弱光丈量十分有利.光电管运行时特别要注意稳定性问题,工作电压要十分稳定,工作电流及功率不能太年夜.一般功耗低于0.5W;最年夜阳极电流在几个毫安.另外要注意对光电管进行暗适应处置,并注意良好的磁屏蔽.在使用中还要注意装置位置分歧的PMT,因为光谱响应特性分歧,不宜互换.也有用硅光电二极管的,它在强光下稳定性比PMT好.从PMT输出的电信号仍然较弱,需要经过放年夜后才华输入分析仪器.流式细胞计中一般备有两类放年夜器.一类是输出信号辐度与输入信号成线性关系,称为线性放年夜器.线性放年夜器适用于在较小范围内变动的信号以及代表生物学线性过程的信号,例DNA丈量等.另一类是对数放年夜器,输出信号和输入信号之间成经常使用对数关系.在免疫学丈量中常使用对数放年夜器.因为在免疫分析时常要同时显示阴性、阳性和强阳性三个亚群,它们的荧光强度相差1~2个数量级;而且在多色免疫荧光丈量中,用对数放年夜器收集数据易于解释.另外还有调节便利、细胞群体分布形状不容易受外界工作条件影响等优点.计算机和分析系统经放年夜后的电信号被送往计算机分析器.多道的道数是和电信号的脉冲高度相对应的,也是和光信号的强弱相关的.对应道数年纵坐标通常代表发出该信号的细胞相对数目.多道分析器出来的信号再经模-数转换器输往微机处置器编成数据文件,或存贮于计算机的硬盘和软盘上,或存于仪器内以备调用.计算机的存贮容量较年夜,可存贮同一细胞的6~8个参数.存贮于计算机内的数据可以在实测后脱机重现,进行数据处置和分析,最后给出结果.除上述四个主要部份外,还备有电源及压缩气体等附加装置.2.1.1 信号的发生、转换和传输在压力作用下,鞘液管中的鞘液被继续不竭地压入流动室,形成一股稳定地连续的液流,保证了样本液稳定地处于鞘液液流的轴线上,并以单个细胞形式直线通过激光照射区.激光照射区又称丈量区,是指液流与激光束垂直相交的点.当细胞携带荧光素标识表记标帜物(每种物质携带的标识表记标帜物分歧吗?)通过激光照射区时,发生代表细胞内部份歧物质、分歧波长的荧光信号,这些信号以细胞为中心,向空间360°立体角发射,发生散射光和荧光信号.散射光不依赖任何细胞样品的制备技术,因此被称为细胞的物理参数或固有参数.散射光又包括前向角散射和测向角散射.前向角散射与被测细胞直径的平方密切相关,测向角散射光对细胞膜、胞质、核膜的折射率更敏感,可提供有关细胞内精细结构和颗粒性质的信息.荧光信号也有二种;一种是细胞自身在激光照射下发出的微弱荧光信号,另一种是经过特异荧光素标识表记标帜后的细胞受激发照射后获得的荧光信号.在免疫分析中常要同时探测两种以上波长的荧光信号,就采纳二向色性反射镜,或二向色性分光器,来有效地将各种荧光分开.经荧光染色的细胞受到适合的光激发后发生的荧光是通过光电转换器转酿成电信号而进行丈量的.最经常使用的光电转换器是光电倍增管(PMT).从PMT输出的电信号需要经过放年夜后才华输入分析仪器.流式细胞仪中一般备有两类放年夜器.一类是线性放年夜器,其输出信号与输入信号成线性关系.线性放年夜器适用于在较小范围内变动的信号以及代表生物学线性过程的信号,如DNA丈量等.另一类是对数放年夜器,其输出信号和输入信号之间成经常使用对数关系.在免疫学丈量中常使用对数放年夜器.放年夜后的电信号被传送到计算机,再经模一数转换器传输到微机处置器形成数据文件,保管在计算机上.保管在计算机上的数据可在脱机后再进行数据处置和分析.参数(例如:细胞的年夜小、形态、质膜和细胞内部结构)丈量原理流式细胞仪可同时进行多参数丈量,信息主要来自特异性荧光信号及非荧光散射信号.丈量是在丈量区进行的,所谓丈量区就是照射激光束和喷出喷孔的液流束垂直相交点.液流中央的单个细胞通过丈量区时,受到激光照射会向立体角为2π(360°)的整个空间散射光线,散射光的波长和入射光的波长相同.散射光的强度及其空间分布与细胞的年夜小、形态、质膜和细胞内部结构密切相关,因为这些生物学参数又和细胞对光线的反射、折射等光学特性有关.未遭受任何损坏的细胞对光线都具有特征性的散射,因此可利用分歧的散射光信号对不经染色活细胞进行分析和分选.经过固定的和染色处置的细胞由于光学性质的改变,其散射光信号固然分歧于活细胞.散射光不单与作为散射中心的细胞的参数相关,还跟散射角、及收集散射光线的立体角等非生物因素有关.在流式细胞术丈量中,经常使用的是两种散射方向的散射光丈量:①前向角(即0角)散射(FSC);②侧向散射(SSC),又称90角散射.这时所说的角度指的是激光束照射方向与收集散射光信号的光电倍增管轴向方向之间年夜致所成的角度.一般说来,前向角散射光的强度与细胞的年夜小有关,对同种细胞群体随着细胞截面积的增年夜而增年夜;对球形活细胞经实验标明在小立体角范围内基本上和截面积年夜小成线性关系;对形状复杂具有取向性的细胞则可能不同很年夜,尤其需要注意.侧向散射光的丈量主要用来获取有关细胞内部精细结构的颗粒性质的有关信息.侧向散射光虽然也与细胞的形状和年夜小有关,但它对细胞膜、胞质、核膜的折射率更为敏感,也能对细胞质内较年夜颗粒给出灵敏反映.在实际使用中,仪器首先要对光散射信号进行丈量.当光散射分析与荧光探针联合使用时,可鉴别出样品中被染色和未被染色细胞.光散射丈量最有效的用途是从非均一的群体中鉴别出某些亚群.荧光信号主要包括两部份:①自发荧光,即不经荧光染色细胞内部的荧光分子经光照射后所发出的荧光;②特征荧光,即由细胞经染色结合上的荧光染料受光照而发出的荧光,其荧光强度较弱,波长也与照射激光分歧.自发荧光信号为噪声信号,在大都情况下会干扰对特异荧光信号的分辨和丈量.在免疫细胞化学等丈量中,对结合水平不高的荧光抗体来说,如何提高信噪比是个关键.一般说来,细胞成分中能够发生的自发荧光的分子(例核黄素、细胞色素等)的含量越高,自发荧光越强;培养细胞中死细胞/活细胞比例越高,自发荧光越强;细胞样品中所含亮细胞的比例越高,自发荧光越强.减少自发荧光干扰、提高信噪比的主要办法是:①尽量选用较亮的荧光染料;②选用适宜的激光和滤片光学系统;③采纳电子赔偿电路,将自发荧光的本底贡献予以赔偿.2.1.2 流式细胞仪分选原理其实不是所有的流式细胞仪都具有分选功能.流式细胞仪的分选功能是由细胞分选器来完成的.由喷嘴射出的液流柱在电信号作用下发生振动,断裂形成均匀的小液滴.根据选定的某个参数由逻辑电路判明是否将被分选,而后由充电电路对选定细胞液滴充电,带电液滴携带细胞通过静电场而发生偏转,落入收集器中.使用分歧孔径的喷孔及改变液流速度,可能会改变分选效果.从参数测定经逻辑选择再到脉冲充电需要一段延迟时间.精确测定延迟时间是决定分选质量的关键,可根据具体要求进行适当调整.2.1.3 数据的显示和分析数据处置主要包括数据的显示和分析.单参数直方图是使用最多的图形显示形式,既可用于定性分析,又可用于定量分析.单参数直方图是由X、Y二方向组成的二维平面图.横座标X是所测的荧光或散射光的强度,用“道数”(Channel No.)来暗示.选择的放年夜器类型分歧,标度分歧.纵座标Y通常暗示被测细胞的绝对数目.正常情况下,数据分析获得的图形为具有一个或若干个峰的曲线图.对曲线图的解释应该具体问题具体分析.除直方图外,数据显示方式还包括二维点图、二维等高图、假三维图和列表模式等.二维点图也是比力经常使用的数据显示类型.它显示两个自力参数与细胞相对数之间的关系,也是二维平面图,横纵坐标可以根据自己选定的被测参数自行决定,点的位置标明了细胞和颗粒具有的二个被测参数的数值.二维点图所提供的信息量要年夜于单参数直方图.数据分析的方法年夜体可分为参数法和非参数法两年夜类.当被检测的生物学系统能够用某种数学模型时则多使用参数方法.非参数分析法不用对显示的图像做任何假设,也不采纳数学模型,分析法式可以很简单,也可能很复杂.临床医学较常使用非参数分析法. 2.2 流式细胞仪性能的技术指标流式细胞仪性能的技术指标主要有荧光分辨率、荧光灵敏度、适用样品浓度、分选纯度等.荧光分辨率是指分辨两个相邻峰的最小距离,通经常使用变异系数(CV 值)来暗示.现在市场上主流型号出厂时的荧光分辨率应该小于2.0%.