三角函数综合应用解题方法总结(超级经典)
初中数学解题技巧应对三角函数的综合应用与证明题目

初中数学解题技巧应对三角函数的综合应用与证明题目三角函数是初中数学中的一个重要知识点,它在解题过程中的综合应用和证明问题中扮演着重要的角色。
本文将介绍一些初中数学解题技巧,以及如何应对三角函数的综合应用和证明题目。
一、三角函数的综合应用题解题技巧1. 熟悉基本概念:在解决三角函数的综合应用题目时,首先要熟悉基本概念,如正弦函数、余弦函数和正切函数的定义,并了解它们的性质和图像特征。
2. 建立几何模型:对于三角函数的综合应用题目,可以通过建立几何模型来帮助理解和解决问题。
例如,可以画出相关角的位置和关系图,明确各边、角的含义和相互之间的关系。
3. 利用已知条件:在解题过程中,要充分利用已知条件,特别是已知角度、边长、比率等信息,利用三角函数的定义和性质进行推导和计算。
4. 探索思路灵活转换:对于一些复杂的综合应用题目,可以通过转换思路来简化问题,例如利用三角函数的周期性质,将角度限制在特定范围内,或者将问题转化为三角形面积的计算等。
二、三角函数证明题解题技巧1. 联想与应用:在解决三角函数证明题时,可以通过联想和应用已学过的数学知识来解题。
例如,可以利用三角函数的定义、性质和公式,以及三角恒等式和特殊角的性质进行推导和证明。
2. 寻找等价关系:在解题过程中,可以寻找等价关系,简化证明的过程。
例如,利用三角函数的周期性质或对称性质,将一个角度转化为另一个等价的角度,进而进行推导和证明。
3. 运用恒等式和公式:三角函数的恒等式和公式是解决证明题的有力工具。
在解题过程中,可以灵活运用三角函数的和差、倍角、半角等公式,以及正弦定理、余弦定理等恒等式,对所要证明的式子进行变形和推导。
4. 利用图像特征:对于一些几何形状的证明题,可以利用三角函数的图像特征进行推导。
例如,通过观察正弦函数和余弦函数的图像,可以推导出它们的性质和相互之间的关系,从而得到证明的结论。
综上所述,对于初中数学中的三角函数的综合应用和证明题目,我们可以通过熟悉基本概念、建立几何模型、利用已知条件、灵活转换思路等解题技巧来解决问题。
三角函数做题技巧与方法总结

三角函数做题技巧与方法总结一、三角函数的重要性三角函数在数学里那可是相当重要的一部分呢。
就像盖房子的砖头一样,是基础中的基础。
它在很多地方都能用到,像物理里研究波的运动,工程里计算一些结构的角度,甚至在计算机图形学里,想要做出逼真的3D效果,也离不开三角函数。
二、三角函数的基础概念1. 正弦函数正弦函数sin,大家可以想象成是一个波浪形状的东西。
它的值呢,就是在直角三角形里,对边和斜边的比值。
比如说一个直角三角形,一个锐角是30度,那它的sin30度就是1/2。
这个1/2是怎么来的呢?就是这个30度角所对的边,和斜边的长度比。
2. 余弦函数余弦函数cos,它是邻边和斜边的比值。
还是拿刚才30度的直角三角形来说,cos30度就是根号3/2。
这就像是从另一个角度去看这个三角形的边的关系。
3. 正切函数正切函数tan,那就是对边和邻边的比值了。
tan30度就是根号3/3。
这三个函数就像是一个小团队,各自有着不同的任务,但是又相互关联。
三、三角函数的做题技巧1. 记忆特殊值特殊值是一定要记住的,像sin0度是0,sin90度是1,cos0度是1,cos90度是0等等。
这些特殊值就像是打开三角函数大门的钥匙,很多题目只要一看到这些特殊的角度,就可以直接把特殊值代入计算。
2. 画图形辅助做三角函数题的时候,画个图是超级有用的。
比如说有个题是关于三角形里某个角的三角函数值,那你画个三角形出来,把已知的边和角都标上去,一下子就清晰多了。
就好像你要在一个陌生的地方找路,有个地图在手里,是不是就不那么慌了?3. 利用公式转换三角函数有好多公式,像sin²α+cos²α = 1,tanα = sinα/cosα等等。
当题目里给的形式和我们熟悉的不一样的时候,就可以利用这些公式来转换。
比如说有个题给的是sinα的值,让求cosα,那我们就可以根据sin²α+cos²α = 1这个公式来计算。
高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结高中数学中,三角函数是一个重要的知识点。
掌握三角函数的解题技巧和思路,不仅可以帮助学生顺利完成学习任务,还可以帮助他们更好地理解数学知识,提高数学解题的能力。
下面就来总结一下高中数学中三角函数解题的技巧和思路。
一、基本概念的掌握在学习三角函数解题之前,首先要掌握基本的概念。
包括正弦、余弦、正切等三角函数的定义和性质,以及三角函数的周期性、奇偶性等基本特点。
只有掌握了这些基本概念,才能更好地理解和运用三角函数进行解题。
二、利用变换简化问题在解三角函数的题目时,有时候可以利用一些特定的变换来简化问题。
常见的变换包括令x=π-x、令x=π/2-y等等。
这样的变换可以将原问题转化为更简单的形式,有利于我们更好地解题。
三、观察周期性和对称性三角函数具有周期性和对称性,因此在解题时要善于观察这些特点。
对于周期函数,可以根据函数的周期性来简化问题,找到最小正周期内的解;对于奇偶函数,也可以根据对称性来简化问题,减少计算的复杂度。
四、利用三角函数的性质在解题过程中,要充分利用三角函数的性质。
比如利用正弦函数和余弦函数的和差化积公式,将复杂的三角函数问题化简为简单的形式;利用三倍角公式、半角公式等求解特殊角的数值;利用三角函数的导数和微分形式等等。
熟练掌握这些性质,可以帮助我们更好地解题。
五、构建方程求解在解三角函数的题目时,常常需要构建方程求解。
对于一些复杂的问题,可以通过构建方程的方法,将问题转化为代数方程,并利用代数方程的知识求解。
还可以利用三角函数的图像特点,通过图像直观地找到解。
六、多做练习、多思考在学习三角函数解题的过程中,多做练习是非常重要的。
只有通过大量的练习,才能更好地掌握解题的技巧和思路,熟练运用相关知识。
多思考也是解题的关键。
通过深入思考问题,分析问题的本质,可以更好地理解三角函数的知识,提高解题的能力。
在学习三角函数解题的过程中,要多和同学、老师进行交流,分享解题的方法和思路。
三角函数题型归纳总结及方法

