5V到3V3的电平转换-串口通信

合集下载

5V转3.3V电平的19种方法技巧

5V转3.3V电平的19种方法技巧

5V转3.3V电平的19种方法技巧技巧一:使用(LDO)稳压器,从5V(电源)向3.3V系统供电标准三端(线性稳压器)的压差通常是2.0-3.0V。

要把5V 可靠地转换为 3.3V,就不能使用它们。

压差为几百个毫伏的低压降(Low Dropout,LDO)稳压器,是此类应用的理想选择。

图1-1 是基本LDO 系统的框图,标注了相应的(电流)。

从图中可以看出,LDO 由四个主要部分组成:1. 导通(晶体管)2. 带隙参考源3. (运算放大器)4. 反馈电阻分压器在选择LDO 时,重要的是要知道如何区分各种LDO。

器件的静态电流、封装大小和型号是重要的器件参数。

根据具体应用来确定各种参数,将会得到最优的设计。

LDO的静态电流IQ是器件空载工作时器件的接地电流IGND。

IGND 是LDO 用来进行稳压的电流。

当IOUT>>IQ 时,LDO 的效率可用输出电压除以输入电压来近似地得到。

然而,轻载时,必须将IQ 计入效率计算中。

具有较低IQ 的LDO 其轻载效率较高。

轻载效率的提高对于LDO 性能有负面影响。

静态电流较高的LDO 对于线路和负载的突然变化有更快的响应。

技巧二:采用齐纳(二极管)的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。

可以用齐纳二极管和电阻做成简单的低成本3.3V稳压器,如图2-1 所示。

在很多应用中,该电路可以替代LDO 稳压器并具成本效益。

但是,这种稳压器对负载敏感的程度要高于LDO 稳压器。

另外,它的能效较低,因为R1 和D1 始终有功耗。

R1 限制流入D1 和(PI)Cmicro (MCU)的电流,从而使VDD 保持在允许范围内。

由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑R1 的值。

R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。

5v和3.3v电平转换电路直接串电阻

5v和3.3v电平转换电路直接串电阻

标题:深入解析5v和3.3v电平转换电路直接串电阻1. 介绍电子产品中存在着不同电平之间的通信和数据传输问题,比如5v和3.3v之间的转换。

本文将深入探讨5v和3.3v电平转换电路中直接串电阻的原理和应用,帮助读者更好地理解和应用这一技术。

2. 原理与概念解析在5v和3.3v电平转换电路中,直接串电阻起到了重要的作用。

通过串联不同阻值的电阻,可以实现5v和3.3v之间的电平转换,从而使它们能够在不同电平系统中进行通信和数据传输。

3. 电路设计与实现在实际的电路设计中,直接串电阻的选择需要根据具体的电平转换需求和电路特性进行合理搭配。

通常情况下,我们需要结合输入输出电路的特性、电压范围和电流要求等因素来选择合适的电阻数值和串联方式。

4. 优缺点分析直接串电阻作为5v和3.3v电平转换电路的一种实现方式,具有简单、成本低廉的优点。

但是在一些场景下,由于电路的灵敏度要求和功耗考量,可能会对其进行优化或者选择其他更适合的电平转换方案。

5. 应用与展望在各种嵌入式系统和传感器设备中,5v和3.3v电平转换电路直接串电阻的应用非常广泛。

未来随着技术的发展,我们可以预见到更多更高效的电平转换器件和方案的出现,以满足不断变化的电子产品需求。

结语通过本文的深入解析,相信读者对5v和3.3v电平转换电路中直接串电阻的原理和应用有了更深入的了解。

电子技术的发展日新月异,我们需要不断学习和探索,以应对不断变化的需求和挑战。

6. 相关技术发展电子产品的快速发展,促进了电平转换技术的不断创新和改进。

除了直接串电阻的实现方式外,现在市面上还出现了许多更为高效的电平转换器件,比如双向电平转换器芯片、逻辑电平转换器等。

这些新技术在尺寸、速度和功耗等方面都有着更好的表现,为不同电平系统的通信和数据传输提供了更多选择。

7. 优化方案及适用场景与直接串电阻相比,新型电平转换器件具有更为完善的特性,能够满足更为复杂和严苛的电路需求。

特别是在对电路灵敏度和功耗有较高要求的场景下,优化方案和新型转换器件更能够发挥其优势。

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信

5V到3V3‎的电平转换-串口通信一、电平转换电路‎下面来分析一‎下电路的设计‎思路:http://bbs.ednchi‎n /BLOG_A‎R TICLE‎_24424‎0.HTM首先声明一下‎:这个电路是从‎3V3的角度‎考虑的!1、接收通道我们首先来明‎确一下数据流‎向(其实就是电平‎驱动方向),接收通道是由‎5V方驱动的‎(Source‎),3V3方只是‎取电平(Sink),因此TXD5‎V作为此通道‎的输入方,RXD3V3‎作为通道的输‎出方。

