概率论与数理统计数学实验

概率论与数理统计数学实验
概率论与数理统计数学实验

概率论与数理统计数学实验

目录

实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现

实验目的

(1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解

Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。

例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089

例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为:

0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。

解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为:

0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为:

6.1517

例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v =

1.2500

例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A =

1.1189

2.0327 2.9813

3.9962 5.0175 6.0726

例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B =

1.8205 1.1158

2.6263

2.7873 1.7057 1.0197

注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

实验二 数据的统计描述和分析

实验目的

(1) 学习MATLAB 软件关于统计作图的基本操作 (2) 会用MATLAB 软件计算计算几种常用统计量的值

(3) 通过实验加深对均值、方差、中位数等常用统计量的理解 1. 频数表和直方图

一组数据(样本观察值)虽然包含了总体的信息,但往往是杂乱无章的,作出它的频数表和直方图,可以看作是对这组数据的一个初步整理和直观描述。将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次数,称为频数,由此得到一个频数表。以数据的取值为横坐标,频数为纵坐标,画出一个阶梯形的图,称为直方图,或频数分布图。 2 经验累计分布函数图

设n x x x ,,,21 是总体X 的一个容量为n 的样本观察值。将n x x x ,,,21 按自小到大的次序排列,并重新编号,设为

()()()n x x x ≤≤≤ 21

()()

()()()

???????≥-=<≤<=+n k k n x x n k x x x n k

x x x F ,

11,,2,1,,

,

011 则称()x F n 为总体X 的经验累积分布函数,它的图像即为经验累计分布函数图。 3 几种常用的统计量 (1)算术平均值和中位数

算术平均值(简称均值),∑==n

i i X n X 1

1 ,中位数是将数据由小到大排序后位于中间

位置的那个数值。 (2)标准差、方差

标准差: ()2

1

1211??

?

?

??--=∑=n

i i X X n s ,它是各个数据与均值偏离程度的度量。方差是标

准差的平方,记为2

s 。 (3)偏度和峰度

表示数据分布形状的统计量有偏度和峰度。偏度:()∑=-=n

i i

X X

s

g 1

3

3

11

反映数据分布

对称性的指标,当01>g 时,称为右偏态,此时数据位于均值右边的比位于左边的多;当

01

()∑=-=n

i i

X X

s

g 1

4

4

21),是数据分布形状的另一种度量,正态分布的峰度为3,若2

g 比3

大得多,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数据,因而峰度可以用作衡量偏离正态分布的尺度之一。

将样本的观测值()n x x x ,,,21 代入以上各式后,即可求得对应统计量的观测值。 4 MATLAB 实现

下面我们列出用于数据的统计描述和分析的常用MATLAB 命令。其中,x 为原始数据行向量。

(1)用hist 命令实现作频数表及直方图,其用法是:

[n,y] = hist(x,k)

返回x 的频数表。它将区间[min(x),max(x)]等分为k 份(缺省时k 设定为10),n 返回k 个小区间的频数,y 返回k 个小区间的中点。

hist(x,k)

返回x 的直方图。

(2)用cdfplot 命令作累积分布函数图,其用法是:

[h,stats] =cdfplot(x)

在返回x 的累积分布函数图的同时,在stats 中给出样本的一些特征:样本最小值、最大值、平均值、中位数和标准差。

cdfplot(x,k)

则直接返回x 的累积分布函数图。

(3)算术平均值和中位数

Matlab 中mean(x)返回x 的均值,median(x)返回中位数。 (4)标准差、方差和极差

极差是n x x x ,,,21 的最大值与最小值之差。

Matlab 中std(x)返回x 的标准差,var(x)返回方差,range(x)返回极差。 (4)偏度和峰度

Matlab 中skewness(x)返回x 的偏度,kurtosis(x)返回峰度。 例1 某学校随机抽取100名学生,测量他们的身高,所得数据如下表

解:在MATLAB 命令窗口中输入:

X=[172 169 169 171 167 178 177 170 167 169 171 168 165 169 168 173 170 160 179 172 166 168 164 170 165 163 173 165 176 162 160 175 173 172 168 165 172 177 182 175 155 176 172 169 176 170 170 169 186 174 173 168 169 167 170 163 172 176 166 167 166 161 173 175 158 172 177 177 169 166 170 169 173 164 165 182 176 172 173 174 167 171 166 166 172 171 175 165 169 168 173 178 163 169 169 177 184 166 171 170]; [n,y]=hist(X) n =