荧光灵敏度反映了仪器探测最小荧光光强的能力.一般用荧光微球上可测出的FITC的最少分子数来暗示.目前仪器均可到达1000左右.仪器工作时样品浓度一般在105~107细胞/ml.分析速度/分选速度是指流式细胞仪每秒种可分析或分选的颗粒数目.一般分析速度为5000~10000,分选速度控制在1000以下.流式细胞仪丈量的数据是相对值,因此需要在使用前对系统进行校准或标定.流式细胞仪的校准有二个目的,即仪器的准直调整和定量标度.通常使用标准微球作为非生物学标准样品,鸡血红细胞做为生物学标准样品.3 主流流式细胞仪型号及其特性介绍目前拥有市场较年夜份额的公司是美国的BD(Becton-Dickinson)公司、Beckman-Coulter公司(原名称Coulter)和德国的Partec公司.3.1 BD公司流式细胞仪介绍BD公司生产的流式细胞仪都冠以FACs(fluorescence activated cell sorter),即荧光激活细胞分选器.其型号种类比力齐全,如早期的FACSort、FACS Canto、FACSean.现在市场上供应的型号有五种:FACSCount(小型流式细胞仪)、FACS CAlibur(流式细胞仪)、FACSA ria(流式细胞分选仪)、FACSV antage SETM(多色分析和高速分选流式细胞仪)、LSR II(数字化分析型流式细胞仪).FACSCount为精确计数淋巴细胞CD3,CD4,CD8绝对数而设计的.FACSCalibur是全自动多色流式系统,偏重于临床,其整体设计帮手临床医生快速实现惯例免疫表型、CD4T细胞计数、DNA、网织红细胞、血小板等临床分析,兼具分选功能.配备有二根激光管,可同时检测4个荧光参数.可识别粘联细胞.BD FACSA ria流式细胞分选仪为台式高速细胞分选仪,获取速度达70,000细胞/s,分析速度达50,000/s.使用石英杯流动检测池固定光路校准技术.使用三种激光,多色分析,分析参数可达15色.两管或四管分选,可以使用多种规格的收集管.液流监测系统白动监测液流断点,检查梗塞,实现了细胞分选的无人把持.配件BDACDU装置,可以在微孔板或载波片上定量分选细胞.FACSV antage SETM是在FACSV antage的细胞分选功能基础上推出的分选增强型流式细胞仪.六色荧光分析系统,点对点分选,配置FACS Diva数字化系统,提供全面的配套试剂.速度和功能优于FACSV antage.BD LSR II是LSR的数字化升级版,其性能介于FACSV antage SE 和FACS Calibur之间,是专为生命科学研究设计的台式机.配备固定校准的紫外激光,四种激光立体空间激发、十色荧光同时分析、电子系统数字化、比力易学易用.3.2 Beckman-Coulter公司流式细胞仪介绍Beckman- Coulter 公司生产的流式细胞仪以Profile(早期,现已停产)和EPICS系列为代表,近年又推出了Cytomics FC500系列.EPICS系列是年夜型流式细胞仪,目前市场上有XL、XL-MCL和ALTRA三种型号,其中ALTRA具有分选功能,适用于免疫学、细胞生理、分子生物学、遗传学、微生物学、水质分析和植物细胞分析.Cytomics FC500系列流式细胞仪体积小,可自动进行5种颜色的分析,适用于免疫学检测,如人类HIV诊断.特别是FC500MPL的共同设计可以在同一系统上使用12×75mm的离心管和24或96孔的平板.特别适合工作量年夜的实验室.这二个公司主要针对医学研究和临床工作进行设计和生产,其产物可应用于生物医学基础研究以及临床检测的许多领域,如遗传、肿瘤、血液、免疫等诸多研究中红细胞、T细胞、淋巴细胞亚群测定、检测早期细胞凋亡、肿瘤细胞免疫测定等.这二个公司的流式细胞仪价格昂贵,我国主要购买、使用的单元基本上都是一些医疗机构.3.3 Partec公司流式细胞仪介绍与BD和Becman-Coutler公司的产物相比,德国Partec公司生产的流式细胞仪的共同特点是体积小,造价低,易把持,便于携带,适合植物学研究,适合遥远地域和发展中国家.德国Partec公司的产物分为三类:CCA家族、PAS 家族和CyFlow家族(Galaxy为早期产物,已停产).CCA家族包括细胞计数分析仪CCA和倍性分析仪PA-I.它是单或双参数的台式小型机,可以进行一些惯例分析,如核DNA测定(检测倍性或细胞周期)、细胞计数、细胞凋亡.它的特点是体积小,易把持,价格低,检测范围广,可以检测多种荧光素(如PI、DAPI、Fluorescein)发出的荧光.PAS家族包括粒子分析系统PAS、粒子分析系统III (PAS-III)和倍性分析仪PA-II.提供三种激光器的三种组合,可检测十余种荧光染料.最多可检测和记录八个自力荧光参数.倍性分析仪PA能够在2分钟内自动丈量植物的倍性水平,检测异倍体.可以对叶片、幼苗、种子、果皮、根、花等植物资料进行分析.在年夜大都植物中,异倍体染色体的检测分辨率为±1条染色体.PA-I使用HBO-100汞灯,属于弧光灯,可发生紫外激发光和蓝光.PA-II中增加了488nm氩离子激光器,能够检测几乎所有的荧光染料,如DAPI,Hoeehst,PI,EB,MMC,FITC,FDA等.汞灯发光是电流经过气体时,气体电离发生的.它能提供最佳的激发波长.CyFlow(R)SL配备三种激光管,可应用于诸如人类健康、微生物学、工业应用、过程控制、生态学等研究.如HIV扫描中免疫标识表记标帜细胞计数、食品处置过程中的微生物计数、细胞凋亡等.它使用l2 V直流电,特别适合遥远地域和发展中国家.国际上20世纪80年代开始将流式细胞仪检测应用到植物的研究中(Galbraith,1983),众多学者都认为流式细胞仪是一种准确、快速的检测DNA含量的方法(Michaelson,1991).应用范围主要是利用流式细胞仪研究属内、属间多种植物的DNA含量(Baird,1994;Jacob,1996;HALL,2000)和倍性水平(Costich,1993;Meng,2002)、检测体细胞杂种(Pfosser,1995;Keller,1996)和游离小胞子培养再生株(Kim,2003)的DNA含量.过去我国应用这一检测技术的植物研究工作者寥寥无几,且年夜多是在国外实验室完成的.研究内容包括植物生理、法式性死亡、倍性鉴定等.植物研究中使用的流式细胞仪基本上都是Partec公司的产物,也有少量是BD公司生产的流式细胞仪.BD公司的产物主要定位于医学研究与应用,与Partec产物相比,不太适合从事植物染色体倍性的鉴定.主要体现在不能提供植物样品制备技术/试剂,数据获取软件可同时检测到的倍性数目少.鉴于目前我国科研院所中使用较多的是BD公司生产的流式细胞仪,在下一篇中将会对利用BD流式细胞仪进行植物倍性检测的技术和技巧做详细陈说.如何选择流式细胞仪自七十年代呈现第一代流式细胞仪以来,随着计算机技术、电子制造技术、激光技术及荧光素合成技术的不竭发展,现代流式细胞仪已今非昔比,制造工艺、功能、精确度有了质的飞跃.流式细胞仪生产厂商推出各种分歧型号的流式细胞仪来满足用户的分歧需要.现生产流式细胞的厂商全球至少有六家,各厂商产物又有分歧的系列,各具特点.如何从众多的型号中挑选出最适合自己的机型,我们还需从分析应用动身,评估自己的需求来决定什么样的流式细胞仪最具性价比、最适合自己.⑴、DNA倍体分析DNA分析是流式细胞仪最初且是现在应用最广检测项目.由于恶性细胞DNA含量通常与正常细胞分歧,存在异倍体细胞,所以现有很研究评价异倍体细胞与肿瘤恶性度及其预后的关系.DNA含量检测还可提供细胞周期方面的信息,这在细胞生物学中运用很广泛.特别地,它可暗示出细胞毒性药物对细胞作用过程.这些DNA检测还可与细胞概况标识表记标帜物标识表记标帜同时进行,这样在细胞混合培养中,可通常追踪表达特异标识表记标帜物的细胞显示其生长周期情况.所有方法都是基于染料能与核酸起特异的化学反应并发射出荧光,经常使用的染料为PI,DAPI.流式细胞仪要求:488nm光源,575nm滤光片.⑵、细胞生存能力实验。