我们知道,三极管(开关型)集电极输出驱‎动能力不错,我们就设计为‎集电极输出;但是,只有一个三极‎管是不行的,因为集电极输‎出的时候,基极电平和集‎电极逻辑是相‎反的;那么,加一个反相器‎?没必要,那是另外一种‎电平转换的方‎法了,我们只需要再‎使用一个三极‎管,基极接前级输‎出就可以了。

这样,逻辑转换就完‎成了,当输入低电平‎时,Q1截止,集电极输出高‎电平,Q2导通,集电极输出低‎电平。

同理,高电平分析是‎一样的。

逻辑转换完成‎了,那么就是电平‎的问题了。

这很好解决,输入方为5V‎逻辑,那么就给它一‎个VCC5,3V3逻辑高‎电平需要一个‎3V3,那么就给一个‎V CC3V3‎;OK!2、发送通道分析完接收通‎道,发送通道的原‎理其实也是一‎样的,就不详细介绍‎了。

3、结论其实如果稍微‎熟悉电子电路‎知识的人看来‎,这个电路实在‎太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设‎计会在这些小‎地方卡住。

二、电平问题:单片机手册————电气特性常用逻辑电平‎:12V,5V,3.3V;1.TTL电平:输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电‎平是3.5V,输出低电平是‎0.2V。

最小输入高电‎平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0‎.4V。

2.CMOS电平‎:'1'逻辑电平电压‎接近于电源电‎压,'0'逻辑电平接近‎于0V。

5V-3.3V电平转换方案

5V-3.3V电平转换方案
74系列的芯片都比较熟悉了,LS系列是TTL电平,HC系列是CMOS 电平,HCT是兼容TTL电平和CMOS电平。
74HCT244 8总线驱动器,输入为TTL电平,输出为COMS电平。可以转 换8路电平。
SN7cALVC164245转换芯片输入3.3V,输出5V。
方案五:使用放大器搭建电路
分区 参考文献摘要 的第 3 页
在实际电路设计中,一个电路中会有不同的电平信号。
方案一:使用光耦进行电平转换 首先要 根据要处理的信号的频率来选择 合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如 6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建 转换电路。如将3.3V信号转换为5V信号。 电路如下图:
缺点:输出波形不是很良好。
方案三:电阻分压
这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平
的区别。
TTL电平:

>2.4V,
<0.4V
分区 参考文献摘要 的第 2 页
输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是 3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容 限是0.4V。
分区 参考文献摘要 的第 1 页
CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。 如果CP接入的 是5V的信号 VCC=3.3V,则该电路是将5V信号转换成3.3V信号。 优点:电 路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。 缺点:对 输入信号的频率有一定的限制。
方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一

5V电平信号与3.3V电平信号转换问题及方法

5V电平信号与3.3V电平信号转换问题及方法

5V电平信号与3.3V电平信号转换问题及方法(转载)2010-04-21 21:04现在低压、低耗器件越来越多,3.3v、2.1v电平信号越来越常见。

这就存在了一个电平转换问题。

当然很多时候都不需要转化,一些器件具有较大的包容性。

具体能不能包容多种电平需要查看IC手册。

如果能容忍其相异的电压,就不需要交转换单元了。

加上转换电路肯定会对通信速度、稳定性有所限制。

转化前要注意两个地方。

1、ABSOLUTE MAXIMUM RATINGS这个是保证IC安全、健康的限制参数,应用连接时千万别超过这个范围。

比如:DVDD(模拟电源)对DGND(模拟地)电压范围是 -0.3V到+6.0V ;数字I/O口电压对地电压范围是 -0.3V到+vdd+0.3V 。

2、需不需要电平信号转换单元就看下面这个参数:可见这个IC的数字逻辑输入低电平门限<0.7V(3.3V情况);高电平门限>2V(3.3V 情况);当然这些参数都是限制在ABSOLUTE MAXIMUM RATINGS的。

下面转入正题,看看电平转换方法。

1、较低电平转较高电平(比如3.3V转5V):“低”接较低电平信号;“高”接较高电平信号。

两个晶体管,保证两端信号极性一致。

2、较高电平转较低电平(比如5转3.3V):分析:当“高”处(+5V电平信号)输出为逻辑1,二极管截至(相当于断开),低处被上拉到约+3.3V。

当“低”处(+5V电平信号)输出为逻辑0,二极管导通,理想情况“低”处导通到0电压,实际“低”处电压是二极管导通压降(0.7V左右,如果觉得高,可以使用肖特基二极管,肖特基二极管管压降小)。

