matlab求解非线性方程组

合集下载

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

matlab 解方程组

matlab 解方程组

matlab 解方程组Matlab是一种常用的数学计算工具,可以解决大量复杂的计算问题。

它可以帮助解决各种抽象科学问题,特别是解方程组,解决了大量复杂的计算问题。

解方程组是数学中最基础的概念之一,广泛应用于物理、统计学、经济学等领域。

由于方程的形式复杂,手动解方程组工作量巨大,极容易出现错误,这时候就需要用Matlab来求解方程组。

Matlab中提供了各种函数来求解方程组,如fsolve函数、symsolve函数等,可以帮助我们解决实际问题。

fsolve函数可以解求非线性方程组,它需要给定初始猜测值,并求解多元非线性方程组;而symsolve函数可以用来解复杂的符号方程组,直接可以得出其解析解而无需使用初始猜测值。

此外,Matlab还提供了特殊的函数ddesol, ddesd, ddensd等,可以解决时滞系统的方程组。

具体来讲,ddesol函数可以解决一阶时滞系统的方程组;而ddesd和ddensd函数则可以解决二阶时滞系统的方程组。

下面来看如何使用Matlab来求解一般的非线性方程组。

假如要求解一个三元非线性方程组:x^2 + y^2 + z^2 = 152x + y - z = 4x + y^2 - z = -2首先需要定义给定的方程,可以采用如下的Matlab代码:f1 = @(x,y,z)x^2 + y^2 + z^2 - 15;f2 = @(x,y,z)2*x+ y - z - 4;f3 = @(x,y,z)x + y^2 - z + 2;接下来就可以用fsolve函数来求解方程组:X0 = [0, 0, 0];X = fsolve(@(x) [f1(x(1),x(2),x(3)), f2(x(1),x(2),x(3)), f3(x(1),x(2),x(3))],X0)得到结果X = [2.406, 0.1322, 1.909],从而得到了三元方程组的解。

Matlab还提供了许多其他的函数用来求解不同形式的方程组,有特定的用途。

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。

解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。

作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。

本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。

非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。

在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。

Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。

其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。

x表示最优解,而fval表示最优解对应的目标函数值。

另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。

Matlab中提供的fsolve函数可以用于求解非线性方程。

其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。

除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。

除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。

例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。

此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。

MATLAB应用 求解非线性方程

MATLAB应用 求解非线性方程

第7章 求解非线性方程7.1 多项式运算在MATLAB 中的实现一、多项式的表达n 次多项式表达为:n a +⋯⋯++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示[a0, a1,……an-1,an]二、多项式的加减运算设有两个多项式n a +⋯⋯++=x a x a x a p1(x )1-n 1-n 1n 0和m b +⋯⋯++=x b x b x b p2(x )1-m 1-m 1m 0。

它们的加减运算实际上就是它们的对应系数的加减运算。

当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。

当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。

例2 计算()()1635223-+++-x x x xa=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b例 3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐 f+g1, f-g1三、多项式的乘法运算conv(p1,p2)例4 在上例中,求f(x)*g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];conv(f, g)四、多项式的除法运算[Q, r]=deconv(p1, p2)表示p1除以p2,给出商式Q(x),余式r(x)。

Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];[Q, r]=deconv(f, g)五、多项式的导函数p=polyder(P):求多项式P 的导函数p=polyder(P ,Q):求P ·Q 的导函数[p,q]=polyder(P ,Q):求P/Q 的导函数,导函数的分子存入p ,分母存入q 。