流式细胞仪在生物学研究中的应用

流式细胞仪在生物学研究中的应用

流式细胞仪在生物学研究中的应用流式细胞仪(Flow cytometer)是一种广泛应用于生物学研究的仪器,通过对细胞的特性进行快速、准确地分析和分选,为科学家提供了重要的数据和信息。

本文将探讨流式细胞仪在生物学研究中的应用,并展示其在不同领域的重要性。

一、流式细胞仪的原理和技术流式细胞仪的工作原理基于细胞在液体流动状态下被传感、检测和反应的过程。

它通过将细胞悬浮液经过细胞仪仪器内的细长管道,并在细胞通过过程中激发和测量其特定性质,从而实现对细胞的多参数分析和评估。

流式细胞仪的技术包括激光激发、细胞传感和荧光信号检测等。

激光激发利用高能激光束对细胞进行激活并激发其内部或表面荧光标记物的发射。

细胞传感通过聚焦和引导细胞通过检测区域,确保单个细胞按顺序经过检测装置。

荧光信号检测则通过光学检测系统捕捉和记录细胞放射出的特定波长的荧光信号。

二、流式细胞仪在免疫学研究中的应用1. 免疫表型分析:流式细胞仪可以用于识别和分析多种免疫细胞,如T细胞、B细胞、巨噬细胞等,并评估它们的表型特征,如表面标记物的表达情况、活化状态等。

2. 免疫细胞功能研究:通过对细胞的功能进行评估,如蛋白质分泌、细胞增殖、细胞凋亡等,可以了解它们在免疫反应中的作用和调控机制。

3. 免疫细胞亚群分析:流式细胞仪可以将免疫细胞按照特定标志物进行分拣和分选,从而获得纯度较高的特定亚群细胞,以便进行进一步的研究。

三、流式细胞仪在细胞生物学研究中的应用1. 细胞周期分析:通过流式细胞仪的荧光探测系统,可以对细胞进行DNA含量的测定,从而确定其所处的细胞周期阶段和细胞增殖状态。

2. 細胞凋亡檢測:流式细胞仪可以通过检测特定标志物如磷脂翻转等,对凋亡细胞进行分析和鉴定,以了解细胞凋亡的机制和调控网络。

3. 细胞增殖和细胞死亡研究:通过荧光染料等方法,流式细胞仪可以评估细胞增殖和死亡相关的指标,如活细胞数量、细胞周期分布、凋亡率等。

四、流式细胞仪在癌症研究中的应用流式细胞仪在癌症研究中具有重要意义,可以用于:1. 癌细胞鉴定和分离:通过特定标志物的荧光检测,流式细胞仪可以将癌细胞与正常细胞进行区分,从而进行纯化和特异性分析。

流式细胞术的工作原理及临床应用

流式细胞术的工作原理及临床应用

流式细胞术的工作原理及临床应用引言流式细胞术是一种广泛应用于生物医学研究和临床诊断的技术,其工作原理基于细胞在液体流动环境中的特定性质。

该技术广泛用于细胞表型分析、细胞计数、细胞分类和细胞排序等领域,为研究人员和医生提供了重要的工具。

一、流式细胞术的工作原理流式细胞术利用细胞在液体中的流动来实现细胞的分析和排序。

其工作原理可以分为三个主要步骤:细胞的悬浮、细胞的单独通过和细胞的检测。

1. 细胞的悬浮:首先,需要将待分析的细胞样本进行处理,使其转化为单细胞悬浮液。

这可以通过细胞培养、组织切片或体液处理等方法获得。

继续使用细胞培养基、酶消化或机械碎解等方法,将细胞组织分散成单个细胞,并获得细胞悬浮液。

2. 细胞的单独通过:接下来,将细胞悬浮液通过微小通道,通常是称为流式细胞仪的仪器。

在流速适中的条件下,细胞会单个通过通道,并在通过过程中因其特定特征而会发生特别的反应。

3. 细胞的检测:在细胞通过过程中,流式细胞仪能够感应细胞的数量、大小、形状和表面标记物等特征。

通过使用激光器的激光束照射细胞,并测量其散射光、荧光光谱等信息,流式细胞仪能够对细胞的特征进行定量分析。

二、流式细胞术的临床应用流式细胞术作为一种高效、灵敏和准确的细胞分析方法,在临床上有着广泛的应用,以下是一些常见的临床应用:1. 免疫学研究:流式细胞术在免疫学领域的应用非常广泛。