2 3 6 18 26 22 11 8 2 2 y =

156.5500 159.6500 162.7500 165.8500 168.9500 172.0500 175.1500 178.2500 181.3500 184.4500 hist(X)

直方图

x1=mean(X)

x1 =

170.2500

x2=median(X)

x2 =

170

x3=range(X)

x3 =

31

x4=std(X)

x4 =

5.4018

x5=skewness(X)

x5 =

0.1545

x6=kurtosis(X)

x6 =

3.5573

例2 产生50个服从标准正态分布的随机数,指出它们的分布特征,并画出经验累积分布函数图

解:在MATLAB命令窗口中输入:

x=normrnd(0,1,1,50);

[h,stats]=cdfplot(x)

h =

171.0016

stats =

min: -2.9443

max: 3.5784

mean: 0.2840 median: 0.3222 std: 1.2625

x

F (x )

Empirical CDF

经验累积分布函数图

实验三 参数估计

实验目的

(1) 学习MATLAB 软件关于参数估计的有关操作命令 (2) 会用MATLAB 软件求参数的点估计和置信区间 (3) 通过实验加深对参数估计基本概念和基本思想的理解 1 参数估计的方法

利用样本对总体进行统计推断的一类问题是参数估计,即假定总体的概率分布类型已知,由样本估计参数的分布。参数估计的方法主要有点估计和区间估计两种。 2 参数估计的Matlab 实现

在Matlab 统计工具箱中,有专门计算总体均值、标准差的点估计和区间估计的函数。 对于正态总体,命令是

[mu,sigma,muci,sigmaci]=normfit(x,alpha)

其中x 为样本(数组或矩阵),alpha 为显著性水平α(alpha 缺省时设定为0.05),

返回总体均值

和标准差

的点估计mu 和sigma ,及总体均值

和标准差

的区

间估计muci 和sigmaci 。当x 为矩阵时返回行向量。此外,Matlab 统计工具箱中还提供了一些具有特定分布总体的区间估计的命令,如expfit ,poissfit ,分别用于指数分布和泊松分布的区间估计,具体用法可参见MATLAB 的帮助系统。

例1 已知某种木材横纹抗压力的实验值),(~2

σμN X ,对10个试件做横纹抗压力的试验数据如下:482,493,457,471,510,446,435,418,394,496(单位:公斤/平方厘米),试以95%的可靠性估计该木材的平均横纹抗压力的置信区间:(1)2σ未知; (2) 22

30=σ。

解:(1) 2σ未知时,可直接使用normfit 命令

在MATLAB 命令窗口中输入:

x=[482,493,457,471,510,446,435,418,394,496]; [mu sigma muci sigmaci]=normfit(x) mu =

460.2 sigma =

37.1776515904082 muci =

433.60471018703 486.79528981297 sigmaci =

25.5720976681307 67.8718993056142

2σ未知时,平均横纹抗压力μ的估计值为460.2,其置信度为0.95的置信区间为[433.6,

486.8]。

(2)2σ已知时,μ的置信度为0.95的置信区间为

12

12

x

u ,x u αα--?-+??

。 在MATLAB 命令窗口中输入:

x=[482,493,457,471,510,446,435,418,394,496];

muci=[mean(x)-norminv(0.975)*30/sqrt(10),mean(x)+norminv(0.975)*30/sqrt(10)] muci =

441.606149030863 478.793850969137

2σ已知时,平均横纹抗压力μ的置信度为0.95的置信区间为[441.6,478.8]。同(1)比

较可得,在置信水平相同的条件下,利用方差得到的置信区间的长度要小于忽略方差得到的置信区间长度。

例2 某厂生产的瓶装运动饮料的体积假定服从正态分布,抽取10瓶,测得体积(毫升)为595,602,610,585,618,615,605,620,600,606。求出方差的置信度为0.90的置信区间。 解:在MATLAB 命令窗口中输入:

x=[595,602,610,585,618,615,605,620,600,606];