有一些电平信号转换可以采用比较器,我以前在一个比较器手册上看过这种应用,也十分方便,就是成本有些高。

我听一些网友说,可以在不同电平信号之间串一个小电阻解决问题。

我也这样试过(3.3V的cyclon2与5V的单片机通信),好像能正常使用,不过总感觉不太安稳,呵呵。

单片机5V转3.3V电平的19种方法

单片机5V转3.3V电平的19种方法

单片机5V转3.3V电平的19种方法技巧一:使用LDO稳压器,从5V电源向3.3V系统供电标准三端线性稳压器的压差通常是 2.0-3.0V。

要把 5V 可靠地转换为 3.3V,就不能使用它们。

压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。

图 1-1 是基本LDO 系统的框图,标注了相应的电流。

从图中可以看出, LDO 由四个主要部分组成:1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择 LDO 时,重要的是要知道如何区分各种LDO。

器件的静态电流、封装大小和型号是重要的器件参数。

根据具体应用来确定各种参数,将会得到最优的设计。

LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。

IGND 是 LDO 用来进行稳压的电流。

当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。

然而,轻载时,必须将 IQ 计入效率计算中。

具有较低 IQ 的 LDO 其轻载效率较高。

轻载效率的提高对于 LDO 性能有负面影响。

静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。

技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。

可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。

在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。

但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。

另外,它的能效较低,因为 R1 和 D1 始终有功耗。

R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。

由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。

R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。

关于5V与3点评兼容的一些思路

关于5V与3点评兼容的一些思路

不同I/O电平标准信号之间的互联——讨论5V与3.3V电平信号兼容的问题1.缩写对照TTL —— Transistor-Transistor LogicLVTTL —— Low Voltage TTLCMOS —— Complementary metal-oxide-semiconductorLVCMOS —— Low Voltage CMOSECL —— Emitter Coupled LogicPECL —— PECL:Pseudo/Positive ECLLVPECL —— Low Voltage PECLLVDS —— Low Voltage Differential SignalingBLVDS —— Bus Low Voltage Differential SignalingHSTL —— High Speed Transceiver LogicSSTL —— Stub Series Terminated Logic,残余连续终结逻辑电路2.基本概念表示数字电压的高、低电平通常称为逻辑电平。

要了解逻辑电平的内容,首先要知道以下几个概念的含义。

输入高电平门限(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时(如LVTTL3.3V和TTL5.0V皆是2.0V),则认为输入电平为高电平。

输入低电平门限(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时(如LVTTL3.3V和TTL5.0V皆是0.8V),则认为输入电平为低电平。

输出高电平门限(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh(如LVTTL3.3V和TTL5.0V皆是2.4V)。

输出低电平门限(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol(如LVTTL3.3V是0.4V,而TTL5.0V是0.5V)。

5v和3.3v转换

5v和3.3v转换

一、3.3V信号转5V信号二、5V信号转3.3V信号一、3.3V信号转5V信号1、采用MOSFET如图1所示,电路由一个N沟道FET和一个上拉电阻构成。

在选择R1的阻值时,需要考虑输入的开关速度和R1上的电流消耗。

当R1值较小时,可以提高输入开关速度,获取更短的开关时间,但却增大了低电平时R1上的电流消耗。

图1,采用MOSFET实现3V至5V电平转换2、采用二极管钳位如图2所示,由于3.3V信号的低电平一般不高于0.5V,当3.3V系统输出低电平时,由于D1的钳位作用,使得5V输出端会得到0.7V~1.2V的低电压,低于ADM3251E的最高不超过1.5V的低电平阈值。

当3.3V系统输出高电平时,由于D2的钳位作用,使5V输出端会得到约4V的高电平电压,高于ADM3251E的最低不低于3.5V的高电平阈值。

图2,采用二极管实现3V至5V电平转换3、采用三极管如图3所示,当3.3V系统高电平信号输入时,Q1导通,Q2截止,在5V输出端得到5V电压。

当3.3V系统低电平信号输入时,Q1截止,Q2导通,在5V输出端得到低电平。

此电路同样也适用于5V转3V的情况,只要将上拉的电压换成3.3V即可。

图3,采用三极管实现3V至5V电平转换以上三种方法比较简单,能够很方便的实现电平转换,但对传输速率有一定的限制,对于9600,19200等常用传输速率,使用这些方法没有问题。

也可以采用电压比较器、运算放大器或OC门芯片74HC05来实现3V 至5V的电平转换。

对于高于100K传输速率的应用,我们可采用一些专门的电平转换芯片,如74LVX4245、SN74LVC164245、MAX3370等,但这些芯片价格偏高。

当然,我们也可以采用ADUM1201搭配DC-DC隔离电源模块和RS-232收发器的分立隔离方案,ADUM1201不但能对信号进行隔离,还能够在隔离信号的同时方便的实现3V至5V的电平转换。