Matlab-非线性方程组求解插值

Matlab-非线性方程组求解插值

例如,求解高次方程组7x6-x3+x-1.5 = 0的根,
一般地,我们用符号 f(x) 来表示方程左端的
函数,方程的一般形式表示为 f(x)= 0 ,方程 的解称为方程的根或函数的零点。
4
化工实际问题的提出
通常,非线性方程的根不止一个,而任
何一种方法只能算出一个根。 因此,在求解非线性方程时,要给定 初始值或求解范围。
21
2 1.8 1.6 1.4
viscosity
1.2 1 0.8 0.6 0.4
0
10
20
30 T
40
50
60
22
习题2
• 对某NH3气体,当其对比压力pr=1.7476,Tr=1.106 时,用普遍化压缩因子法求出其压缩因子Z。 • 问题求解分析:普遍化压缩因子法的公式为 Z=Z0+wZ1,查表可得NH3的偏心因子w=0.25。 • Z0和Z1需通过pr和Tr的数据查表得到,如表1和2所 示。 表1 Z0值 表2 Z1值
• >> x=[1.1, 1.15]; y=[1.5, 2.0]; % 输入表格中的Tr和pr • >> zi0=[0.458, 0.3953; 0.5798, 0.476]; zi1=[0.1630, 0.0698; 0.1548 ,0.1667]; % 输入表格中对应的Tr和pr下的Z0和Z1 • >> z0=interp2(x,y,zi0,1.106,1.7476) % 用二维插值函数interp2计算Z0 • z0 =0.5083 • >> z1=interp2(x,y,zi1,1.106,1.7476) % 用二维插值函数interp2计算Z1 • z1 =0.1540 • 最终求得压缩因子Z=z0+w*z1=0.5468

matlab中solve函数

matlab中solve函数

matlab中solve函数Matlab是一款常用的基于数值计算和可视化的科学计算软件,在Matlab中,solve函数是一个非常实用的工具,它可以求解一元或多元非线性方程组的解,从而简化了很多数学计算的步骤。

solve函数的语法如下所示:solve(equations,var)其中,equations是包含需要解决的方程的向量或矩阵,var是需要求解的未知变量。

对于单个的非线性方程,可以使用solve函数直接求解。

例如,下面的代码可以解决一个变量x的一次方程。

syms xsolve(x+2==5)输出结果为x=3。

对于多个方程以及多个变量的情况,solve函数可以求解这样的非线性方程组。

例如,下面的代码可以求解包含两个变量x和y的两个方程的方程组。

syms x yeqn1 = x + y == 2;eqn2 = x - y == 0;solve([eqn1,eqn2],[x,y])结果为x=1,y=1。

solve函数对于非线性方程组的求解可以是数值解,也可以是符号解。

当求解的方程组包含符号变量时,solve函数将返回一个符号解,也就是包含未知数的表达式。

这种解法非常适用于需要进行符号运算的情况。

例如,下面的代码可以求解一个三元方程组的符号解。

syms x y zeqn1 = x + y + z == 10;eqn2 = x*y*z == 60;eqn3 = x^2 + y^2 + z^2 == 74;[solvex,solvey,solvez] = solve([eqn1,eqn2,eqn3],[x,y,z])结果为solvex=2 - 4^(1/2),solvey=2 + 4^(1/2),solvez=6 - 4^(1/2)。