[mu sigma muci sigmaci]=normfit(x,0.1)

mu =

605.6

sigma =

10.8032916794425

muci =

599.337534833741

611.862465166259

sigmaci =

7.8793483042824

17.773549266492

sigma^2

ans =

116.711111111111

sigmaci.^2

ans =

62.084129700198

315.89905352842

σ的估计值为116.7,其置信度为0.9的置信区间为[62.08,315.9]。

即2

λ>为例3 某炸药制造厂,一天中发生着火现象的次数X是一个随机变量,假设它服从以0参数的泊松分布,参数λ未知。现有以下样本值:

试求λ的极大似然估计值和置信水平为95%的置信区间。

解:在MATLAB命令窗口中输入:

x=[75,90,54,22,6,2,1];

[lamda,lamdaci]=poissfit(x)

lamda =

35.7142857142857

lamdaci =

31.2871783406817 40.1413930878897

即λ的极大似然估计值为35.71,其置信水平为95%的置信区间为[31.29,40.14]。

实验四 假设检验

实验目的

(1) 学习MATLAB 软件关于假设检验的有关操作命令

(2) 会用MATLAB 软件求单个正态总体和双正态总体的假设检验问题 (3) 会用MATLAB 软件判断总体是否服从正态分布 (4) 通过实验加深对假设检验基本概念和基本思想的理解 1 参数假设检验

如果总体的分布函数类型已知,只是对总体分布中的参数做某种假设。然后,用样本检验此假设是否成立,这种检验称为参数检验。下面我们给出几种参数检验对应的Matlab 命令,相关的理论知识可参考教材。

注1: x 是样本,mu 是0H 中的0

μ,sigma 是总体标准差,alpha 是显著性水平

(alpha 缺省时设定为0.05),tail 是对备择假设1H 的选择:1H 为0μμ≠时,令tail=0(可缺省); 1H 为0μμ>时,令tail=1;1H 为0

μμ<时,令tail=-1。输出参数h=0表

示接受0H ,h=1表示拒绝0H ,p 表示在假设0H 下样本均值出现的概率,p 越小0H 越值得怀疑,ci 是0

μ的置信区间。

注2:ttest2输入的是两个样本x,y ,长度可以不同。

例1 某种电子元件的寿命x (以小时计)服从正态分布,2

σ未知.现得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)?()

解:需要检验:0H :225=μ,1H :225>μ

x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170]; [h,p,ci]=ttest(x,225,0.05,1) h = 0 p =

0.2570 ci =

198.2321 Inf

h=0,p=0.2570,说明在显著水平为0.05的情况下,不能拒绝原假设,认为元件的平均寿命不大于225小时。

例2 在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一平炉上进行的。每炼一炉钢时除操作方法外,其它条件都可能做到相同。先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交换进行,各炼了10炉,其得率分别为: 1°标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.6 76.7 77.3 2°新方法 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1

设这两个样本相互独立且服从标准差相同的正态分布,问建议的新方法能否提高得率?(取

0.05。)

解 需要检验:0H :21μμ=,1H :21μμ<

x=[78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.6 76.7 77.3]; y=[79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1]; [h,p,ci]=ttest2(x,y,0.05,-1) h = 1 p =

2.2126e-004 ci =

-Inf -1.9000

h=1,p=2.2126×10-4。

表明在0.05的显著水平下,可以拒绝原假设,即认为建议的新操作方法能提高得率。

2 分布拟合检验

在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检验关于分布的假设。下面我们给出几种检验总体是否服从正态分布对应的Matlab命令。

注1:输入参数x是样本,alpha是显著性水平(alpha缺省时设定为0.05),输出h=1,则拒绝总体是正态分布的假设,若h=0,则接受总体服从正态分布的假设。p为检验概率值,p

越小,则

H越值得怀疑

例3 试检验实验二例1中的学生身高数据是否来自正态总体(取0.1)。

解: 在MATLAB命令窗口中输入:

[h,p]=jbtest(x,0.1)

h =

p =

0.5303

h=0,因此,接受总体服从正态分布的假设。

实验五方差分析

实验目的

(1) 学习MATLAB软件关于方差分析的有关操作命令

(2) 会用MATLAB软件求解单因素和双因素方差分析问题

(3) 通过实验加深对方差分析基本概念和基本思想的理解

1 单因素方差分析Matlab实现

Matlab统计工具箱中单因素方差分析的命令是anoval,用法为:

p=anoval(x,group)

