质量频谱(质谱)分析法
质谱分析法
离 子
C•+ D+
§7-3
质谱分析法应用
通过解析质谱图可以推断化合物的相对分子质量, 确定化学式和结构式。已知化合物的质谱解析较易, 而未知物的的解析比较困难。
根据质谱图上的分子离子峰的m/z可以准确地 确定该化合物的相对分子质量。除同位素峰外,分 子离子峰一定是质谱图上质量数最大的峰,位于质 谱图的最右端。但是若分子离子峰稳定性差、很弱 或不存在,无法识别分子离子峰。
(2)固定R,B,连续改变加速电压U,电场扫描法。
固定R,U,连续改变磁场强度B,磁场扫描法。
检测器和记录系统
检测器的作用原理:
有质量分析器出射的离子,具有一定的能量,轰击电 子倍增管发射出二次电子,电子在电场的作用下,多次撞 击倍增极,最后可以检测到10-17A的微弱电流,经放大器 放大后,用记录仪快速记录到光敏记录纸上,或用计算机 处理结果。
质量分析器
质量分析器的作用:
将离子源产生的离子按m/z的大小分离聚焦。
质量分析器的种类:
1.单聚焦质量分析器 2.双聚焦质量分析器
3.飞行时间质量分析器
4.四极质量分析器
质量分析器原理
正离子被电位差为800~8000V的负高压电场 加速,加速后离子的动能 :
1 m 2 zU 2
m:离子质量 :离子的速度 z:离子所带的电荷数 U:加速电压
检测器的种类:
电子倍增管、法拉第筒、照相板、闪烁计数器等
§7-2
质谱图和主要离子峰
一、质谱图与质谱表
以质荷比m/z为 横坐标,离子强 度为纵坐标来表 示质谱数据。以 质谱中最强峰的 高度为100%。最 强峰称为基峰。
质谱表是用表格形式表示质谱数据,准确给出m/z值和相对强度。
质谱分析法.ppt
X
e
(快)
X
e
(热)
X
e
(快)
X
e
(热)
优点:无需进行加热气化,属于软电离方式;特别适合分析高极性、大 相对分子量、难挥发和热稳定性差的样品;既能得到强的分子离子或准 分子离子峰,也能得到较多的碎片离子峰。 缺点:重现性较差,检测灵敏度低
稳定化合物电离 缺点:不适合化合物结构鉴定;
阳极
+ +
++
+ +
++ +
++ + +
d<1mm 阴极
快原子轰击离子源(fast atom bombardment ionization source;FAB) 由电场使Xe原子电离并加速,产生快速离子,通过快原子枪产生电
荷交换得快速原子,快原子束轰击涂在金属板上的样品,使样品离子化。
缺点:重现性较差;不适合于难挥发、热不稳定的化合物
场致电离源(FI)
是采用强电场把冷电极附近的样品分子的电子拉出去,形成离子。电 场的两电极距离很近(d<1mm),施加电压为几千伏甚至上万伏稳定直流 电压。
场电离:将气体通过电场电离; 场解析:将固体样品涂在发射体表面使之电离
优点:分子离子峰强; 碎片离子峰少; 适用于较大分子量和热不
应用:质谱法测定的对象包括同位素、无机物、有机化合物、生物大 分子以及聚合物。广泛应用于化学、生物化学、生物医学、医药学、 生命科学以及工、农、林业、地质、石油、环保、公安国防等领域。
二、质谱仪及其工作原理
进样系统
离子源
质量分析器
检测器
第九章 质谱分析法
第九章质谱法9.1 概述质谱分析法(mass spectrometry)是通过样品离子的质量和强度的测定,来进行成分和结构分析的一种分析方法。
1.质谱过程与光谱过程对比图9-1 质谱过程与光谱过程对比质谱与光谱的过程类似,但基本原理不同(图9-1)图9-1(3)显示了质谱的全过程:样品通过进样系统进入离子源,由于结构性质不同而电离为各种不同质荷比(m/z)的离子碎片,而后带有样品信息的离子碎片被加速进入质量分析器,在其磁场作用下,离子的运动半径与其质荷比的平方根成正比,因而使不同质荷比的离子在磁场中被分离,并按质荷比大小依次抵达检测器,经记录即得样品的质谱(mass spectrum MS)。
2.质谱分析法的特点和用途质谱是定性鉴定与研究分子结构的有效方法。
主要特点是:(1)灵敏度高,样品用量少:目前有机质谱仪的绝对灵敏度可达5 pg(pg为10-12 g),有微克量级的样品即可得到分析结果。
(2)分析速度快:扫描1~1000u①一般仅需1~几秒,最快可达1/1000秒,因此,可实现色谱-质谱在线联接。
(3)测定对象广:不仅可测气体、液体,凡是在室温下具有10-7Pa蒸气压的固体,如低熔点金属(如锌等)及高分子化合物(如多肽等)都可测定。
质谱法的用途:(1)求准确的分子量:由高分辨质谱获得分子离子峰的质量,可测出精确的分子量。
(2)鉴定化合物:如果事先可估计出样品的结构,用同一装置,同样操作条件测定标①u=原子质量单位,1u=1.6605655×10-27kg准样品及未知样品,比较它们的谱图可进行鉴定。
(3)推测未知物的结构:从离子碎片获得的信息可推测分子结构。
(4)测定分子中Cl 、Br 等的原子数:同位素含量比较多的元素(Cl 、Br 等),可通过同位素峰强度比及其分布特征推算出这些原子的数目。