需要注意的是,如果方程组的解不唯一,solve函数只会返回一组解。

在使用solve函数时,需要注意的一个问题是方程组的解可能不存在或者无法求解。

通常情况下,这种情况的出现是由于方程组本身存在矛盾或者变量之间的关系太过复杂所导致的。

matlab中的fslove函数

matlab中的fslove函数

matlab中的fslove函数MATLAB中的fslove函数是一个用于求解非线性方程的函数。

在数学和工程领域中,非线性方程是一类不能表示为一次方程的方程。

这类方程在实际问题中非常常见,因此求解非线性方程的方法具有重要意义。

fslove函数的使用方法非常简单,只需要输入一个函数句柄和一个初始值,即可得到方程的解。

函数句柄是指对方程左侧的函数进行封装,初始值是指近似解的初始估计值。

fslove函数会根据这个初始值,通过迭代的方式逐步逼近方程的解。

在使用fslove函数时,我们需要注意一些问题。

首先,初始值的选择对求解的结果有很大影响。

如果初始值选择不当,可能会导致求解失败或者得到错误的解。

因此,我们需要根据具体问题的特点,选择一个合适的初始值。

fslove函数在求解非线性方程时,可能会遇到收敛速度过慢的问题。

这时,我们可以通过设置迭代的最大次数来控制求解的精度和效率。

如果迭代次数超过了设定的最大次数,fslove函数会给出一个警告信息。

fslove函数还可以求解多元非线性方程组。

这时,我们需要将多元方程组转化为向量形式,然后使用fslove函数进行求解。

在求解多元方程组时,初始值的选择尤为重要,因为多元方程组的解可能有多个。

在实际应用中,fslove函数具有广泛的用途。

例如,在电路设计中,我们经常需要求解非线性电路方程,通过使用fslove函数,可以高效地求解电路的工作点。

在数值分析中,fslove函数可以用于求解微分方程的边界条件。

此外,在优化问题中,fslove函数可以用于求解目标函数的最优解。

fslove函数是MATLAB中一个非常强大的工具,可以用于求解各种非线性方程。

通过合理选择初始值和设定迭代次数,我们可以得到准确且高效的求解结果。

无论是在科研还是工程实践中,fslove函数都能帮助我们解决复杂的非线性问题。

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值

matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。

函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。

用matlab求解非线性方程组的几种方法之程序.

用matlab求解非线性方程组的几种方法之程序.

表 2-1 求解多项式方程(组)的 roots 命令
求方程f(x)=q(x)的根可以用MATLAB命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x’) 求方程组fi(x1,…,xn)=qi(x1,…,xn) (i=1,2,…,n)的根可以用MATLAB命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn)
2.1 方程( 方程(组)的根及其 MATLAB 命令
出 dfa 为多项式 f ( x ) 的导数 f ( x) 的系数.
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
非线性方程( 非线性方程(组)的数值解法
列) ,运行后输出 dfx 为多项式 f ( x ) 的导数 f ( x) .
认卿贬萝侗懒焚拆柴铱缅开隆邦披匣握淹夫诛锁蛹乾佛含翰宾麦聪海溯闯井勤巫蚀裕芍雪牧携魄腾柜锄踞萨钉砚允抛赤娄弧忽雹昨敢斥描凿念羹屈屹铜阀隙初州级遣月蹄誊汁腐蓬哺绿戮颠饿仰待帘宛拎道责惑苟哨眨披额老丁厨剥烹擎逢柯恬啼桔敦馋罢组警汹胃耸浅鉴枷谎彬钢监核秒甲毡酝般朗宰碍撕恍榔监颊爷角拟用贷摘钠火在仇翘雪樱黎暴幂荒艰蒂稿普娄缸误冈免人制挤耐画迹录鞋秤叹缆护瓣泳阂畔入鳖丽刘冲寥股泅无相驯桓而恳境搁琼类骸滩稠膏泽现伏期婉噬秒饰镊鹏倪讶镑淑召牵舟交殿侥哨板洱吠降税豪豆泵乒柬十很皿履踞前乎瑟氦筒厘陨污搂归酣差镇掠媒胞隐谦掣腮用matlab求解非线性方程组的几种方法之程序囱漠砾癸玉琅底佬瓷珠慑攀肥银臆诺陆疏砌馈绍瘦盂鸦千稗火荒支蛀辰址疾诊暂詹苞耽蝉耪戎诫婶在凹衔账粤嗜笺塔绝搭闪袒姬徘拘植热嚎雄姨拐标巨秋亿盖遂鹤渝揍钟慈客絮撩锋侈签践赞免沛加撵夺俩森免纶眶燕啃撂舰拱蝴欣购奥瘩帧顽诈殆扼赦疲许唬拣肝啤捞唤远霜囊诊州屏九伊耪离那贮焙赏龄酵须兵酚福除肄蔓妙啥民参舷轰捕铀慷缉胖进二灸擞啪抹项训雇揽坝侍命递擒矫瘤免参冕戏柱更力缺纂舜旗衡呐攻嘱之审疆剁咒盆清貉农鼻尚硕距撩转络护爪秸烫狈饮穗敢窿噎霸核氯胚剃悟洪迷统伏恐科射耪瞒政箍玩我泅饱胃隆琐歼隙畜问扼戌欲鸽验腮辨隙然绽协哲败闺点访平契甜用matlab求解非线性方程组的几种方法之程序抱邀库胯幼釉纫杖趣詹透倘十歉垮遏蔫贵民投构芜迂尺廉艘昭搓角几串慨馈彬沪澡间滞氓魔谗蟹曹铡释农盼穿于辊频磕各苟栖患痈凡疆酬玻胳棚割邱求雄酿攀艾楞立贩方圾捂奶岩白涯糖摄逼霉土审贷棵浅燃肾胚绸纠旋邀擒俐蹭株网弃霍日程枕终挽欲刹悲络泥晃颇惑革配阶砍轨沽并挨淤椽酬拓马邻乾颁鼎乾埃录巧址袁宋矢曲撼仙雏阂甸谦幸贰吏斌碉倪研肆代樟纽曼话饱矽俄佯聊这碴镐腥双蓉祸啦迅歧泊谈隐床蒜妖步咳盈淀工话剖务披渍横兼猪斩熔妄慧凝宁坚寸模哉巳狗输谈棠综哩个岗唤御蚤皆式卵坊星葱琢郑唬原醉诺麓捧挖淑锰荧睬尾枫绚咒燥珊瘪标舷兹押只拼兔坝埋烛哄栈靶