输入参数x是一个向量,从第1个总体的样本到第r个总体的样本依次排列,group是一个与x 有相同长度的向量,反映了x中数据的分组情况。比如,可以用数字i代表第i个总体的样本。输出值p是一个概率值(p值),当P 时接受原假设,即认为因素A对指标有无显著影响。另外,该命令还给出一个标准的方差分析表和一个盒子图。

例1 用4种工艺生产灯泡,从各种工艺制成的灯泡中各抽出了若干个测量其寿命,结果如下表,试推断这几种工艺制成的灯泡寿命是否有显著差异。

解: 在MATLAB 命令窗口中输入:

x=[1620 1580 1460 1500 1670 1600 1540 1550 1700 1640 1620 1610 1750 1720 1680 1800]; g=[ones(1,5),2*ones(1,4),3*ones(1,3),4*ones(1,4)]; p=anova1(x,g) p =

0.0149

p=0.0149<0.05,所以这几种工艺制成的灯泡寿命有显著差异。

V a l u e s

方差分析表 盒子图 2 双因素方差分析Matlab 实现

双因素方差分析的MATLAB 命令为:

p=anova2(x,reps)

输入参数x 为矩阵,其元素表示两因素在某个水平组合下的试验结果,其中行对应因素A,列对应因素B 。如果每一种水平组合都有不止一个的观测值,则用参数reps 来表明,即reps 给出重复试验的次数。当reps=1(缺省值)时,输出p 是一个向量包含两个概率值(p 值),第1个对应因素A ;第2个对应因素B 。p 值接近于零(小于0.05)时,拒绝原假设,即认为该因素对指标有显著影响。当reps>1时,输出p 还包含另外一个概率值,该p 值接近于零(小于0.05)时,认为两个因素交互作用的效应是显著的。

例2 下表给出某种化工过程在三种浓度、四种温度水平下得率的数据。假设在诸水平配对下的试验结果如下表所示。试在水平

0.05下,检验在不同浓度(因素A )、不同温

度(因素B )下的得率是否有显著差异?交互作用是否显著?

解: 在MATLAB命令窗口中输入:

x=[11 11 13 10;10 11 9 12;9 10 7 6;7 8 11 10;5 13 12 14;11 14 13 10];

p=anova2(x,2)

p =

0.3104 0.0419 0.7010

p=0.3104 0.0419 0.701。即认为温度因素不显著、而浓度因素有显著差异,交互作用不显著。

双因素方差分析表

实验六 回归分析

实验目的

(1) 学习MATLAB 软件关于回归分析的有关操作命令 (2) 会用MATLAB 软件求解各种类型的回归分析问题 (3) 通过实验加深对回归分析基本概念和基本思想的理解 1 多元线性回归的Matlab 实现

Matlab 统计工具箱用命令regress 实现多元线性回归,用的方法是最小二乘法,其MATLAB 命令为:

[b,bint,r,rint,stats]=regress(y,x,alpha)

其中 y,x 为输入数据,alpha 是显著性水平(缺省值为0.05),输出b 为回归系数β估计值,bint 是β的置信区间,r 是残差向量,rint 是r 的置信区间,stats 中包含了三个检验量:决定系数2

R ,F 值和p 值。它们的用法如下:2

R 值反映了变量间的线性相关的程度,2

R 越接近1,则变量间的线性关系越强;如果满足()F n F <--2,11α,同样可以认为Y 与x 显著地有线性关系;若α

例1 某饮料公司发现饮料的销售量与气温之间存在着相关关系,即气温越高,人们对饮料的需求量越大。下表记录了饮料销售量和气温的观察数据:

试建立销售量与气温之间的关系。

解: 首先画出散点图,从图形可以看出,这些点大致分布在一条直线上,所以,可以考虑一元线性回归。

10

20

30

40

50

100

200300400

500

600x

y

散点图

在MATLAB 命令窗口中输入:

x=[30 21 35 42 37 20 8 17 35 25];

y=[430 335 520 490 470 210 195 270 400 480]; plot(x,y,'o')

X=[ones(10,1),x'];

[b bint r rint s]=regress(y',X,0.05) b =

117.0702 9.7381 bint =

-19.0529 253.1932 5.0138 14.4625 p=s(3) p =

0.0014

p=0.0014<0.05,说明模型成立,即气温x 与饮料销售量Y 有显著的线性关系。 接下来画残差分布图 rcoplot(r,rint)