二、5V信号转3.3V信号一些3.3V供电的控制芯片能够承受5V的输入电压,但更多的控制芯片只能接受3.3V的输入信号,因此需要将ADM3251E的Rout引脚输出5V信号转为3.3V电平信号。

5V3.3V电平转换问题

5V3.3V电平转换问题

5V3.3V电平转换问题5V 3.3V电平转换问题总结在5V和3.3V芯⽚与模块之间经常要使⽤到电平之间的转换,现总结如下。

1、问题来源常⽤电平类型包括5V-CMOS、5V-TTL、3.3V-LVCMOS、3.3V-LVTTL,这四种电平允许输⼊和输出的最⼤、最⼩⾼低电平阈值有所差异,因此,在连接时,有时需要进⾏相应的电平转换以使输⼊和输出之间的电平匹配。

如下表所列是常⽤的上述四种电平⾼低电平阈值,需要注意的是,不同的芯⽚⼚商在制造时,上述值有所差异,具体以芯⽚的数据⼿册为准,以下表格中数值参照Texas InstrumentO=OUTPUT,I=INPUT,VOH(min)表⽰:输出在此值~VCC之间,均为⾼电平,其他依次类似。

假如,有⼀个3.3V-LVTTL器件,输出的⾼电平,且⾼电平值为2.4V,送到⼀个5V-CMOS 器件,对5V-CMOS,仅3.5V以上才能识别为⾼电平,⽽2.4V电平属于⾼低中间未知的⼀个电平范围之内,因此,不能保证其能够被准确的识别为⾼电平,在这种情况下,需要进⾏电平转换。

同时,对于3.3V器件,由于其引脚⼤多数情况下⽆法耐受5V的电压,因此,也需要进⾏相应的电平转换。

2、5V器件——>3.3V器件这种情况⼤部分情况下是由于3.3V器件⽆法耐受5V电平,导致需要增加相应的转换电路。

在此部分中,5V器件统称为前级,3.3V器件统称为后级。

(1)电阻分压法:前级输出通过两个电阻(常取kΩ级别的)进⾏分压,分压后输出给后级。

操作较为简单,但需要注意某些应⽤:a)若分压电阻过⼤,会导致后级流⼊电流过⼩,不适合某些需要⼀定驱动能⼒要求的器件;b)若分压电阻过⼩,会导致功耗过⼤,不适合低功耗的应⽤,且前级引脚输出会等效存在⼀定的⼩阻值电阻,影响分压;c)不适合⾼速应⽤场合,后级输⼊引脚⼤多存在对地的分布电容,通过RC⽹络构成充电电路,会造成信号传输的延时,低速信号链中可不考虑。