9.2 质谱仪及其工作原理9.2.1 原理图9-2是质谱仪的示意图。
质谱仪由离子化、质量分离和离子检测等三部分组成。
质谱分析法
电子电离源
化学电离源 快原子轰击源 基质辅助激光解析电离源
电子电离源(EI)
由GC或直接进样
器进入的样品,以
气体形式进入离子
源,由灯丝发出的
电子与样品分子发
生碰撞使样品分子
电离。
一般用70V的电压加速电子,故电子能量为70ev。在该
能量下,试样离子化效率较高,离子流稳定,质谱图再
现性较好,因此,目前所有的标准质谱图都是在70ev下 做出的。 在70ev电子碰撞下,试样分子可能被打掉一个电子形成 分子离子:M+eM++2e-,其中,M+称为分子离子
不分支烃>醚>酯>胺>酸>醇>高分支烃。
2、同位素离子
有些元素具有两种或三种同位素,如H、C、N、S、O等
元素。其中,最轻同位素的天然丰度最大,其它同位素称 为重同位素。这些元素形成化合物后,各种同位素就以一 定的丰度出现在化合物中。通常把由重同位素形成的离子 称为同位素离子,相应的峰叫同位素峰。 质谱的灵敏度很高,能将含不同同位素的化合物分离 出。因此,在有机分子质谱中,除了分子离子峰M外,还
对于一根化学键断开的简单断裂,一般遵循如下规律:
1)键能小的共价键先断裂。键能大小顺序:
叁键>双键>单键;C-H > C-C > C-Br(Cl)
2)碳链分枝处易发生断裂。当分枝处有几种断裂的可能
时,一般优先失去最大的基团。 3)形成共轭效应更强体系的碎片,断裂几率更大。 烯烃易发生α断裂。 4)邻接杂原子的C-C键发生断裂,正电荷常在含杂原子的 一侧,从而显示含杂原子的碎片离子; 杂原子与碳原子之间的单键断开,正电荷一般在烷基一
有一些M+1、M+2等同位素离子峰。
质谱分析法Massspectrometry
图14.2直接探针进样系统
电离源(室) 将引入的样品转化成为碎片离子的装置。根据样品离子化方式和电离源能量高低,通常可将电离源分为: 气相源:先蒸发再激发,适于沸点低于500oC、对热稳定的样品的离子化,包括电子轰击源、化学电离源、场电离源、火花源。 解吸源:固态或液态样品不需要挥发而直接被转化为气相,适用于分子量高达105的非挥发性或热不稳定性样品的离子化。包括场解吸源、快原子轰击源、激光解吸源、离子喷雾源和热喷雾离子源等。
第二节 质谱峰和主要离子峰
图14.7 质谱图
一、质谱图
以荷质比m/z为横座标,以对基峰(最强离子峰,规定相对强度为100%)相对强度为纵座标所构成的谱图,称之为质谱图。
二、质谱峰主要离子峰
分子在离子源中可产生各种电离,即同一分子可产生多种离子峰:分子离子峰、同位素离子峰、碎片离子峰、重排离子峰、亚稳离子峰等。 设有机化合物由A,B,C和D组成,当蒸汽分子进入离子源,受到电子轰击可能发生下列过程而形成各种类型的离子:A,B,C,D+为分子离子峰,m/z即为分子的分子量。对于有机物,杂原子S,O,P,N等上的未共用电子对最易失去,其次是电子,再其次是电子。
一般质谱仪都采用机械泵预抽空后,再用高效率扩散泵连续地运行以保持真空。现代质谱仪采用分子泵可获得更高的真空度。 进样系统 对进样系统的要求:重复性、不引起真空度降低。 间接进样 适于气体、沸点低且易挥发的液体、中等蒸汽压固体。如图14.1所示。注入样品(10-100g)—贮样器(0.5L-3L)—抽真空(10-2 Pa)并加热—样品蒸汽分子(压力陡度)—漏隙—高真空离子源。
分子离子峰
01
分子受电子束轰击后失去一个电子而生成的离子
02
称为分子离子,在质谱图上由M所形成的峰称为分
质谱分析法
质谱分析法.上册
质谱法(Mass Spectrometry,MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。
测出离子准确质量即可确定离子的化合物组成。
这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。
分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。
第九章质谱分析法(共156张PPT)
[M-58]
[M-17]
3 快原子轰击(fast atom bombardment FAB)
原理:快原子(Ar或Xe)轰击样品产生离子 特点:
1. 适用于极性强,难汽化,分子量大的化合物分析
2. 得准分子离子,如(M+H)+ (M+Na)+ 碎片离子很少
3. FAB一般用作磁式质谱的离子源
结构:
四根棒状电极,形成四极场 1,3棒: (Vdc +Vrf) 2,4棒:- (Vdc+ Vrf ) 原理:在一定的Vdc Vrf 下 , 只有一定质量的离子可通过四极场, 到达检测器,其他质量的离子碰到四极杆被吸收,在另外的 Vdc Vrf 下可接收到另外质量的离子。在一定的Vdc/Vrf)下,连续改 变Vrf或Vdc可实现质量扫描. 特点:扫描速度快,灵敏度高.