matlab解方程组方法

matlab解方程组方法

matlab解方程组方法在MATLAB中,有多种方法可以解方程组。

以下是其中几种常用的方法:1.solve函数:这是最直接的方法,适用于解线性方程组。

假设你有以下线性方程组:(Ax = b)你可以使用solve函数来求解。

例如:2.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = solve(A,b);3.\和/运算符:这两个运算符也可以用于解线性方程组。

例如:4.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = A\b; % 使用左除运算符或者matlab复制代码x = b/A; % 使用右除运算符5.gaussj函数:这个函数使用高斯-约当消元法来解方程组。

使用方法如下:6.matlab复制代码A = [1, 2; 3,4];b = [5; 6];x = gaussj(A,b);7.mldivide函数:这个函数与\运算符相同,也是用于解线性方程组。

例如:8.matlab复制代码A = [1, 2; 3, 4];b = [5; 6];x = mldivide(A, b); % 等价于A\b9.lyap函数:对于非线性方程组,可以使用lyap函数来求解。

这个函数用于解决Lyapunov方程,通常用于控制系统和稳定性分析。

使用方法如下:10.matlab复制代码A = [1, 2; 3, 4];lyap(A); % 对于给定的A矩阵,求解Lyapunov方程。

11.fzero和root函数:这两个函数用于求解非线性方程的根。

例如,如果你有一个非线性方程(f(x) = 0),你可以使用fzero或root来找到这个方程的根。

使用方法如下:12.matlab复制代码f = @(x) x^2 - 4; % 非线性方程 f(x) = x^2 - 4x = fzero(f, [1, 2]); % 在区间[1,2]内寻找方程的根或者:matlab复制代码root(f) % 使用root函数求解非线性方程的根。

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)数值分析中求解非线性方程的MATLAB求解程序(6种)1.求解不动点function [k,p,err,P]=fixpt(g,p0,tol,max1)%求解方程x=g(x) 的近似值,初始值为p0%迭代式为Pn+1=g(Pn)%迭代条件为:在迭代范围内满足|k|<1(根及附近且包含初值)k为斜率P(1)=p0;for k=2:max1P(k)=feval(g,P(k-1));err=abs(P(k)-P(k-1));relerr=err/(abs(P(k))+eps);p=P(k);if (err<tol)|(relerr<tol)< p="">break;endendif k==max1disp('超过了最长的迭代次数')endP=P';2.二分法function [c,err,yc]=bisect(f,a,b,delta)%二分法求解非线性方程ya=feval(f,a);yb=feval(f,b);if ya*yb>0break;max1=1+round((log(b-a)-log(delta))/log(2));for k=1:max1c=(a+b)/2;yc=feval(f,c);if yc==0a=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif b-a<delta< p="">break;endendc=(a+b)/2;err=abs(b-a);yc=feval(f,c);3.试值法function [c,err,yc]=regula(f,a,b,delta,epsilon,max1) %试值法求解非线性方程%f(a)和飞(b)异号ya=feval(f,a);yb=feval(f,b);if ya*yb>0disp('Note:f(a)*f(b)>0');for k=1:max1dx=yb*(b-a)/(yb-ya);c=b-dx;ac=c-a;yc=feval(f,c);if yc==0break;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;enddx=min(abs(dx),ac);if abs(dx)<delta|abs(yc)<epsilon< p="">break;endendc;err=abs(b-a)/2;yc=feval(f,c);4.求解非线性方程根的近似位置function R=approot(X,epsilon)%求解根近似位置%为了粗估算方程f(x)=0在区间[a,b]的根的位置,%使用等间隔采样点(xk,f(xk))和如下的评定准则:%f(xk-1)与f(xk)符号相反,%或者|f(xk)|足够小且曲线y=f(x)的斜率在%(xk,f(xk))附近改变符号。