三角函数题型归纳总结及方法
三角函数是数学中的一类非常重要的函数,它们涉及的角度和边长的关系在很多实际问题中都有应用。
以下是对三角函数题型及方法的归纳总结:
1.角度和边长的关系:
在直角三角形中,三个内角和等于180度,并且-个角正弦值的平方等于余弦值的平方和。
这是三角函数的基础,也是解决许多问题的关键。
2.三角函数的定义:
三角函数是以角度为自变量,角度的正弦值、余弦值、正切值等为因变量的函数。
这些函数都可以用级数展开式来表示,而展开式又可以表示成多项式和幂级数的形式。
3.同角三角函数之间的关系:
在一个角度下,正弦值、余弦值和正切值之间有一定的关系,这些关系式可以用于简化问题或推导其他公式。
4.三角函数的恒等式:
恒等式是数学中非常有用的工具,它们可以帮助我们在不改变量的条件下推导出新的关系式。
三角函数也有一系列恒等式,如和差恒等式、积化和差恒等式等。
5.三角函数的图像:
图像是理解函数性质的重要工具。
对于三角函数,图像可以用来研究函数的周期性、最值、对称性等性质。
6.三角函数的应用:
三角函数在很多实际问题中都有应用,如物体运动轨迹的计算、振动问题的研究、电磁波的传播等。
解决三角函数问题的常用方法包括:
1.利用角度和边长的关系推导公式;
2.利用同角三角函数之间的关系简化问题;
3.利用恒等式推导新的关系式;
4.利用图像研究函数性质;
5.利用三角函数解决实际问题。
制表:审核:批准:。
三角函数经典题型总结