检测器(detecter)
真空系统(Vacuum system)
9.2.1 有机质谱仪的构成
GC LC 直接进样探头
进样系统
四极质量分析器 Quadrupole 四极离子阱 IT 扇形场质谱量分析器 Sector 飞行时间质谱仪 TOF-MS 离子回旋共振质谱仪 ICR-MS
离子源
质量分析器
离子检测器
某化合物的组成式为C8H8O2,其质谱图如图,确定化合物结构式。
m* 亚稳离子
它们的存在从质谱图中很容易判别。
酯可以发生α-裂解丢失 或OR自由基产生m/z59+n×14和29+n×14的离子.
根据精密质量就可以将这些物质区别开来
1960年代:研究GC-MS联用技术
分子离子一般指由天然丰度最高的同位素组合的离子,相应的有相同元素的其他同位素组成的离子称为同位素离子,在质谱中称为同位素峰.
最新2019-第1章质谱分析法-PPT课件
m m 1 R 1 m m 2 m 1
可见在质量数小时,分辨率亦较小。 实际工作中很难找到上述两相等的峰,常以 R
峰高5%处的峰宽。 R与离子通道半径 r、加速器和收集器狭缝宽度、离子源的性质和质量等因 素有关。 返回
m 表示,其中W0.05表示 W 0 .05
例:要鉴别N2+(m/z为28.006) 和CO+(m/z为27.995) 两个峰,仪器的分辨率至少是多少?在某质谱 仪上测得一质谱峰中心位置为245u,峰高5%处 的峰宽为0.52u,可否满足上述要求? 解:要分辨N2+和CO+,要求质谱仪分辨率至少为: 质谱仪的分辨率:
返回
返回
3. 电离源(室) 将引入的样品转化成为碎片离子的装置。根据样品离子化方式和 电离源能量高低,通常可将电离源分为:
气相源:先蒸发再激发,适于沸点低于500oC、对热稳定的样品的
离子化,包括电子轰击源、化学电离源、场致电离源、火花源; 解吸源:固态或液态样品不需要挥发而直接被转化为气相,适用于
质谱法的特点 ●信息量大,应用范围广,是研究有机化学和 结构的有力工具。 ●由于分子离子峰可以提供样品分子的相对分 子量的信息,所以质谱法也是测定分子量的 常用方法。 ●分析速度快、灵敏度高、高分辨率的质谱仪 可以提供分子或离子的精密测定。 ●质谱仪器较为精密,价格较贵,工作环境要 求较高,给普及带来一定的限制。
④其缺点是溶解样品的溶剂也会被电 离而使图谱复杂化。
返回
e) 场解吸源(Field desorption,
FD)
类似于场电离源,它也有 一个表面长满“胡须” ( 长 0.01mm) 的 阳 极 发 射 器 (Emitter)。 过 程:样品溶液涂于发射器 表面 --- 蒸发除溶剂 —— 强电
第五章质谱分析法ppt课件
第一节、质谱法的基本原理 第二节、质谱仪(自学) 第三节、质谱及主要离子峰的类型 第四节、质谱法的应用
1
第一节、质谱法的基本原理
一、概述
• 质谱分析法是在高真空系统中测定样品的分子离子及碎片离 子质量,以确定样品相对分子质量及分子结构的方法。
• 化合物分子受到电子流冲击后,形成的带正电荷分子离子及
静电分析器将具有相同 速度(或能量)的离子 分成一类;进入磁分析 器后,再将具有相同质 荷比而能量不同的离子 进行分离。 分辨率高,但体积大。
28
3. 四极滤质器(四极杆质量分析器)
特点: • 结构简单、体积小,分析速度快,适合与色谱联用 • 分辨率较高(比磁分析器略低) • 准确度和精密度低于磁偏转分析器,对质量较高的
醛,乙基取代物 伯胺 醇,甲酯类 乙酰基,丙基取代物 烷烃 结构中有芳环
CH3COOH+· C6H5CH2+ C6H5CO+
羧酸,乙酸酯,甲酯 苄基 苯甲酰基
36
·OCH3, CH3NH2
37
对于一般有机物电子失去的程度:
n电子 > 电子 > 电子
O
失去一个n电子形成的分子离子:
-e R C R'