5v rs485接3

5v rs485接3

5v rs485接3.3v单片机原理
RS485是一种常用的串行通信协议,用于在远距离通信中实现高速、可靠的数据传输。

通常,RS485接口需要工作在5V电平,但是由于现代单片机大多采用3.3V供电,因此在实际应用中需要将5V的RS485接口转换为3.3V可接受的电平。

为了实现5V RS485接口向3.3V单片机的转换,可以采用以下原理。

首先,需要使用5V到3.3V的电压转换器将5V的信号转换为3.3V。

这样可以确保单片机接收到的信号处于兼容的电平范围内。

其次,需要通过电平转换器将3.3V的信号转换为5V。

这样可以确保单片机发送的信号也处于兼容的电平范围内,以确保RS485总线正确接收到信号。

在实际电路设计中,可以使用双向电平转换器,比如TXB0104或SN74LVC8T245等。

这些芯片具有多个输入和输出引脚,可以实现双向的电平转换。

通过将5V的RS485接口连接到转换器的输入端,将单片机的引脚连接到转换器的输出端,即可实现电平转换。

此外,还需要将RS485总线上的数据线连接到转换器的输入引脚上,以实现数据的传输。

同时,还需将一条控制线连接到转换器的使能引脚上,用于控制转换器的使能和禁止。

总结来说,将5V RS485接口转换为3.3V单片机的原理主要是通过使用5V到3.3V的电压转换器和电平转换器来实现。

这样可以确保RS485总线上的信号能够在5V和3.3V之间进行可靠的转换,使得单片机能够正常接收和发送数据。

两个3.3v信号用电平转换芯片的原因

两个3.3v信号用电平转换芯片的原因

在电子电路设计中,有时候需要将3.3V的信号转换成其他电平的信号,或者将其他电平的信号转换成3.3V的信号。

针对这个需求,可以使用电平转换芯片来实现。

以下将从两个方面探讨为什么需要使用电平转换芯片来处理3.3V信号。

1. 3.3V信号无法与5V设备直接兼容在电子设备中,常见的电平包括3.3V和5V。

然而,3.3V信号与5V设备直接兼容常常是一个问题。

当我们将3.3V的信号接入到5V的设备时,由于电平不匹配,可能会导致设备无法正常工作,甚至对设备造成损害。

为了解决这个问题,需要使用电平转换芯片将3.3V信号转换成5V信号,使得3.3V的信号可以与5V设备兼容并正常工作。

2. 3.3V信号需要与其他电平设备进行通信在一些场景下,3.3V的信号需要与其他电平的设备进行通信。

当一个系统中同时存在3.3V和5V的设备,并且它们需要进行数据交换时,就需要使用电平转换芯片来实现信号的转换。

通过电平转换芯片,可以实现3.3V信号和其他电平设备的正常通信,避免因电平不匹配而导致通信失败的问题。

总结起来,使用电平转换芯片来处理3.3V信号有以下原因:- 3.3V信号无法与5V设备直接兼容,需转换成5V信号- 3.3V信号需要与其他电平设备进行通信,需要转换成相应的电平信号对于需要处理3.3V信号的电子电路设计,考虑到电平兼容性和设备间的通信,通常需要使用电平转换芯片来处理3.3V信号,以确保系统的正常工作和稳定性。

在电子电路设计领域,3.3V信号的处理是一个常见且重要的问题。

在实际应用中,我们可能会面对各种需要处理3.3V 信号的情况,包括因信号电平不匹配而导致通信失败的问题,或者在不同电平设备之间进行数据交换的场景。

为了解决这些问题并确保系统的正常工作和稳定性,需要更深入地探讨为什么需要使用电平转换芯片处理3.3V信号的原因。

3.3V信号与5V设备的兼容性问题让我们更深入地探讨3.3V信号与5V设备之间的兼容性问题。

3.3v串口与5v串口通信问题

3.3v串口与5v串口通信问题

3.3v串口与5v串口通信问题
通常情况下,3.3V串口和5V串口之间是可以直接通信的,但需要注意以下几点:
1.电平兼容性:3.3V串口的电压范围是0V到3.3V,5V串口的电压范围是0V到5V。