通过对细胞表面的抗原和抗体的特异性结合,可以对免疫细胞进行表型分析,了解不同亚群细胞的比例和功能状态。

这对于研究免疫相关疾病的发生机制、免疫细胞治疗的效果评估等方面非常重要。

2. 癌症诊断和监测:流式细胞术在癌症的诊断和监测中也起着关键作用。

通过检测癌细胞的特定标记物,可以对肿瘤进行识别、分类和判断其恶性程度。

此外,流式细胞术还可以监测肿瘤的治疗反应,评估抗癌药物的疗效,并预测患者的预后。

3. 血液学检测:流式细胞术在血液学检测中也占据重要地位。

通过检测血液中的各种细胞类型和亚群细胞的比例,可以帮助诊断和监测临床上的血液疾病,如白血病、淋巴瘤等。

流式细胞仪的发展历史及其原理和应用进展

流式细胞仪的发展历史及其原理和应用进展

流式细胞仪的发展历史及其原理和应用进展一、本文概述流式细胞仪(Flow Cytometry,FCM)作为一种先进的细胞分析技术,自其诞生以来,在生物医学领域发挥了重要的作用。

本文旨在全面概述流式细胞仪的发展历史,深入剖析其基本原理,以及探讨其在不同领域的应用进展。

我们将从流式细胞仪的初步概念出发,追溯其技术的演进过程,分析其在细胞生物学、免疫学、肿瘤学等领域的应用实例,并展望未来的发展趋势。

通过对流式细胞仪的深入研究,我们希望能够为相关领域的研究人员提供有价值的参考,推动流式细胞仪技术的进一步发展。

二、流式细胞仪的发展历史流式细胞仪(Flow Cytometry,FCM)是一种在液流中快速测量和分析细胞特性的高科技仪器。

自其诞生以来,流式细胞仪在生物医学研究领域发挥了重要作用,其发展历史可追溯至20世纪60年代末。

1965年,美国科学家Wallace H. Coulter首次提出了流式细胞仪的基本概念,并设计出了第一台原型机。

这台机器利用了液流原理和荧光检测技术,可以对单个细胞进行快速、定量的分析。

1970年,Coulter Science公司正式推出了世界上第一台商用流式细胞仪,标志着流式细胞技术的诞生。

随着科技的进步,流式细胞仪在随后几十年中经历了不断的改进和创新。

在硬件方面,流式细胞仪的激光源从最初的单一波长发展到多波长,甚至引入了紫外、红外等多种激光,使得可以同时检测多种细胞参数。

在软件方面,数据分析和处理能力得到了显著提升,可以实现对大量数据的快速、准确分析。

流式细胞仪的应用领域也不断拓宽。

从最初的免疫学研究,到现在的肿瘤学、细胞生物学、分子生物学等多个领域,流式细胞仪已经成为了不可或缺的研究工具。

随着单细胞测序技术的发展,流式细胞仪与单细胞测序技术的结合,为深入研究细胞异质性和疾病发生机制提供了新的手段。

流式细胞仪的发展历史是一部科技进步的缩影。

从最初的原型机到现在的多功能仪器,流式细胞仪在硬件、软件和应用领域都取得了显著的进步。

流式细胞仪的原理与应用

流式细胞仪的原理与应用

流式细胞仪的原理与应用原理介绍流式细胞仪是一种常用于生命科学研究的仪器,用于对细胞进行高通量分析和计数。

它通过将悬浮细胞排列成单个细胞,然后利用激光照射细胞并检测产生的荧光或散射光信号,来获得关于细胞的多种信息。

流式细胞仪的原理包括以下几个关键步骤:1.细胞样本的制备:将细胞样品制备成单细胞悬浮液。

2.细胞的流式:将细胞悬浮液通过细胞流动系统,使细胞以单个细胞的形式通过激光束。

3.激光照射:使用激光束照射细胞,激发细胞产生荧光信号或散射光。

4.光信号检测:使用光学系统收集并分析细胞产生的荧光信号或散射光。

5.数据分析:将收集到的数据进行分析和解读,得出关于细胞的信息。

应用领域流式细胞仪广泛应用于生命科学相关的领域,包括以下几个方面:免疫学研究流式细胞仪可以用于研究免疫学领域的诸多问题。

通过标记特定的细胞表面分子,流式细胞仪可以定量和定性地分析细胞亚群的分布和表达水平。

例如,可以通过测量细胞表面抗原的表达来评估免疫细胞的激活状态。

此外,流式细胞仪还可以用于分析细胞因子的产生和分泌,从而揭示免疫响应的机制。

癌症研究流式细胞仪在癌症研究中起着重要的作用。

它可以用于检测和分析肿瘤细胞的特征。

通过染色或标记特定的肿瘤标志物,流式细胞仪可以帮助研究人员识别和定量肿瘤细胞,并对其进行分析。

此外,流式细胞仪还可以用于研究肿瘤细胞的增殖和凋亡过程,以及肿瘤细胞克隆和转移的机制。

神经生物学研究流式细胞仪在神经生物学研究中也有广泛应用。

通过使用特定的标记,可以对神经细胞或其他神经元亚群进行表型和功能研究。

例如,可以使用流式细胞仪来检测和分析特定神经细胞亚群的神经递质受体的表达水平,从而揭示神经细胞间相互作用的机制和功能。

细胞治疗流式细胞仪在细胞治疗中也有重要的应用。

细胞治疗是一种利用细胞修复和替代受损组织的方法。

流式细胞仪可以被用来富集和纯化特定的细胞亚群,以获取足够数量的细胞用于治疗。

此外,流式细胞仪还可以用于评估治疗的效果,例如通过分析细胞增殖或功能的变化来评估细胞治疗的效果。

流式细胞仪原理及应用

流式细胞仪原理及应用

流式细胞仪原理及应用流式细胞仪(flow cytometry)是一种高效、高通量、多参数的细胞分析技术,广泛应用于生物医学研究、临床诊断、药物研发等领域。

本文将介绍流式细胞仪的原理及其在生命科学研究中的应用。

流式细胞仪的原理主要基于细胞对激光光束的散射和荧光信号的检测。

当细胞悬浮在流式细胞仪的流动系统中通过激光束时,细胞会散射出前向散射光(FSC)和侧向散射光(SSC)。

FSC反映了细胞的大小,而SSC反映了细胞的复杂性和颗粒度。

此外,流式细胞仪还可以检测细胞内荧光标记物的荧光信号,通过这些信号可以对细胞进行多参数分析,包括细胞表面标记物、细胞周期、DNA含量、细胞凋亡等。

在生物医学研究中,流式细胞仪被广泛应用于细胞表型分析、细胞凋亡检测、细胞周期分析、免疫细胞表型分析等领域。

例如,研究人员可以利用流式细胞仪对肿瘤细胞进行表型分析,以了解肿瘤细胞的表面标记物表达情况,从而为肿瘤治疗提供依据。

此外,流式细胞仪还可以用于检测细胞内钙离子浓度、ROS生成、线粒体膜电位等生物学参数的变化,为细胞功能研究提供重要数据支持。

在临床诊断中,流式细胞仪被广泛应用于血液学、免疫学、肿瘤学等领域。

例如,流式细胞仪可以用于血液细胞分型、白血病和淋巴瘤的诊断与分型、免疫细胞表型分析等。