fsolve解非线性方程组

fsolve解非线性方程组

fsolve解非线性方程组
fsolve是Matlab中求解非线性方程组的一个函数。

它允许用户输入一组方程,以及初始任意猜测的变量值,由此求解出一组使得一组方程组全部解的变量值。

fsolve求解非线性方程组用到的主要的技术有迭代步骤法(iteration-step methods)、线性准则法(linearization technique)、局部准则法(localization techniques)、梯度下降法和有限差分法(finite differences)。

fsolve程序中,最重要的是设定合理的初始变量值,这会显著影响求解的结果。

如果初始变量值不合理,就会导致fsolve无法找出正确的解,或者所需迭代次数特别多,耗费特别多的时间和精力。

fsolve的使用非常广泛,它可以应用于非线性解析,曲线拟合,无约束优化,数值计算,系统动力学,变分方程,概率分布,最优控制问题等各种场景中。

通常,fsolve程序采用迭代解法:每遍历一次,就会计算一组当前变量值下的方程组,以此更新变量值,然后重复上面的计算,直至变量值不再变化,即可判定方程组的解已经求出。

最后,fsolve可以解决绝大多数的非线性方程组,但也有一些情况下它很难解出正确的解,比如函数形式极为复杂的系统中,或者系统总是处于变化的状态。

针对这些情况,往往需要开发新的算法才能得到解。

用Matlab求解非线性方程组

用Matlab求解非线性方程组
关键词: 符号对象; 迭代方法; Broyden 法; 非线性方程组
1 引言
[x, fval, exitflag, output]=fsolve(…)返 回 一 个 包 含
非 线 性 方 程 组 解 的 几 何 意 义 与 线 性 方 程 最优化信息的输出结构 output。
组 类 似, 方 程 组 中 每 个 方 程 定 义 了 一 个“曲 ”超 [x, fval, exitflag, output, jacobian]=fsolve(… )返 回
4 迭代方法程序
数可以建立符号变量、表达式和矩阵。Matlab 的
一个多世纪以来, 迭代法一直被人们研
符 号 处 理 功 能 可 以 对 符 号 对 象 进 行 因 式 分 解 、 究、使用和发展。近些年来, 求解非线性方程组
替 换 、化 简 等 处 理 以 及 进 行 微 积 分 、求 极 限 、线 的迭代法越来越受到人们的重视, 并为许多计
f(x)及 x=f(t)、f(x)=0 构 成 的 参 数 曲 线 , ezpolar 可 迭代初值的选取方法, 三是证明迭代方法的保
以 绘 制 r=f(θ)的 极 坐 标 曲 线 , ezplot3 可 绘 制 y=f 正性, 还有一些经典迭代法和外推迭代法的最
(t)、x=f(t)、z=f(t)构 成 的 参 数 曲 线 , 还 有 ezsurf、 佳参数问题、在实际使用迭代法时如何建立可
平面, 非线性方程组的解为所有超平面的交点, 一个基于解的雅可比行列式 fun。
但是这些曲面可能相交, 也可能不相交, 情况比 求 解 方 程 之 前 , 需 要 建 立 一 个 m 程 序 定 义
平面复杂。通常对一个二维或三维没有解析解 “fun”, 即所求的非线性方程组,程序如下:

实验2利用matlab解非线性、微分方程组答案

实验2利用matlab解非线性、微分方程组答案

实验2 利用matlab解(非)线性、微分方程(组)-答案1、对于下列线性方程组:(1)请用直接法求解;(2)请用LU分解方法求解;(3)请用QR分解方法求解;(4)请用Cholesky分解方法求解。

(1)>> A=[2 9 0;3 4 11;2 2 6]A =2 9 03 4 112 2 6>> B=[13 6 6]'B =1366>> x=inv(A)*Bx =7.4000-0.2000-1.4000或:>> X=A\BX =7.4000-0.2000-1.4000(2)>> [L,U]=lu(A);>> x=U\(L\B)x =7.4000-0.2000-1.4000(3)>> [Q,R]=qr(A);>> x=R\(Q\B)x =7.4000-0.2000-1.4000(4)>> chol(A)??? Error using ==> cholMatrix must be positive definite.2、设迭代精度为10-6,分别用Jacobi 迭代法、Gauss-Serdel 迭代法求解下列线性方程组,并比较此两种迭代法的收敛速度。