三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。
-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。
-二倍角公式、半角公式、和差化积、积化和差公式等。
2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。
-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。
-利用正弦定理和余弦定理解决边角关系问题。
3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。
-利用图像解三角函数方程和不等式。
4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。
-在地理学中的应用,如地图上的方位角、距离计算等。
-在工程学中的应用,如结构力学、电路分析等。
5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。
-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。
6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。
以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。
解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳.1 凑角法一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答.例1 求tan 204sin 20︒+︒的值.解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20︒+︒︒+︒-︒==︒︒sin 202(sin 60cos 20cos60sin 20)3cos 20︒+︒︒-︒︒==︒评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40︒-︒+︒,或者化为sin(3010)2sin(3010)︒-︒+︒+︒,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择!2 降幂法一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.解析 由2cos cos 1αα+=,得15cos α-+=,15cos α--=(舍去).由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得26355sin sin 2αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.例3 已知(0,)2x π∈,且222cos cos 2cos 31x x x ++=,求x 的值.解析 设222cos cos 2cos 3m x x x =++,令222sin sin 2sin 3n x x x =++,则3m n +=,cos2cos4cos6m n x x x -=++,其中,2cos62cos 31x x =-,cos 2cos 4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又cos cos3cos(2)cos(2)2cos cos2x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4x x x m m =-==.则cos 0x =,或cos20x =,或cos30x =,又(0,)2x π∈,则6x π=或4x π=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答. 4 换元法很多给值求值问题都是给的单角的某一三角函数值,但有时会出现给出复合角的三角函数值求值的问题,此时,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值问题.例4 求sin 75cos 45315ααα+︒++︒+︒()()-()的值.解析 令15αβ+︒=,则原式sin(60)cos(30)3βββ=+︒++︒(sin cos 60cos sin 60)(cos cos30sin sin 30)30βββββ=︒+︒+︒-︒-=.评注 教材求值问题往往是已知单角三角函数值求值,而近几年的高考和期末考试试题,则青睐于已知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.5 方程法 有时可以根据已知构造所求量的方程解答.例5 若33cos sin 1x x =+,试求sin x 的值.解析 令cos sin x x t =+,则21cos sin (1)2x x t =-,[2,2]t ∈.由已知,有 2221(cos sin )(cos sin cos sin )(1)12t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.6 讨论法 涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.例6 已知ABC 中,54sin ,cos 135A B ==,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC 的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!7 平方法分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.例7 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++22(sin )(cos )1γγ=-+-=,即1cos()2αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的. 8 猜想法有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题. 例8 已知13sin cos αα-+=α为第二象限角,则sin α= . 解析 由sin 0,cos 0αα><及222213sin cos 1,()()12αα+=+=,可得1sin 2α=.评注 实际上,将13sin cos 2αα+=与22sin cos 1αα+=联立所得二元二次方程组只有两组解,即13sin ,cos 22αα-==或13cos ,sin 22αα-==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.9 图象法有时候,借助图象才能更好的解决对应的三角函数问题.例9 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,(,)D d A ,由三角函数图象的对称性,则有22b c ππ+=⨯=,3232c d ππ+=⨯=,有b c π=-,3d c π=-,又222()(3)34c bd c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4A π,代入可得22A =+.评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.10 比例法 借助比例的性质,有时可以实现快速解答三角函数问题.例10 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα-+-==+++,代入等式左边可知所证成立. O x D C B y A = y 2x π=评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin ααααα-==+,按照比例性质,立得1cos sin tan 21cos sin ααααα-+=++.。
三角函数的应用题解题技巧

三角函数的应用题解题技巧三角函数是数学中一个重要的分支,广泛应用于各种实际问题的解决中。
掌握三角函数的应用题解题技巧,对于学习数学和解决实际问题都非常关键。
本文将介绍一些常见的三角函数应用题解题技巧,帮助读者更好地理解和应用三角函数。
一、角度与弧度的转换在解决三角函数应用题时,常常需要在角度和弧度之间进行转换。
角度和弧度是衡量角的两个不同的单位,转换它们能够使问题更简单。
一般而言,角度与弧度的转换关系为:1 π 弧度 = 180°根据这个关系,可以使用简单的比例关系来进行转换。
例如,将角度转换为弧度的公式为:弧度 = 角度× π/180二、正弦函数的应用正弦函数在解决三角应用题时是常用的工具之一。
在解决直角三角形的问题时,可以利用正弦函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用正弦函数的定义:sin(θ) = 对边/斜边,建立方程sin(θ) = x/已知边长。
4. 解方程,求得未知量 x 的值。
三、余弦函数的应用余弦函数也是解决三角函数应用题时常用的工具之一。
在解决问题时,可以利用余弦函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用余弦函数的定义:cos(θ) = 邻边/斜边,建立方程cos(θ) = x/已知边长。
4. 解方程,求得未知量 x 的值。
四、切函数的应用切函数也是解决三角函数应用题时常用的工具之一。
在解决问题时,可以利用切函数求解未知边长或角度。
常见的解题步骤如下:1. 确定给定条件,包括已知边长和角度。
2. 根据问题描述,确定所需求解的未知量,将其表示为 x。
3. 利用切函数的定义:tan(θ) = 对边/邻边,建立方程tan(θ) = x/已知边长。
高中数学三角函数解题技巧和思路的总结