通过对患者血液或组织样本的流式细胞分析,临床医生可以更准确地诊断疾病类型,评估疾病预后,指导治疗方案的选择。

另外,流式细胞仪还被广泛应用于药物研发领域。

研究人员可以利用流式细胞仪对药物对细胞的影响进行评价,包括细胞毒性、细胞凋亡诱导、细胞周期阻滞等。

通过流式细胞仪的高通量分析,可以快速筛选出具有潜在药物活性的化合物,为新药研发提供重要的支持。

总之,流式细胞仪作为一种高效、高通量、多参数的细胞分析技术,在生物医学研究、临床诊断、药物研发等领域发挥着重要作用。

随着技术的不断发展和完善,相信流式细胞仪将在未来发挥更加重要的作用,为生命科学研究和临床医学带来更多的突破和进步。

流式细胞术的原理和应用

流式细胞术的原理和应用

流式细胞术的原理和应用一、流式细胞术的原理流式细胞术是一种在液流中快速检测细胞特性的技术。

通过将单个细胞与特异性抗体结合,实现对细胞表面和内部抗原的定量和定性分析。

抗体通常与荧光染料标记,以便在流式细胞仪中产生光信号。

细胞在流式细胞仪中通过激光束,产生的荧光信号被光电倍增管收集并转换为电信号,从而实现对细胞特性的定量分析。

二、流式细胞术的应用1. 免疫表型分析流式细胞术可用于免疫表型分析,以了解免疫细胞群体的多样性、功能和活性状态。

通过检测特定免疫细胞表面标记物的表达水平,可以评估其发育阶段、激活状态和功能特性。

这种分析对于研究免疫系统功能、疾病发生机制和疫苗开发具有重要意义。

2. 细胞功能分析流式细胞术可用于分析细胞的生理功能,如细胞增殖、凋亡和吞噬作用等。

通过向流式细胞仪中添加特定的荧光染料或抗体,可以检测细胞内关键分子如DNA、RNA、蛋白质等,从而评估细胞的增殖和凋亡状态。

此外,还可以通过检测细胞表面的吞噬标记物,研究细胞的吞噬能力。

3. 基因表达分析流式细胞术可用于基因表达分析,以了解特定基因在细胞中的表达水平。

通过将RNA与特异性抗体结合,并使用荧光染料标记,可以检测细胞中特定基因的表达水平。

这种分析有助于研究基因功能、疾病诊断和药物筛选。

4. 病原体检测流式细胞术可用于病原体检测,以快速准确地识别和计数感染性疾病的病原体。

通过将特异性抗体与病原体结合,并使用荧光染料标记,可以在流式细胞仪中实现对病原体的定量和定性分析。

这种分析对于疾病诊断和治疗具有重要意义。

5. 肿瘤诊断和治疗流式细胞术在肿瘤学中也有广泛的应用。

通过对肿瘤细胞的表面抗原、基因表达和细胞功能进行分析,有助于肿瘤的诊断、分类、预后评估和治疗策略的制定。

此外,流式细胞术还可以用于监测肿瘤细胞的耐药性和对治疗的反应,为个体化治疗提供依据。

流式细胞仪的原理及应用

流式细胞仪的原理及应用

流式细胞仪的原理及应用1. 导言流式细胞仪(Flow Cytometry)是一种强大的生物学分析技术,可用于对细胞进行精确的多参数分析。

本文将介绍流式细胞仪的原理以及其在不同领域中的应用。

2. 流式细胞仪的原理流式细胞仪通过激光器将单一细胞注入到来自样品的悬浮液中,并对其进行流式检测。

其原理主要包括以下几个步骤:2.1 细胞悬浮液的制备将待测样品进行预处理,并将细胞转化为单细胞悬浮液。

这通常涉及到细胞的离心、洗涤和溶解等步骤,以确保获得单一、可靠的细胞样本。

2.2 细胞的注射将细胞悬浮液注入流式细胞仪中,通过液压系统控制细胞的流速和数量,确保适量的细胞满足检测要求。

2.3 激光照射和荧光检测流式细胞仪使用高功率激光器照射经过细胞的细胞悬浮液。

这些激光器可以刺激样品中的荧光染料、标记物或其他荧光探针。

细胞在受到激光照射后会发出荧光信号,流式细胞仪则利用光电倍增管检测并记录这些信号。

2.4 数据分析流式细胞仪所得到的原始数据将通过计算机进行处理和分析,以提取相关的参数和信息。

数据可以按照细胞数量、细胞表型及细胞活性等不同参数进行分类和分析。

3. 流式细胞仪的应用3.1 生命科学研究流式细胞仪在生命科学领域的研究中扮演着重要角色。

它可以用于研究细胞周期、细胞凋亡、细胞增殖以及细胞表型的分析。

流式细胞仪能够分析多个标记物的表达情况,帮助研究人员识别不同的细胞类型,并进行进一步的功能研究。

3.2 临床诊断流式细胞仪在临床诊断中也得到了广泛的应用。

它可以通过检测多种荧光标记物来识别和分类血液细胞,并进行疾病的诊断。

例如,在白血病的早期诊断中,流式细胞仪能够检测异常细胞的存在,提供重要的诊断依据。

3.3 免疫学研究流式细胞仪在免疫学研究中被广泛应用。

它可以辅助进行免疫表型分析、细胞介导的免疫反应监测以及细胞因子的检测。

流式细胞仪的高通量性能使得大规模分析成为可能,帮助研究人员深入了解免疫系统的功能和疾病的发展机制。

流式细胞术的基本原理与应用

流式细胞术的基本原理与应用

流式细胞术的基本原理与应用1. 流式细胞术简介流式细胞术(flow cytometry)是一种广泛应用于生物医学领域的实验技术,顾名思义,它是通过流式细胞仪对细胞进行快速高效的分析和计数的一种方法。

流式细胞仪结合了光学、电子学和生物学的原理,在细胞的分析和生物标记方面发挥着重要的作用。

2. 流式细胞术的基本原理流式细胞仪通过采用一系列光学镜头和激光发射器来激发和检测细胞中的荧光标记物。

其基本原理如下:•细胞的准备:首先需要制备待测样本的单细胞悬液,并加入荧光标记物以特异性地标记感兴趣的细胞组分。

荧光标记物可以是通过特异荧光染料直接染色的,也可以是通过激活荧光分子标记的。

•光学系统:流式细胞仪内部包含多个光学系统,它们可以激发和检测荧光标记物。

通常,一台流式细胞仪至少搭载有一个激光器和多个检测器。

激光器发射的光束通过光学镜头聚焦到待测细胞上,激发细胞内的荧光标记物。

荧光标记物发出的荧光信号经过滤光片分离并收集到相应的检测器中。

•数据采集和分析:流式细胞仪通过控制细胞的流速和激发光的强度来获取细胞的相关数据。

检测到的荧光信号被转换成电信号并通过放大器进一步增强。

数据最后通过计算机进行采集和分析。

根据荧光信号的强度和特征,可以获取到细胞的表型信息、功能信息以及分子相互作用等数据。

3. 流式细胞术的应用流式细胞术广泛应用于生物医学和生命科学领域,以下是几个常见应用领域的示例:3.1 免疫学研究•细胞表型分析:流式细胞术可以检测和鉴定细胞表面和胞内的各种免疫相关分子,如免疫球蛋白、细胞表面受体、细胞凋亡标记物等,以帮助研究细胞免疫表型的变化。