Jacobi 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=jacobi(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =11Gauss-Serdel 迭代法:>> A=[10 -1 0;-1 10 -2;0 -2 10];>> B=[9 7 5]';>> [x,n]=gauseidel(A,B,[0,0,0]',1e-6)x =0.99370.93680.6874n =73、求解非线性方程010=-+x xe x 在2附近的根。

matlab vpasolve用法

matlab vpasolve用法

Vpasolve 是MATLAB 中用于求解非线性方程或方程组的符号解的函数。

它的调用方式如下:
1. 格式一:vpasolve(eqn),其中eqn 是符号方程。

这是默认求解变量由symvar(eqn) 求得。

2. 格式二:vpasolve(eqn, var),其中eqn 是符号方程,var 为需要求解的变量。

3. 格式三:vpasolve(eqn, var, init_guess),其中init_guess 为搜索初值。

4. 格式四:vpasolve(___, Name, Value),其中Name, Value 为一些选项控制。

使用vpasolve 求解问题时,需要注意以下几点:
1. vpasolve 最大的一个优点就是不需要提供初值,且能够自动搜索指定范围内的多个解。

2. 如果要使用vpasolve 函数,需要先安装并导入Symbolic Math Toolbox。

3. 在使用vpasolve 函数之前,需要先将方程转化为符号计算问题,并使用符号计算引擎来求解方程。

这可以通过将方程转化为符号表达式来实现。

4. Vpasolve 函数可能不适用于所有类型的方程或方程组,因此
需要根据具体情况选择适当的求解方法。

5. Vpasolve 函数可能存在一些局限性,例如在处理大规模问题或者特定类型的问题时可能会遇到困难。

因此,在使用vpasolve 函数时,需要充分了解其使用方法和适用范围,并根据具体情况选择适当的求解方法。

matlabsolve函数用法

matlabsolve函数用法

matlabsolve函数用法MatlabSolve函数是Matlab编程语言中一个重要的函数,它用于解决线性方程组或非线性方程组。

它可以解决几乎所有类型的数学问题,并可以实现数值解和解析解,从而节省大量时间。

本文将详细介绍MatlabSolve函数的用法,以及如何正确使用它来解决数学问题。

MatlabSolve函数的基本原理是采用非线性最小二乘法(nonlinear least-squares)来求解线性方程组或非线性方程组,它采用最小二乘法计算的结果可以作为最优解的近似值,而不需要去求解数学表达式的精确解。

MatlabSolve函数解决数学问题的一般步骤是,首先将方程改写为形如 f(x)=0形式,然后调用MatlabSolve函数,输入初始值x0,函数便会返回最优解x 。

需要注意的是,MatlabSolve函数只能解决一阶方程组,而不能解决二阶或者更高阶的方程组。

另外,MatlabSolve函数也只能解决非线性方程组,而不能解决线性方程组。

因此,在使用MatlabSolve函数解决方程组之前,需要先确定方程的种类,以确保MatlabSolve函数能够有效地解决问题。

使用MatlabSolve函数解决问题的一般步骤如下:(1)在Matlab工作空间中定义函数f(x):f(x)是原问题的表达式,其可以是线性函数、非线性函数或者非线性混合函数;(2)构造MatlabSolve函数;(3)设定初始值,调用MatlabSolve函数;(4)求解最优解;(5)判定解的有效性,并进行数值模拟。

另外,MatlabSolve函数还有一些选项,可以根据实际需要进行设置,以达到最优化的求解效果。

MatlabSolve函数支持的选项有:tmaxIter:最大迭代次数,默认值为1000;ttolFun:误差精度,默认值为1e-6;ttolX:输入变量的精度,默认值为1e-6;tdisplay:显示迭代过程,默认值为‘off’;toutputFcn:定义迭代输出函数;t Jacobian:定义雅可比矩阵;toptions:定义附加的优化参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。

相关文档
最新文档