如果使用3.3V串口连接5V串口,需要确保5V串口的输出电平范围不会超过3.3V 的最大电压范围。

否则,3.3V串口可能无法正确解读5V串口的输出信号,或者受到电压过高的损害。

2.信号转换:如果使用
3.3V串口连接5V串口,可以使用电平转换芯片或电阻分压电
路将5V信号转换为3.3V信号,以确保3.3V串口的正常工作。

反之,如果使用5V 串口连接3.3V串口,也可以使用相应的电平转换器将3.3V信号转换为5V信号。

3.波特率匹配:在通信时,需要确保3.3V串口和5V串口的波特率相匹配,否则可能
导致通信失败或者数据错误。

总之,使用3.3V串口和5V串口进行通信时,需要注意电平兼容性、信号转换和波特率匹配等问题,以确保通信的稳定和可靠。

5v和3.3v电平转换电路直接串电阻

5v和3.3v电平转换电路直接串电阻

在电子电路设计中,5v和3.3v电平转换电路直接串电阻是一个常见且重要的主题。

这种电路可以用于将高电平转换为低电平,或者将低电平转换为高电平。

接下来,我将从简单到复杂,由浅入深地探讨这个主题。

1. 什么是5v和3.3v电平?5v和3.3v电平是指电子电路中的一种电压水平。

在数字电路中,通常使用5v和3.3v两种电平来表示逻辑高和逻辑低。

5v表示高电平,3.3v表示低电平。

在实际的应用中,我们常常需要将这两种电平进行转换。

2. 为什么需要进行电平转换?在现代电子设备中,由于不同部分的工作电压不同,比如某些单片机工作电压为3.3v,而其他模块的工作电压为5v,因此需要进行电平转换。

还有一些外部设备的输入输出电平也不一定与我们实际使用的电平相匹配,因此需要进行电平转换以确保各部分的正常工作。

3. 电平转换电路的基本原理最简单的5v和3.3v电平转换电路是使用串联电阻。

在这种电路中,我们通过串联一个电阻来将5v转换为3.3v,或者将3.3v转换为5v。

具体来说,如果需要将5v转换为3.3v,可以通过串联一个适当的电阻来实现。

当5v信号通过电阻时,根据欧姆定律,会产生一个3.3v的电压降。

同理,将3.3v转换为5v也可以利用串联电阻的方式来实现。

4. 串联电阻电平转换电路的优缺点这种简单的电平转换电路具有成本低、易实现的优点,但同时也存在一些缺点。

由于电阻本身的内部电阻,这种方法会产生一定的功耗。

由于没有对输入输出电流进行限制,对于一些高速传输的信号,串联电阻可能会导致信号失真,从而影响电路的稳定性和可靠性。

5. 其他电平转换电路的解决方案针对串联电阻电平转换电路的缺点,工程师们提出了各种其他的解决方案,比如使用场效应管、双稳态电路、电平转换芯片等。

这些解决方案不仅能够有效地解决功耗、速度和稳定性等问题,还能够更加灵活地适应不同的应用场景。

总结回顾:经过对5v和3.3v电平转换电路直接串电阻的介绍和讨论,我们了解到了其基本原理、优缺点以及其他解决方案。

5V和3.3V电平转换电路

5V和3.3V电平转换电路

一个IIC的5V和3.3V电平转换的经典电路分享在电平转换器的操作中要考虑下面的三种状态:1 没有器件下拉总线线路。

“低电压”部分的总线线路通过上拉电阻Rp 上拉至3.3V。

MOS-FET 管的门极和源极都是3.3V,所以它的VGS 低于阀值电压,MOS-FET 管不导通。

这就允许“高电压”部分的总线线路通过它的上拉电阻Rp 拉到5V。

此时两部分的总线线路都是高电平,只是电压电平不同。

2 一个3.3V 器件下拉总线线路到低电平。

MOS-FET 管的源极也变成低电平,而门极是3.3V。

VGS上升高于阀值,MOS-FET 管开始导通。

然后“高电压”部分的总线线路通过导通的MOS-FET管被3.3V 器件下拉到低电平。

此时,两部分的总线线路都是低电平,而且电压电平相同。

3 一个5V 的器件下拉总线线路到低电平。

MOS-FET 管的漏极基底二极管“低电压”部分被下拉直到VGS 超过阀值,MOS-FET 管开始导通。

“低电压”部分的总线线路通过导通的MOS-FET 管被5V 的器件进一步下拉到低电平。

此时,两部分的总线线路都是低电平,而且电压电平相同。

这三种状态显示了逻辑电平在总线系统的两个方向上传输,与驱动的部分无关。

状态1 执行了电平转换功能。

状态2 和3 按照I2C 总线规范的要求在两部分的总线线路之间实现“线与”的功能。

除了3.3V VDD1 和5V VDD2 的电源电压外,还可以是例如:2.5V VDD1 和12V VDD2。

在正常操作中,VDD2必须等于或高于VDD1(在开关电源时允许VDD2 低于VDD1)。

MOS-N 场效应管双向电平转换电路-- 适用于低频信号电平转换的简单应用如上图所示,是MOS-N 场效应管双向电平转换电路。

双向传输原理:为了方便讲述,定义3.3V 为A 端,5.0V 为B 端。

A端输出低电平时(0V),MOS管导通,B端输出是低电平(0V)A端输出高电平时(3.3V),MOS管截至,B端输出是高电平(5V)A端输出高阻时(OC),MOS管截至,B端输出是高电平(5V)B端输出低电平时(0V),MOS管内的二极管导通,从而使MOS管导通,A端输出是低电平(0V)B端输出高电平时(5V),MOS管截至,A端输出是高电平(3.3V)B端输出高阻时(OC),MOS管截至,A端输出是高电平(3.3V)优点:1、适用于低频信号电平转换,价格低廉。

3.3V-5V电平转换电路

3.3V-5V电平转换电路
假设没有R91,当US_CH0电平状态不确定时,默认是要Trig输出高电平还是低电平呢?因此R91起到固定电平的作用。同时,如果无R91,则只要输入&gt;0.7V就导通三极管,门槛电压太低了,R91有提升门槛电压的作用(可参见第二小节关于蜂鸣器的分析)。
但是,加了R91又要注意了:R91如果太小,基极电压近似
3.3V-5V电平转换电路
如上图,左端接3.3VCMOS电平,可以是STM32、FPGA等的IO口,右端输出为5V电平,实现3.3V到5V电平的转换。
现在来分析下各个电阻的作用(抓住的核心思路是三极管的Vbe导通时为恒定值0.7V左右):
假设没有R87,则当US_CH0的高电平直接加在三极管的BE上,&gt;0.7V的电压要到哪里去呢?
当输入为低电平,三极管不导通,输出相当于对下一级电路的输入使用10K电阻进行上拉,实的特性将表现的不那么好,因此这里一直强调——该电路仅适用于10几mA到几十mA的负载的电平转换。
只有Vb&gt;0.7V时才能使US_CH0为高电平时导通,上图的Vb=1.36V
假设没有R83,当输入US_CH0为高电平(三极管导通时),D5V0(5V高电平)直接加在三极管的CE级,而三极管的CE,三极管很容易就损坏了。
再进一步分析其工作机理:
当输入为高电平,三极管导通,输出钳制在三极管的Vce,对电路测试结果仅0.1V