•细胞亚群分析:流式细胞术可以通过多种荧光标记将细胞群体分成不同的亚群,以研究免疫细胞在某些特定疾病或独特生理状态下的数量和功能变化。

3.2 癌症研究•肿瘤细胞鉴定:流式细胞术可以帮助鉴定和分离肿瘤细胞,从而研究其特性和功能。

例如,可以通过检测特定肿瘤标记物,鉴定循环肿瘤细胞(CTCs)。

流式细胞仪原理及应用

流式细胞仪原理及应用

流式细胞仪原理及应用流式细胞仪是一种广泛应用于生物医学研究和生命科学领域的仪器,其原理基于光学和流体力学。

流式细胞仪可以实现对细胞的快速、高通量的检测、分类和分析。

下面我将详细介绍流式细胞仪的原理及其应用。

流式细胞仪的原理主要包括光学系统、液体系统和电子系统三个部分。

光学系统是流式细胞仪的核心部分,它主要由激光激发系统、光学透镜系统和探测器系统构成。

激光激发系统产生高能量的激光束,用于激发待检测细胞中的荧光探针或标记物。

光学透镜系统用于聚焦激光束,将其聚焦到流式细胞仪流管中的细胞上,以提高探测的灵敏性。

探测器系统则用于收集细胞发射的荧光信号并转化为电信号。

液体系统由进样系统和流体装置构成。

进样系统用于将待检测的细胞悬浮液按照一定容量进样到流管中。

流体装置则通过泵送系统控制细胞悬浮液的流动速度和方向,使细胞以单个细胞为单位通过光学系统。

同时,流体系统还可通过不同压力的调节来控制流体速度,以适应不同细胞的流动速度。

电子系统则是将光学系统和液体系统产生的信号转化为电信号并进行数据处理和分析。

它主要包括光学信号转化为电信号的模拟-数字转换器(ADC)、电子积分系统和数据分析软件。

光学信号在探测器中转化为电信号后,经过ADC转换为数字信号。

电子积分系统则对每个细胞的光学信号进行放大和积分,以获取荧光强度信息。

数据分析软件则可将收集到的荧光信号以图像或数据表格的形式呈现,以进行进一步的数据分析和图像处理。

流式细胞仪的应用十分广泛。

以下是几个主要的应用领域:1. 细胞生物学研究:流式细胞仪可用于细胞生物学的多个方面,如测量细胞数量及浓度、细胞周期及增殖能力研究、细胞生长状态评估、细胞凋亡和存活率分析等。

2. 免疫学研究:流式细胞仪可用于免疫细胞表型分析、免疫反应程度测定、免疫细胞功能研究、细胞因子分泌分析等。

3. 微生物学研究:流式细胞仪可应用于微生物领域的多个方面,如微生物计数、微生物分类、微生物生长速率研究、细菌表型鉴定等。

流式细胞术的原理及应用ppt课件

流式细胞术的原理及应用ppt课件
➢可把感兴趣细胞分 选到特定培养孔或板 上(4路和24孔板)
➢适用于高速分选和 多色分析
6
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
流式细胞仪检测范围
细胞大小
细胞粒度
细 细胞表面面积
胞 结
核浆比例
构 DNA含量与细胞周期
18
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
散射光
它反应细胞的物理特性,根据前侧向散射光,可以把不同 类型的细胞群加以区分
FSC(小角散射光)它反 应细胞的相对大小和截 面积的大小
SSC (90度角散射光)代 表细胞的颗粒度和精细 结构的变化
1.液流系统: 细胞悬液被吸入检测室后,在鞘液
(sheath)的约束下,通过喷嘴,使其形成单细 胞悬液。
10
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.光学系统: 激光是较常用的光源, 稳定性好、单色性好。 散射光和荧光信号被收集、处理转化为数字信号。
FACS Vantage DiVa
科研型(大型机)
特点: ➢多数字化 ➢适用于各类细胞分选 ➢4路分选
5
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
FACSAria
科研型
特点: ➢分辨率高
➢选配多种波长和类 型激光器
成,将产生的光信号引导至检测器

流式细胞仪的原理、应用及进展

流式细胞仪的原理、应用及进展

流式细胞仪的原理、应用及进展一、本文概述流式细胞仪(Flow Cytometry,FCM)是一种在细胞生物学、免疫学、分子生物学和临床医学等领域中广泛应用的强大技术。