高中数学三角函数解题技巧和思路的总结三角函数是高中数学中较为复杂的一部分,也是很多学生感到困难的主要内容之一。
为了更好地掌握三角函数的解题思路和技巧,以下总结了几点建议。
一、了解三角函数的基本性质在开始解题之前,首先要对三角函数的基本概念和性质进行了解。
比如正弦函数、余弦函数、正切函数的定义和值域、周期等等。
掌握这些基本性质可以在做题时快速定位和解决问题,节省时间和提高效率。
二、画图和建立三角形在解决三角函数问题时,画图是非常有帮助的一个步骤。
通过画图,可以更直观地理解和分析题目中的三角形结构,提高解题能力。
同时,建立一个等腰三角形或直角三角形可以将三角函数问题转化为几何问题,更方便推导和计算。
在解决三角函数的问题时,熟练掌握各种三角函数定理和公式也是非常重要的。
比如正弦定理、余弦定理、正切定理等等。
了解这些基本公式的用法和应用可以帮助我们更准确地计算和分析题目。
四、运用坐标系和向量在解决一些复杂的三角函数问题时,坐标系和向量也可以提供有帮助的线索。
通过将三角形或平面图形平移或旋转,可以使问题更加简化和易于计算。
同时,向量形式的三角函数也可以用来解决三角形的问题。
五、化简和变形在解决三角函数问题时,化简表达式和变形方程式是十分常见的做法。
通过使用三角函数的基本公式,可以将复杂的表达式化简为更简单的形式,方便计算与推导。
同时,在一些不等式和方程的证明中,变形也是非常常见的方法。
需要注意的是,变形和化简不是万能的,需要根据问题的具体情况决定。
六、多角形问题在一些多边形问题中,我们也可以用到三角函数的相关知识。
例如,多边形内角和公式、正多边形的内角和和外角和公式。
通过计算和推导,可以得到多边形内外角和的通用公式,解决各种有关多边形的问题。
总之,在解决三角函数问题时,需要根据问题的具体情况选择合适的方法和技巧。
通过练习和掌握一些基本的解题思路,可以提高解题速度和准确性,进而在考试中获得更好的成绩。
数学解决三角函数问题的六种方法

数学解决三角函数问题的六种方法在数学学习中,三角函数是一项基础而重要的内容。
解决三角函数问题,需要掌握不同的解题方法和技巧。
本文将介绍六种常用的数学解决三角函数问题的方法,以帮助读者更好地理解和应用三角函数。
方法一:利用定义和基本公式三角函数的定义和基本公式对于解决问题非常重要。
例如,正弦函数的定义是一个直角三角形的斜边与对边之比,可以表示为sinθ = a/c。
利用这个定义和基本公式,我们可以求解一些基本的三角函数值,如sin(30°) = 1/2。
方法二:利用三角函数图像特征三角函数的图像特征可以帮助我们更好地理解和应用它们。
例如,正弦函数的图像是一条连续的波形,取值范围在[-1, 1]之间。
利用这个特征,我们可以根据给定的角度,通过观察三角函数图像来确定函数值。
方法三:利用三角函数的周期性质三角函数具有周期性的特点,即sin(θ + 2π) = sinθ,cos(θ + 2π) =cosθ。
利用这个周期性质,我们可以将任意角度转换成特定区间范围内的角度,从而简化计算。
方法四:利用三角函数的恒等变换三角函数的恒等变换是一种将一个三角函数表示为其他三角函数的等价形式。
例如,sin(θ) = cos(π/2 - θ)。
利用这种恒等变换,我们可以将复杂的三角函数问题转化为简单的形式,从而更便于求解。
方法五:利用特殊角的三角函数值特殊角(如0°、30°、45°、60°、90°等)具有特殊的三角函数值,这些值是我们在计算过程中常常用到的。
例如,sin(0°) = 0,cos(90°) = 0,tan(45°) = 1等。
熟记这些特殊角的三角函数值,可以大大简化计算过程。
方法六:利用三角函数的性质和定理三角函数具有一系列的性质和定理,如和差化积公式、倍角公式、半角公式等。
利用这些性质和定理,我们可以根据已知条件,推导出新的关系式,从而求解三角函数问题。
新高考三角函数类题目解题技巧,掌握拿高分

新高考三角函数类题目解题技巧,把握拿高分数学高考阅卷评分实行懂多少知识给多少分的评分方法,叫做“分段评分”。
下面我给大家带来新高考三角函数类题目解题技巧,期望大家宠爱!三角变换与三角函数的性质问题答题模板1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
解三角形问题怎么答1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
2高考数学大题常见丢分缘由对题意缺乏正确的理解,应做到慢审题快做题;公式记忆不牢,考前肯定要生疏公式、定理、性质等;思维不严谨,不要忽视易错点;解题步骤不规范,肯定要按课本要求,否则会因不规范答题失分,避开“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;计算能力差失分多,会做的肯定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;高考考生学数学心得捷径一少题海多精题“偷懒”的第一要任就在于削减复习的负荷量。
数学最大的负荷是永无止境的题海。
开学伊始,我便整理出一个大体的概念框架,并利用已有的做题经验对应框架进行知识点筛选,删除要求低的和已把握的,突出重点和难点。
三角函数解题技巧最实用的解题方法推荐