单片机5V转3.3V电平的19种方法技巧

单片机5V转3.3V电平的19种方法技巧

单片机5V转3.3V电平的19种方法技巧技巧一:使用LDO稳压器,从5V电源向3.3V系统供电标准三端线性稳压器的压差通常是2.0-3.0V。

要把5V 可靠地转换为3.3V,就不能使用它们。

压差为几百个毫伏的低压降(Low Dropout,LDO)稳压器,是此类应用的理想选择。

图1-1 是基本LDO 系统的框图,标注了相应的电流。

从图中可以看出,LDO 由四个主要部分组成:1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择LDO 时,重要的是要知道如何区分各种LDO。

器件的静态电流、封装大小和型号是重要的器件参数。

根据具体应用来确定各种参数,将会得到最优的设计。

LDO的静态电流IQ是器件空载工作时器件的接地电流IGND。

IGND 是LDO 用来进行稳压的电流。

当IOUT>>IQ 时,LDO 的效率可用输出电压除以输入电压来近似地得到。

然而,轻载时,必须将IQ 计入效率计算中。

具有较低IQ 的LDO 其轻载效率较高。

轻载效率的提高对于LDO 性能有负面影响。

静态电流较高的LDO 对于线路和负载的突然变化有更快的响应。

技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。

可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图2-1 所示。

在很多应用中,该电路可以替代LDO 稳压器并具成本效益。

但是,这种稳压器对负载敏感的程度要高于LDO 稳压器。

另外,它的能效较低,因为R1 和D1 始终有功耗。

R1 限制流入D1 和PICmicro® MCU的电流,从而使VDD 保持在允许范围内。

由于流经齐纳二极管的电流。

5v和3.3v芯片互转

5v和3.3v芯片互转

3.3v和5v双向电平转换芯片74LVC4245,8位电平转换74LVC4245A,8位双向NLSX4373,2位电平转换NLSX4014,4位电平转换NLSX4378,4位电平转换NLSX3018,8位电平转换max3002,8路双向TXB0104?(她好像有一个系列?0102?0104?0106?0108),ADG330874HCT245:三态输出的八路总线收发器SN74A VCH2T45SN74A VC16T245:具有可配置电压转换和 3 态输出的16 位双电源总线收发器SN74LVC2T45DCT:双位双电源总线收发器可配置电压转换和三态输出SN74LVC4245A:8位德州仪器宣布推出SN74LVC1T45、SN74LVC2T45、SN74A VC8T245及SN74A VC20T245四款新型双电源电平转换收发器。

该新品能够在 1.5V、1.8V、2.5V、3.3V 与5V 电压节点之间进行灵活的双向电平转换,而且可提供全面的可配置性。

如果采用A VC 技术,则每条轨可从1.4V 配置为3.6V;而采用LVC 技术时则可从 1.65V 配置为5.5V。

适用于便携式消费类电子产品、网络、数据通信以及计算应用领域。

日前,德州仪器(TI)宣布推出四款新型的双电源电平转换器--A VC1T45、A VC2T45、A VC16T245及A VC32T245,从而进一步扩展其电平转换产品系列。

这些转换器能够在互不兼容的I/O之间进行通信。

这四款器件均支持1.2V、1.5V、1.8V、2.5V与3.3V节点之间的双向电平转换。

在混合信号环境中,可以使用这些电压电平的任意组合,从而提高这些器件的灵活性。

1位A VC1T45与2位A VC2T45可根据需要在电路板上集成单或双转换器功能,而不是通过较高位宽的器件进行路由,这有助于简化电路板布线作业(board routing),可适用于便携式手持应用的转换要求。