通过结合流式细胞术和荧光标记技术,流式细胞仪能够实现对单个细胞的快速、精确和多参数分析。

本文旨在深入探讨流式细胞仪的基本原理、主要应用以及最新的研究进展,旨在为读者提供一个全面、深入的了解,同时展望其未来的发展趋势和潜在应用。

我们将从流式细胞仪的基本原理出发,介绍其如何通过对细胞进行多参数定量分析和分选,实现对细胞群体特性的精确刻画。

随后,我们将重点讨论流式细胞仪在细胞周期分析、细胞凋亡检测、免疫表型分析以及疾病诊断与治疗等领域中的应用。

我们还将关注流式细胞仪的最新研究进展,包括新型荧光探针的开发、多色荧光标记技术的发展以及流式细胞仪与其他技术的结合等。

我们将对流式细胞仪的未来发展趋势进行展望,以期为相关领域的研究和应用提供有价值的参考。

二、流式细胞仪的基本原理流式细胞仪(Flow Cytometry,FCM)是一种在液流中快速测量和分析细胞特性的先进生物技术。

其基本原理主要基于流体力学、光学和计算机技术。

在流式细胞仪中,单个细胞通过特定的流动室,以单文件形式排列,形成连续的细胞流。

这个流动室设计得足够小,使得细胞在通过时,可以被集中的激光束照射。

激光束与细胞相互作用,产生散射光和荧光信号,这些信号反映了细胞的物理特性和化学性质。

散射光主要包括前向散射光(FSC)和侧向散射光(SSC)。

FSC主要与细胞的大小有关,而SSC则与细胞的内部颗粒度和复杂性有关。

通过测量这两种散射光,可以获取细胞的大小、形状和内部结构等信息。

荧光信号则是通过标记细胞表面的特定抗原或细胞内的分子,使用荧光染料或荧光蛋白进行检测。

这些荧光染料或荧光蛋白在激光的激发下,会发出特定波长的荧光,从而提供关于细胞表面或内部分子表达的信息。

流式细胞仪的计算机系统负责收集和处理这些散射光和荧光信号,将其转化为数字信号,并进行多参数分析。

流式细胞仪原理及应用

流式细胞仪原理及应用

流式细胞仪原理及应用流式细胞仪是一种用于细胞计数和表征的仪器,它基于细胞在流体中流动并通过光源的原理。

以下是流式细胞仪的原理和一些常见应用。

原理:1. 细胞准备:样品中的细胞首先需要进行适当的处理,包括细胞分离、去除细胞团块和杂质等,以确保流经流式细胞仪时的均匀性和准确性。

2. 细胞传递:样品中的细胞通过封闭的通道流动,形成单个细胞的串行排列,以便每个细胞能够单独接收光信号。

3. 激光照射:流式细胞仪使用激光器产生高强度的单色光束,照射到细胞上。

4. 光散射和吸收:细胞与经过的激光光束相互作用,发生光散射和吸收现象。

这些现象提供了关于细胞大小、形状、复杂度和细胞表面分子的信息。

5. 光信号收集:流式细胞仪使用多个光学组件和探测器来收集光信号。

不同的检测器可以收集不同的光散射角度和波长的光信号。

6. 数据分析:收集到的光信号通过计算机进行处理和分析,可以获得细胞的数量、计数、分类和细胞表面分子的信息。

应用:1. 细胞计数:流式细胞仪可以快速准确地计数细胞数量,并提供关于细胞浓度和细胞增殖的信息。

这在生物学研究和临床实验室中非常常见。

2. 细胞表征:通过测量细胞的大小、形状和表面标记物等特征,流式细胞仪可以对细胞进行表征,并帮助研究人员了解细胞类型和状态的变化。

3. 免疫细胞分析:流式细胞仪可以用于免疫学研究,如分析免疫系统中的不同细胞亚群、检测细胞表面抗原、测量细胞分泌物和研究细胞凋亡等。

4. DNA和蛋白质分析:通过使用荧光染料或抗体标记,流式细胞仪可以实现对DNA含量、染色体多样性以及特定蛋白质的定量和定位分析。

总之,流式细胞仪是一种功能强大的实验室工具,广泛应用于生物学、医学和药物研发等领域,为研究人员提供了大量有关细胞的信息。

流式细胞仪原理及应用

流式细胞仪原理及应用

流式细胞仪原理及应用流式细胞仪原理及应用I. 什么是流式细胞仪?流式细胞仪是一种高灵敏度多功能的分子生物学实验仪器,最早发展自流式血液分析,它主要用于快速检测微小细胞以及细胞内指标,是一种十分重要的生物实验工具。

II. 流式细胞仪原理通常,利用流式细胞仪来检测微细胞的指标,其原理主要分为几个步骤:(1)标记:根据实验的要求,研究人员首先需要给微细胞中的指标加上来一个标记,通常会选用具有偶联功能的荧光染料来做标记;(2)流动:使用细胞悬浮液将细胞悬浮入流式细胞仪中,然后按某一规律流动;(3)检测:细胞经过一定的物理路线,激发荧光标记,对悬浮的微细胞进行检测;(4)数据收集:细胞经过测试后,通过装置的图形显示器,将相应的参数信息收集,显示到电脑上;(5)分析:通过所录取的荧光参数,在计算机上根据实验者声明的算法,对实验结果进行二次处理,加以解析分析。

III. 流式细胞仪的应用(1)流式细胞仪可用于疾病诊断:通过流式细胞仪可以高效快速准确地鉴定肿瘤标志物,指导治疗以及监控治疗疗效;(2)流式细胞仪为药物开发中提供抗体:流式细胞仪可以检测出的抗体,可以为药物开发提供敏感的惰性指标,从而有助于药物的有效性及安全性的确定;(3)流式细胞仪可以检测微量元素:流式细胞仪采用的免疫染色技术可以准确检测微量元素,可应用于重金属、重金属物质的检测,也可以准确检测病原体和病毒;(4)流式细胞仪也广泛应用于细胞研究领域:通过流式细胞仪可以快速鉴定细胞衰老和凋亡这类重要细胞指标;或许可以分析细胞的触痕作用,也能测试微细胞的生长状态。

IV. 总结流式细胞仪是一种高灵敏度多功能分子生物学实验仪器,它能快速准确检测出微量细胞及细胞内指标,其应用涉及到生物科学、临床医学等多个领域,因而十分重要,在社会经济发展中占据着重要地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西大学研究生学位课程论文(2013 ---- 2014 学年第一学期)学院(中心、所):生物技术研究所专业名称:微生物学课程名称:论文题目:流式细胞仪的原理及其应用授课教师(职称):崔晓东研究生姓名:常姣年级:研一学号:201323001003成绩:评阅日期:山西大学研究生学院年月日流式细胞仪的原理及其应用姓名常姣专业微生物学摘要本文简要论述了流式细胞仪( flowcyt ometry, FCM) 的工作原理, 并对其某些科学领域研究中的应用进行阐述, 包括在生物学、免疫学、临床学中的研究应用。

关键词 FMC;生物学;免疫学;临床学流式细胞仪( fl o w c y to me tr y, F CM) 研制、发展、革新和应用领域的扩展,都是由生物学、生物技术、计算机科学、电子工程学、流体力学、激光技术、分子生物学、有机化学和物理学等多个学科综合发展和应用而实现的。

近代流式细胞仪,由于单克隆抗体技术、定量细胞化学和定量荧光细胞化学的应用,使其在生物学、临床医学等众多研究领域的应用愈来愈广泛和重要,尤其在生物学中对细胞周期的动力学分析、细胞因子、细胞凋亡、信号传导、R N A / D N A 的分析、细胞表面受体及特异性抗原的分析等领域发挥着独特作用,具有操作简单、分析精确、重复性好、费用低廉、分析速度快等优点。

1流式细胞仪的构成及工作原理流式细胞仪主要由液流系统、光学系统、电子系统、分析系统和细胞分选系统五个部分组成。

将待测细胞制成单细胞悬液, 经荧光染料染色后加入样品管, 在一定气体压力下待测样品被压入流动室。

待测细胞在鞘液的包裹下单行排列, 依次通过检测区, 被荧光染料染色的细胞受到强烈的激光照射后, 产生散射光和荧光信号。

这两种信号同时被前向光电二极管和90°方向的光电倍增管(PMT) 接收。

散射光分为前向角散射(forwardscatter, FSC) 和侧向角散射(sidescatter, SSC) 。

前者主要反映被测细胞的大小, 后者主要反映被测细胞的胞质、胞膜、核膜的折射等, 以及细胞内颗粒的性状。

光信号通过波长选择通透性滤片后, 经光电倍增管接收后转为电信号, 再经数/模转换器转换为可被计算机识别的数学信号, 以一维直方图或二维点阵图及数据表或三维图形显示出来[1,2]。

流式细胞仪还可以对分析中的目的细胞进行分选, 它是通过分离含有单细胞的液滴而实现的。

流动室的喷嘴上安装有超高频的压电晶体, 可以产生高频振荡, 使液流断裂为均匀的液滴, 待测细胞就包含在液滴之中。

将这些液滴充上正或负电荷, 当带电液滴通过电场, 便会在电场的作用下发生偏转, 然后落入相应的收集器中, 从而实现细胞分选[2]。

2流式细胞仪的应用流式细胞术的应用,简单用一句话概括就是,凡能被荧光分子标记的细胞或微粒均能用流式细胞仪检测。

其中细胞生物学领域是流式细胞术在基础研究中应用范围最广泛的领域,因为最初这个技术就是为此目的而设计的。

2.1流式细胞仪在生物学中的应用流式细胞仪在生物学中的应用越来越广泛,如在细胞生物学、细胞遗传学、分子生物学、神经生物学、微生物学、分子免役学、植物学等等许多生物学基础学科的应用和在细胞凋亡、细胞周期调控、细胞因子及细胞分型等研究中的应用[3]。

2.1.1 对凋亡细胞的分析细胞凋亡是生物体生长发育过程中出现的正常现象, 在生物体形态构成、正常细胞更替以及维持细胞内环境稳定等过程中发挥重要作用, 主要是由基因控制的细胞自主性的有序的死亡过程。

流式细胞仪检测凋亡细胞的方法包括以下三个方面2.1.1.1 形态学的检测凋亡细胞一般都出现细胞膜皱缩、核解聚、凋亡小体形成、胞浆浓缩、体积减小等形态学上的特征, 经过流式细胞仪的前向角散射( forward scatter , FSC) 和侧向散角射( side scatter , SSC)分析后, 即可区分出凋亡细胞和正常细胞,凋亡细胞的典型特征是前向角散射下降和侧向角散射升高[3]。