三角函数解题技巧最实用的解题方法推荐下面给大家介绍一下三角函数解题技巧,希望能够帮助到大家哦!三角函数解题技巧一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ α)=(-1)ksinα(k∈Z);2. cos(kπ α)=(-1)kcosα(k∈Z);3. tan(kπ α)=(-1)ktanα(k∈Z);4. cot(kπ α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα cosα>0(或<0)óα的终边在直线y x=0的上方(或下方);2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.三、见“知1求5”问题,造Rt△,用勾股定理:熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α β)sin(α-β)= sin2α-sin2β;2. cos(α β)cos(α-β)= cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα tanβ与tanαtanβ”问题,启用变形公式:tanα tanβ=tan(α β)(1-tanαtanβ).思考:tanα-tanβ=九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx φ)和函数y=Acos(wx φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;2.函数y=Asin(wx φ)和函数y=Acos(wx φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到函数y=Atan(wx φ)和函数y=Acot(wx φ)的对称性质。
初中数学解题技巧应对三角函数的综合应用与像性质的综合题目

初中数学解题技巧应对三角函数的综合应用与像性质的综合题目在初中数学学习中,三角函数是一个较为重要的知识点。
在解题过程中,我们可能会遇到一些难度较大的综合应用题目,以及考察三角函数性质的综合题目。
本文将介绍一些解题技巧,帮助同学们应对这种类型的题目。
一、综合应用题目的解题技巧1. 画图辅助:在解答综合应用题目时,画图辅助是非常重要的一步。
通过画出准确的图形,有助于我们更好地理解问题,并有助于我们找到解题思路。
2. 选取适当的角度:在三角函数的综合应用题目中,选取适当的角度可以简化计算。
通过选取特殊角度可以使得计算结果更为简便,减少解题过程的复杂性。
3. 应用正弦、余弦、正切等性质:熟练掌握三角函数的性质是解答综合应用题目的关键。
根据题目给出的条件,灵活运用正弦、余弦、正切等性质,可以有效地求解问题。
4. 找出关系式:在综合应用题目中,有时需要建立各个变量之间的关系式。
通过分析题目中给出的条件,找到变量之间的关系,可以将问题转化为一个方程组或等式,从而解决问题。
以下是一个示例题目,通过应用解题技巧来解决这个综合应用题目。
示例题目:已知直角三角形ABC,其中∠B=90°,AB=3,BC=4。
点D为边BC上一点,且∠ABC=∠ACD。
求∠CAD的正弦值。
解题步骤:1. 根据题目绘制直角三角形ABC的图形,并标出已知条件。
2. 通过观察题目中的条件,我们可以发现角ABC和角ACD相等,即∠ABC=∠ACD。
3. 通过观察图形,我们可以发现∠ADC=90°,因为ADC是由直角三角形ABC顶点C和点D所组成的角。
4. 由于∠ACD和∠ADC为三角函数中的对应角,我们可以利用三角函数的性质来求解。
根据正弦函数的定义,我们可以得到sin∠ACD=CD/AC。
5. 由于CD=BC-DB,即CD=4-DB,而BC=4,DB可以通过使用勾股定理来求解。
根据勾股定理可得,DB=sqrt(AC²-AD²)。
三角函数经典题型总结

三角函数经典题型总结三角函数是数学中非常重要的一个概念,它在几何、物理、工程等各个领域都有着广泛的应用。
在学习三角函数的过程中,我们经常会遇到一些经典的题型,掌握这些题型对于提高解题能力至关重要。
下面我们来总结一些常见的三角函数经典题型。
1. 求解三角函数的周期性:对于任意的角度θ,三角函数sinθ和cosθ都是周期函数,它们的周期都是2π。
即sin(θ+2π) = sinθ,cos(θ+2π) = cosθ。
而tanθ的周期是π,即tan(θ+π) = tanθ。
这个性质在解三角函数方程和不等式时非常有用。
2. 利用三角函数的基本关系求解问题:sinθ、cosθ和tanθ是三角函数中的基本函数,它们之间有很多重要的关系。
比如,tanθ = sinθ/cosθ,1+tan^2θ = sec^2θ,1+cot^2θ = csc^2θ等。
利用这些基本关系,可以简化计算,解决一些复杂的三角函数问题。
3. 求解三角函数方程和不等式:在解三角函数方程和不等式时,我们经常需要用到三角函数的周期性和基本关系。
另外,还需要掌握一些常用的三角函数恒等式,比如sin2θ =2sinθcosθ,cos2θ = cos^2θ-sin^2θ等。
这些恒等式在化简三角函数方程和不等式时非常有用。
4. 利用三角函数的图像解题:三角函数的图像是解三角函数问题的重要工具。
对于sinθ和cosθ,它们的图像是周期的正弦曲线和余弦曲线;对于tanθ,它的图像是周期的正切曲线。
通过观察三角函数的图像,可以直观地理解三角函数的性质,解决一些三角函数的几何问题。
5. 利用三角函数的导数求解最值问题:三角函数的导数也是三角函数的重要性质之一。
sinθ的导数是cosθ,cosθ的导数是-sinθ,t anθ的导数是sec^2θ。
利用三角函数的导数,我们可以求解三角函数的最值问题,比如求解函数sinθ的最大值和最小值,求解函数tanθ的增减性等。
三角函数解题技巧和公式(已整理)技巧归纳以及练习题

浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。
下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。
分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。
解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。
例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。
高中数学三角函数七大热点题型应用及解题方法汇总,精辟,可细学

高中数学三角函数七大热点题型应用及解题方法汇总,精辟,
可细学
在高考中,数学常见常考点的一些题型中,高中数学三角函数的考法非常普遍!而且通常会是中等题型,所以,如果需要学好高中数学,提高数学成绩,这三角函数的知识点就务必要好好学习,清晰的掌握好其中的公式原理!
三角函数最重要的学习就是学生一定要掌握,熟背好公式,及其原理,由易到难,并且要多多总结解题的思路和方法,对于难度比较大的题目,可以准备一个错题本,做一个总结,特别是历年的高考真题。
下面是我们高中数学80个热点难点大全中关于热点题型应用及解题方法汇总,这几种题型都是高中数学三角函数部分的知识点的考查题型,同学们一定要做一个重点把握哦。
其中包括的热点有:
专题21 三角函数值--角未知也要求、专题22 函数的一大要素的解析式的求解、专题23 三角函数公式的正用、逆用与变用,题24 三角函数的图像和性质的“磨合”、专题25 利用正(余)弦定理破解解三角形问题、专题26 三角形中的范围问题你处理好了吗、专题27 实际问题中的解三角形问题
下面以其中一个三角函数求值的几种题型应用为具体例子!。
初中数学知识归纳三角函数的综合计算与解决实际问题

初中数学知识归纳三角函数的综合计算与解决实际问题三角函数是初中数学中的重要内容之一,它们在解决实际问题中扮演着重要角色。
本文将对初中数学中与三角函数相关的知识进行归纳,并介绍其在综合计算和解决实际问题中的应用。
一、正弦函数与余弦函数的计算在解决与三角函数相关的问题时,首先需要了解正弦函数和余弦函数的计算方法。
正弦函数的计算可以通过给定的角度,利用比较简单的公式进行求解。
例如,已知一个角的度数为x°,则正弦函数的值可以通过sin(x°)来表示。
余弦函数的计算方法与正弦函数类似,只需将sin(x°)中的sin替换为cos即可。
二、综合计算题的解题方法在初中数学的学习过程中,常常会遇到一些综合计算题,涉及到多个角度的三角函数运算。
首先,需要根据题目中给出的条件,确定需要计算的角度。
然后,利用已知角度的正弦函数或余弦函数的值,结合题目给出的计算公式,求解未知角度的值。
在计算过程中,需要注意单位的转换以及运算符的使用,确保结果的准确性。
三、实际问题的解决方法三角函数在解决实际问题中具有广泛的应用。
例如,在测量高楼大厦的高度时,可以利用三角函数求解。
首先,选择一个相对水平的地方,测量人眼到建筑物顶部的角度,并记录下来。
然后,根据测得的角度和人眼与地面的距离,利用正切函数计算出建筑物的高度。
这样,就可以通过简单的三角函数运算解决实际问题。
四、图像的绘制与分析除了计算和解决问题,三角函数的图像也是初中数学中重要的内容。
绘制三角函数的图像可以帮助我们更好地理解函数的性质和变化规律。
根据正弦函数的定义域和值域,可以绘制出其在坐标轴上的波动曲线。
通过分析图像的特点,例如峰值、波长等,我们可以更深入地理解正弦函数的性质。
五、实例分析为了更具体地说明三角函数的综合计算和解决实际问题的方法,下面通过一个实例进行分析。
假设某人在登山时,观测到一座山峰的仰角为30°,同时从同一个位置观测到另一座山峰的仰角为45°。
高中数学解决三角函数问题的五种方法(带答案)