5v转3.3电平转化电路

5v转3.3电平转化电路

5v转3.3电平转化电路
将5V转换为3.3V的电平转化电路通常可以使用电平转换器或者电压调节器来实现。

以下是两种常见的方法:
1. 使用电平转换器:
电平转换器是一种简单且有效的方法,通常使用双向电平转换器芯片,例如TXS0102或者SN74LVC8T245。

这些芯片可以将5V 的输入信号转换为3.3V的输出信号,并且也可以将3.3V的输入信号转换为5V的输出信号。

通过连接正确的引脚和提供适当的电源,可以轻松地实现电平转换。

2. 使用电压调节器:
另一种方法是使用线性稳压器或者DC-DC转换器来将5V转换为3.3V。

例如,可以使用LM317线性稳压器或者LM2596 DC-DC 转换器。

这些器件可以通过调节电阻或者电压来实现输出电压的调节,从而将5V稳定地转换为3.3V。

无论使用哪种方法,都需要注意以下几点:
确保选择的器件能够处理所需的电流和频率范围。

确保连接正确的引脚和提供适当的电源。

在电路设计中考虑到信号的延迟、噪声和功耗等因素。

在实际应用中,需要对转换后的信号进行测试和验证,以确保符合预期的要求。

总的来说,无论选择使用电平转换器还是电压调节器,都需要根据具体的应用需求和电路设计来选择合适的器件,并进行充分的测试和验证。

希望这些信息能够帮助你理解如何将5V转换为3.3V 的电平转化电路。

单片机5V转33V电平的19种方法

单片机5V转33V电平的19种方法

单片机5V转33V电平的19种方法单片机(MCU)通常工作在5V的电平上,然而有些应用场景需要将电平转换为3.3V,以配合其他设备的工作电压要求。

下面列举了19种将单片机5V电平转换为3.3V电平的方法。

1.使用电阻分压器:将5V电平经过两个电阻进行分压,使得输出电压变为3.3V。

2.使用二极管降压:通过选择合适的二极管型号和电流限制电阻进行电压降压,使得输出电压变为3.3V。

3.使用稳压二极管:选择合适的Zener二极管型号和电流限制电阻进行稳压,使得输出电压保持在3.3V。

4.使用线性稳压器:选择合适的线性稳压器并设置输出电压为 3.3V,将5V电压转换为3.3V。

5.使用开关稳压器:选择合适的开关稳压器并设置输出电压为 3.3V,将5V电压转换为3.3V。

6.使用DC-DC转换器:选择合适的DC-DC转换器,将5V电压转换为3.3V。

7.使用逻辑电平转换芯片:使用专门的逻辑电平转换芯片将5V转换为3.3V。

8.使用三极管进行电平转换:通过合适的三极管组合和电阻进行电平转换。

9.使用MOSFET进行电平转换:通过合适的MOSFET和电阻进行电平转换。

10.使用运算放大器进行电平转换:设计合适的运算放大电路,将5V电平转换为3.3V。

11.使用光电隔离器进行电平转换:通过光电隔离器将5V电平隔离并转换为3.3V。

12.使用反向器进行电平转换:将5V电平输入到反向器中,输出为3.3V。

13.使用模拟开关进行电平转换:通过模拟开关将5V电平转换为3.3V。

14.使用继电器进行电平转换:通过合适的继电器将5V电平转换为3.3V。

15.使用电荷泵进行电平转换:通过电荷泵电路将5V电平转换为3.3V。

16.使用振荡器进行电平转换:通过合适的振荡器将5V电平转换为3.3V。

17.使用数字电平转换器进行电平转换:选择合适的数字电平转换器将5V电平转换为3.3V。

18.使用可编程逻辑阵列(FPGA)进行电平转换:使用FPGA来实现5V到3.3V的电平转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5V到3V3的电平转换-串口通信
一、电平转换电路
下面来分析一下电路的设计思路:
/BLOG_ARTICLE_244240.HTM
首先声明一下:这个电路是从3V3的角度考虑的!
1、接收通道
我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。

我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。

这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。

同理,高电平分析是一样的。

逻辑转换完成了,那么就是电平的问题了。

这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK!
2、发送通道
分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。

3、结论
其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。

二、电平问题:
单片机手册————电气特性
常用逻辑电平:12V,5V,3.3V;
1.TTL电平:
输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

2.CMOS电平:
'1'逻辑电平电压接近于电源电压,'0'逻辑电平接近于0V。

而且具有很宽的噪声容限。

3.首先要知道以下几个概念的含义:
1:输入高电压(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。

2:输入低电压(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil 时,则认为输入电平为低电平。

3:输出高电压(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。

4:输出低电压(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。

5:阀值电平电压(Vt):数字电路芯片都存在一个阈值电压,就是电路刚刚勉强能翻转动作时的电平。

三、相关电路
/thread-1704720-1-1.html
中级会员——楼上的方法很哈,我之前用MOS管打过,原理差不多
一种简单实用的双向电平转换电路(非常实用!)3.3V--5V
当你使用3.3V的单片机的时候,电平转换就在所难免了,经常会遇到3.3转5V或者5V转3.3V的情况,这里介绍一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦,双向的,不是单向的!).电路十分简单,仅由3个电阻加一个MOS管构成,电路图如下:
(原文件名:3.3-5V转换.jpg)
上图中,S1,S2为两个信号端,VCC_S1和VCC_S2为这两个信号的高电平电压.另外限制条件为:
1,VCC_S1<=VCC_S2.
2,S1的低电平门限大于0.7V左右(视NMOS内的二极管压降而定).
3,Vgs<=VCC_S1.
4,Vds<=VCC_S2
对于3.3V和5V/12V等电路的相互转换,NMOS管选择AP2306即可.原理比较简单,大家自行分析吧!此电路我已在多处应用,效果很好.。

相关文档
最新文档