2.1.1.2 DNA含量分析在凋亡细胞内,由于细胞核的解聚和凋亡小体的形成,核内的总DNA 含量下降,应用荧光染料对NA进行标记,可检测凋亡细胞。

常用的荧光标记染料有两类:一是可与单体DNA片段结合,这类荧光染料有hoechot33342,4c,6-二眯基-2-苯吲哚( DAPI )及光辉霉素等;一种是可与降解的DNA片段结合,这类荧光染料碘化乙啶( EB)、丫啶橙( AO)等。

由于在凋亡细胞内DNA含量下降,在G1峰前出现亚二倍体峰,称亚G1期峰,又称凋亡小峰[3]。

2.1.1.3 DNA断裂点标记法细胞凋亡的最后阶段是形成DNA片段,DNA断裂点法检测的即是DNA的断裂片段,即标记DNA 断裂的3c -羟基末端,常采用由DNA聚合酶I催化的原位缺口转移( in situ nick translation , ISNT ) 或用TdT介导的dUTP原位缺口末端标记( terminal deoxynucleotidyl transferase mediated dUTP nick end labeli ng, TUNEL )技术,ISNT和TUNEL法均可进行间接或直接标记。

间接标记物常为生物素化脱氧三磷酸尿苷( biotin- dUTP) 或地高辛配体( Di g) - d U TP 等,此外还需要连霉亲和素或抗Dig dUTP,使标记反应增倍,提高灵敏度;直接标记的标记物常为异硫氰酸荧光素( FITC)-dUTP[3]。

2.1.2 对细胞周期的分析流式细胞仪对D N A、R N A 含量及细胞周期的分析具有独特的特点: ( 1 ) 测定细胞内D N A 变异系数小, 一般为1% ~ 2% ; ( 2) 可正确分辨二倍体、四倍体、近二倍体及非整倍体, 准确进行细胞周期分析; ( 3 ) 分析数据多、统计结论可靠; ( 4 ) 分析结果直接以图形形式显示,形象直观。

流式细胞仪对细胞周期的分析主要是对单个细胞内D NA 含量的分析, 通过标记物发出红色荧光的强弱可推算出G0、G1 期( 二倍体) 、S 期( 超二倍体) 、G2, M 期( 四倍体) 的比例, 其敏感性和特异性均超过其它方法,其结果以D N A 分布的直方图的形式显示, 进而可计算出G 0/ G1, S / G2+ M 比率来了解细胞的增殖能力, 并可了解细胞的增殖状态。

此外, 细胞周期的分析可以准确的反应细胞的异常增殖即癌化的潜在状态, 一般来说, 高S 相比率( S - pha se fr ac r i on, S PF) 和高增殖指数的细胞都可以理解为潜在癌细胞或癌细胞。

所以, 流式细胞仪在医学临床上的应用主要集中在癌细胞的早期诊断、鉴别治疗、判断预后及疗效评价等领域[3]。

2.1.3 染色体核型的分析用流式细胞术可将分离的染色体进行分类、纯化。

传统的核型分析在取材、培养、涂片、固定后,用分带技术显示出不同染色体的特征信息,然后再显微照相,放大、剪接、组型。

这是一个十分费时且不可避免掺有主观因素的技术。

目前, 用仪器自动分型的方法,一是采用图像技术的静态方法,再有就是采用流式细胞术。

后者除可做染色体分析外还可纯化,得到克隆实验所要求的染色体,这是其他任何技术都无法完成的,为此设计专门的特种流式细胞计[4]。

2.1.4 在分子遗传学领域中的应用流式细胞术的分析功能和分选功能在分子遗传学领域很有用处。

分析的功能常用来研究分离的染色体,有时也用来检测或定量测量细胞表面或内部为特异基因所编码的细胞分子;分选的功能可用来分选指定的染色体,然后用来建立人类染色体DNA文库[4]。

2.1.5 用于家畜性别的预选择将家畜的X、Y精子分选出来,达到控制胎畜性别的目的。

此外,在精子发生学、睾丸瘤、不育症、药物对精细胞的干扰等研究中,都可使用流式细胞术进行定量研究[4]。

2.1.6 在微生物学中的应用流式细胞技术在真核细胞生物学方面,特别是哺乳类细胞学方面有重要贡献,在微生物学方面的应用则发展相对较晚。

实际上,微生物学,尤其是细菌学当前面临的一些问题,特别是需要对大数量细菌进行逐个的快速多参数精确测量时,流式细胞术很适合解决此类问题。

已发表的论文多数是针对酵母菌和各类细菌的测量与分析。

酵母菌的测量在技术上比较简单,它自身体积大,其DNA含量约为人类二倍体细胞DNA 含量的1/ 200。

已用定量DNA、RNA和光散射方法研究酵母菌的细胞周期。

用同样方法和目的,也对原生生物、藻类和霉菌类以及各种重金属对其的影响进行研究。

另外用FITC结合的抗血清可作种系鉴别,应用此项技术已能代替临床上经典的费时繁琐的细菌抗生素敏感试验和传染活性的测定。

在工业中,流式细胞术可用于快速微生物鉴定,如对饮用水及原油中的微生物学鉴定与控制[4]。

2.2流式细胞仪在免疫学中的应用近年来, 随着生物医学等相关学科的发展和免疫学研究的深入, 流式细胞仪在分子免疫学、免疫生物学和免疫遗传学, 免疫血液学、免疫药理学、移植免疫学、肿瘤免疫学、抗感染免疫学、临床免疫学等免疫学领域的基础学科, 以及淋巴细胞及其亚群分析、淋巴细胞免疫分型、细胞因子检测等临床研究中, 也有了越来越广泛的应用。

2.2.1 淋巴细胞及其亚群分析FCM 在临床淋巴细胞及其亚群分析中得到广泛应用,可同时检测出一种或几种淋巴细胞细胞表面抗原,将不同的淋巴细胞亚群区分开,并计算出它们相互间的比例。

通过淋巴细胞及其亚群数量的检测, 可了解在不同情况下机体的免疫功能状态,辅助临床疾病的诊断,探索疾病的发病机理、病程、预后,指导临床治疗方案[5]。

由于FCM可以进行高灵敏度、高速度和多参数分析,使FCM对血液淋巴细胞亚群的检测较其他方法更精确,故其被认为是血液淋巴细胞亚群分析的标准方法[6]。

2.2.2 白血病免疫分型白血病是白细胞在分化到某个阶段受阻后呈克隆性异常增殖的结果,它的发病是多阶段的,不同病因引起的白血病的发病机制不同,在治疗和预防上也不同,所以,利用白细胞分化不同阶段出现的细胞表面标志,可以对白血病进行免疫分型,对其进行导向治疗[7]。

近年,白血病的MICM(形态学、免疫学和细胞遗传学,分子生物学)分型已成为现代白血病诊断的重要指标,其中应用流式细胞仪进行免疫表型的检测在分型中发挥了越来越重要的作用,现已积累了丰富的应用经验。

它具有快速、客观、准确、特异性强、重复性好等优点,对白血病进行免疫分型具有极其重要的临床诊断意义[8]。

准确的免疫分型关键是区分正常细胞与白血病细胞,传统的流式细胞仪白血病免疫分型依赖于白血病细胞的FSC/SSC特性来设定原始细胞群, 然后根据门内某些阳性单抗占门内细胞的百分比来确定其抗原表达情况。

相关文档
最新文档