高中数学解决三角函数问题的五种方法(带答案)方法一:角度法1. 计算给定角度的三角函数值。
2. 利用已知三角函数值的关系进行运算或计算未知三角函数值。
3. 根据问题给出的条件,确定需要解决的三角函数问题类型,如求角度、边长等。
4. 根据已知和未知的三角函数值,利用三角函数的简单性质和公式解决问题。
5. 最后,确保结果符合问题的要求,有必要的话进行合理的近似处理。
方法二:等式法1. 将问题中的三角函数转换成等式形式。
2. 根据已知的等式,利用等式的性质和公式进行推导和运算。
3. 通过求解等式,得到未知三角函数值或角度。
4. 判断结果是否符合问题的要求,并进行必要的近似处理。
方法三:图像法1. 根据给定的角度,画出三角函数图像。
2. 根据图像性质分析问题中的条件,确定需要求解的问题类型。
3. 利用图像,在合适的位置找到所需的三角函数值或角度。
4. 确认结果是否符合问题的要求,如有需要,进行近似处理。
方法四:三角恒等式法1. 根据问题中的条件,利用已知的三角恒等式进行变形和推导。
2. 将问题转化为包含已知三角函数的等式。
3. 通过求解等式,得到所需的三角函数值或角度。
4. 验证结果是否符合问题的要求,如有需要,进行近似处理。
方法五:三角函数特性法1. 根据问题中的条件,利用三角函数的特性进行分析。
2. 根据已知的特性,推导出所需的三角函数值或角度。
3. 判断结果是否满足问题要求,如有必要,进行近似处理。
这些方法是解决高中数学中三角函数问题常用的方法。
通过选择合适的解决方法,结合问题中给出的条件,可以有效地解决各种三角函数问题。
请注意,以上所提供的答案仅供参考,具体问题的解决方法可能因具体条件而有所不同。
解决数学问题时,请始终独立做出决策,并确保所引用的内容能够得到确认。
三角函数综合题的解题技巧与策略