残差分布图由残差分布图可知,除第10个数据外其余残差的置信区间均包含零点。因此,第10个点应视为异常点,将其剔除后重新计算,可得 x=[30 21 35 42 37 20 8 17 35];

y=[430 335 520 490 470 210 195 270 400]; X=[ones(9,1),x'];

[b bint r rint s]=regress(y',X,0.05); b =

96.6216 10.0017 bint =

-13.8604 207.1037

6.2188 13.7845 p=s(3) p =

4.2334e-004

p 值小于原模型的p 值,所以应该用修改后的模型。 2 多项式回归的MATLAB 实现

一元多项式回归的MATLAB 命令为:

[p,s]=ployfit(x,y,n)

其中输入x,y 是样本数据,n 表示多项式的阶数,输出p 是回归多项式的系数,s 是一个数据结构,可用于其他函数的计算,比如,[y delta]=polyconf(p,x0,s)可用于计算x0处的预测值y 及其置信区间的半径delta 。 一元多项式回归还可以采用如下命令:

polytool(x,y,n,alpha)

该命令输出一个交互式画面,画面显示回归曲线及其置信区间,通过图左下方的export 下拉式菜单,还可以得到回归系数的估计值及其置信区间、残差等。还可以在正下方左边的窗口中输入x ,即可在右边窗口得到预测值y 及其对应的置信区间。

例2 将17至29岁的运动员每两岁一组分为7组,每组两人测量其旋转定向能力, 以考察年龄对这种运动能力的影响。现得到一组数据如下表:

试建立二者之间的关系。

解 数据的散点图(略)明显地呈现两端低中间高的形状,所以应拟合一条二次曲线。 x=17:2:29; X=[x,x];

y=[20.48 25.13 26.15 30.0 26.1 20.3 19.35 24.35 28.11 26.3 31.4 26.92 25.7 21.3]; [p,s]=polyfit(X,y,2) p =

-0.2003 8.9782 -72.2150 即所求的回归模型为:

215.729782.82003.0?2-+-=x x Y

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

数学模型实验商人过河

《数学模型实验》实验报告 姓名:王佳蕾学院:数学与信息科 学学院 地点:主楼402 学号:055专业:数学类时间:2017年4 月16日 实验名称: 商人和仆人安全渡河问题的matlab实现 实验目的: 1.熟悉matlab基础知识,初步了解matlab程序设计; 2.研究多步决策过程的程序设计方法; 3.(允许)状态集合、(允许)决策集合以及状态转移公式的matlab表示;实验任务: 只有一艘船,三个商人三个仆人过河,每一次船仅且能坐1-2个人,而且任何一边河岸上仆人比商人多的时候,仆人会杀人越货。怎么在保证商人安全的情况下,六个人都到河对岸去,建模并matlab实现。 要求:代码运行流畅,结果正确,为关键语句加详细注释。 实验步骤: 1.模型构成 2.求决策 3.设计程序 4.得出结论(最佳解决方案) 实验内容: (一)构造模型并求决策

设第k次渡河前此岸的商人数为xk,随从数为yk,k=1,2,...,xk,yk=0,1,2,3.将二维向量sk=(xk,yk)定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S,S 对此岸和彼岸都是安全的。 S={(x,y)|x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2} 设第k次渡船上的商人数为uk,随从数vk,将二维变量dk=(uk,vk)定义为决策,允许决策集合记为D,由小船的容量可知, D={(u,v)|1<=u+v<=2,u,v=0,1,2} k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,状态sk随决策变量dk的变化规律为sk+1=sk+(-1)^k*dk(状态转移律) 这样制定安全渡河方案归结为如下的多步决策模型: 求决策dk∈D(k=1,2,...,n),使状态sk∈S,按照转移律,由初始状态s1=(3,3)经有限步n到达状态sn+1=(0,0)。 (二)程序设计

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 () ()()n n p r dr p r dr p r dr -∞ -∞ =-??? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m 的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差 σ=0.2m ,问这时钢材长度的均值m 应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 ()() m J m P m = 其中, 2()2()(), ()x m l P m p x dx p x σ-- ∞ == ? 求m 使J (m )达到最小。 等价于求方程 () ()z z z λ?Φ=- 的根z *。 其中:

相关文档
最新文档