三角函数综合题的解题技巧与策略贵州省 洪其强1、重视“1”的灵活代换 例1、求证:θθθθcos sin 1)sin (cos 2++-=θθsin 1cos +-θθcos 1sin +分析: 右边=)cos 1)(sin 1()sin 1(sin )cos 1(cos θθθθθθ+++-+=θθθθθθθθcos sin cos sin 1)sin cos )sin (cos 22+++-+- =θθθθθθθθcos sin cos sin 1)sin cos 1)(sin (cos ++++++-=)cos sin cos sin 1(2)sin cos 1)(sin (cos 2θθθθθθθθ++++++-。
此时注意在分母中充分利用“1”的代换,即)cos sin cos sin 1(2θθθθ+++=θθθθθθcos sin 2cos 2sin 2cos sin 122+++++ =2)cos sin 1(θθ++ 。
从而推出左边,等式获证。
2、三角中使用换元法解题时,要注意三角函数的有界性对中间变量的取值范围的限制。
例2、求函数)(x f =x x x x cos sin cos sin ++的值域。
解:设=m x x cos sin +=)4sin(2π+x ]2,2[-∈,则2m =x x cos sin 21+,即x x cos sin =212-m ,从而)(x f =+=m m f )(212-m 1)1(212-+=m ,m ]2,2[-∈。
故当=m 1-时,)(m f 取得最小值1-;当=m 2时,)(m f 取得最大值221+。
所以函数)(x f 的值域为⎥⎦⎤⎢⎣⎡+-212,1。
3、注意对题目中隐含条件的挖掘 例3、已知φθ22sin 2sin 3+=θsin 2,求函数φθ22sin sin +=y 的值域。
分析:注意本题中θsin []1,1-∈,而隐含着θsin 2-0sin 2sin 322≥=φθ即θsin ⎥⎦⎤⎢⎣⎡∈32,0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导教案切化弦(13tan10)+ cos 21,tan()cos 23ααβα=-=-等),(答:特别提醒:这里t ∈这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
例4:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ5. 利用数形结合 例5: 求函数y xx=+s in c o s 2的最值。
解:原函数可变形为y x x =---s i n c o s ().02这可看作点Ax xB (c o s s i n )(),和,-20的直线的斜率,而A 是单位圆x y 221+=上的动点。
由下图可知,过B ()-20,作圆的切线时,斜率有最值。
由几何性质,y y m a x m i n .==-3333,6、换元法 例6:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.解 y=(1+1sinx )(1+1cosx )=1+sinx+cosx+1sinxcosx令 sinx+cosx=t(1<t ≤ 2 ), 则sinx ·cosx=t 2-12,∴y=1+2121-+t t =t 2+2t+1t 2-1=t+1t-1 =1+2t-1, 由1<t ≤ 2 ,得y ≥3+2 2 , ∴函数的最小值为3+2 2 . 7. 利用函数在区间内的单调性例7: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。
[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。
设()tt y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y 。
8. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区。
例8: 求函数x x y 22cos 4sin 1+=的最值。
解:xx y 22cos 4sin 1+==()9225tan 4cot 5tan 14cot 12222=⨯+≥++=+++x x x x 当且仅当,tan 4cot 22x x =即2cot ±=x 时,等号成立,故9min =y 。
9. 利用图像性质例9: 求函数f x a x x ()sin cos =--242的最大值和最小值。
分析:函数f x ()的解析式可以变换成关于s i n x 的二次函数,定义域为[]-11,,应该讨论二次函数对应的抛物线的对称轴相对于区间[]-11,的位置,才能确定其最值。
解:y f x x a x x a a ==-+=-+-()s i n s i n (s i n ).241212222设s i n x t t =-≤≤,则,11并且y g t ta a ==-+-()().21222当时,如下图所示,有,a y ga y ga <-==-=-=+1134134m a x m i n ()().当时,如下图所示,有-≤≤11ay g a a y g g m i n m a x()()()==--12112,为和中的较大者,即y a a y a a m a x m a x()()=--≤≤=+<≤34103401当时,如下图所示,有a y ga y ga >=-=+==-1134134m a x m i n ()().10. 判别式法例10 求函数xx x x y tan sec tan sec 22+-=的最值。
[分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法。
解:()()()()ππ∈===∴=-+++-∴+++-=+-=k k x x y y x y x y x x x x x x x x y ,0tan ,101tan 1tan 11tan tan 1tan tan tan sec tan sec 222221≠y 时此时一元二次方程总有实数解()()()().331313,014122≤≤∴≤--∴≥--+=∆∴y y y y y由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ由.31,4,1tan ,31min =+=∴==y k x x y ππ 11. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论。
例11 : 设()⎪⎭⎫⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t其中相位变换中平移量|φ|个单位,φ>0时,向左移,φ<0时向右移;周期变换中的纵坐标不变,横坐标为原来的倍;振幅变换中,横坐标不变,而纵坐标变为原来的A倍.例1.把函数的图像适当变动就可以得到y=sin(-3x)的图像,这种变动可以是()A.向右平移B.向左平移C.向右平移D.向左平移解析:∵,∵按“左加右减”的规律,把函数y=sin(-3x)的图像向右平移能得到函数的图像,∴反过来,把函数的图像平移成函数y=sin(-3x)的图像只需向左平移,故选D.当变换顺序改变后,即先周期变换,后相位变换时,平移量变为个单位.图象变换过程还可表述为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=ωφωx A y sin 即 )sin(φω+=x A y例2.要得到)32sin(π-=x y 的图象,只需将函数x y 2sin =的图象 ( )个单位长度(A )向左平移3π (B )向右平移3π (C )向左平移6π (D )向右平移6π 分析: 因为03<-=πφ,由图象变换可知应将函数x y 2sin =的图象向右平行移动,移动单位为6πωφ=,即有)32sin(π-=x y )6(2sin π-=x ,于是选(D )。
变式:要得到)321cos(π--=x y 的图像,只需将)21cos(x y -=的图像( )个单位长度 (A )向左平移3π (B )向右平移3π (C )向左平移32π (D )向右平移32π 分析:因为)32(21321ππ+-=--x x ,即32πωφ=,所以选(C )。
评注:进行图像变换时应切记无论是哪种变换都是对字母x 而言的,注意到这一点就无须担心到底是先作相位变换还是先作周期变换。
二.三角函数y=Asin (ωx+φ)中的对称1.函数sin cos y x y x ==,的图象既是中心对称图形(关于某点对称),又是轴对称图形(关于某直线对称),的对sin y x =称中心是(π0)k ,,k ∈Z ,对称轴为ππ2x k k =+∈Z ,.特殊地,原点是其一个对称中心.cos y x =的对称中心是ππ02k ⎛⎫+ ⎪⎝⎭,,k ∈Z ,对称轴为πx k =,k ∈Z .特殊地,y 轴是其一条对称轴. 2.函数tan y x =的图象是中心对称图形,不是轴对称图形,其对称中心为π02k ⎛⎫⎪⎝⎭,k ∈Z .()f x 是偶函数,轴是其对称轴,即(0)sin ϕ=0πϕ≤≤()f x 的图象关于点3π04f ⎛⎫= ⎪⎝⎭3ππ42⎫+=⎪⎭0ω>,π012k ∴=,,0,1,2,x在π02⎡⎤⎢⎥⎣⎦,x在π2⎡⎤⎢⎥⎣⎦,上是减函数;x在π02⎡⎤⎢⎥⎣⎦,(5)△=Rabc4; (6)△=))()((c s b s a s s ---;⎪⎭⎫ ⎝⎛++=)(21c b a s ; (7)△=r ·s 。
4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。
(1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正弦定理RCcB b A a 2sin sin sin ===(R 为外接圆半径); 余弦定理 c 2 = a 2+b 2-2bc cosC ,b 2 = a 2+c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A ;它们的变形形式有:a = 2R sin A ,b a B A =sin sin ,bcac b A 2cos 222-+=。
5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
2sin 2cos ,2cos 2sin CB AC B A =+=+;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。
r 为三角形内切圆半径,p 为周长之半。
(3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列。