质谱仪按用途分: 同位素质谱仪(测定同位素)、无机质谱仪(测定无机化合物)、
有机质谱仪(测定有机化合物)等。 根据质量分析器的工作原理分:
静态仪器:采用稳定磁场,按空间位置区分不同质荷比的离子 单聚焦和双聚焦质谱仪
动态仪器:采用变化的电磁场,按时空来区分不同质荷比的离子 飞行时间和四极滤质器式质谱仪
在电子轰击下,甲烷首先被电离: CH4+ →CH4++CH3++CH2++CH++C++H+
最新质谱分析法精品文档
电喷雾电离源
(Electrospray Ionization,ESI)
它的主要部件是一个多层套管组成的电喷雾喷咀。电场作用下 使喷出的液体易分散成微滴。另外,在喷嘴的斜前方还有一个补 助气喷咀,补助气的作用是使微滴的溶剂快速蒸发。在微滴蒸发 过程中表面电荷密度逐渐增大,当增大到某个临界值时,离子就 可以从表面蒸发出来。
定义为:两个相等强度的相邻峰(质量分别 为m1和m2)间的峰谷不大于峰高的10%时,则可 认为两峰已分开,其分辨率R为:
其中m1、m2为质量数(m1<m2)
R
m1
m2 m1
m1 m
两峰质量数较小时,要求仪器分辨率越 大。可见在质量数小时,分辨率亦较小。
实际工作中,很难找到相邻的峰高相等、 峰谷又为峰高的10%的两个峰。可任选一单 峰,测其峰高50%处的峰宽FWHM当作Δm, 此时 R = m/ Δm
化学电离源(Chemical Ionization , CI )
化合物稳定性差, 用EI方式不易得到分子 离子,因而也就得不到 分子量。为了得到分子 量可以采用CI电离方式。
用高能电子 (100~240eV)轰击 离子室内的反应气(甲 烷;10~100Pa) ,电 离产生CH5+和C2H5+, 后者再与样品分子碰撞, 产生准分子离子。
2. 发展简史
• 1910年:Thomson使用MS报道了Ne是由20Ne和22Ne两种 同位素组成,同位素分析测定开始发展;
• 40年代:出现了第一台商品质谱仪,质谱进入了工农业生产 领域,用于石油工业中烃的分析、人造橡胶生产过程控制;
• 50年代:质谱技术飞速发展,并广泛用于复杂有机混合物的 结构分析,与NMR、IR等方法结合成为分子结构分析最有效 的手段。
质谱分析法课堂PPT
分能量(多小于6ev)
形成离子及部分碎
片.
4
——EI的优缺点
优点 1.高的灵敏度 2.有达10万个化合物的
数据库可快速检索 3.可根据碎片方式鉴定未
知物 4.从碎片离子判定结构
缺点 1.质量范围小 2.有可能汽化前发生
解离 3.碎片过多有时看不
到分子离子
5
B: FBI快速原子/离子轰击离子源 Fast Atom/Ion Bombardment
由基质传给样品使样品一起气化并离子化。
9
10
11
常用基质
1、α氰基-4羟基-肉桂酸
CCA
多肽
2、3,5-二甲氧基-4-羟基肉桂酸 SA
蛋白
3、龙胆酸(2,5-二羟基苯甲酸 DHB 聚合物
4、吡啶甲酸
PA
5、3-羟基吡啶甲酸
3HPA
ቤተ መጻሕፍቲ ባይዱ
MALDI源由氮激光器产生短周期脉冲激光,产生的多为单电荷 离子,效率很高,即使只有极少的样品也可分析
30
C、飞行时间质量分析器 Time-of-Flight Analyzer
离子的E=U·Z=½ mv²
飞行时间t=
L v
t=const· m z
31
反射飞行时间质量分析器(RETOF-MS)
Uref
TOF对真空度的要求非常高10⁻⁷Torr MALDI源一般同时联接Time-of-Flight Analyzer和RETOF
25
26
2、质量分析器的种类
A、四极杆质量分析器Quadrupole Analyzer A、B极性相反,加上一个直流电压DC,叠加一个射频电场
RF,扫描时固定RF频率, DC: RF保持比率不变,数值递增, 使m/z小到大的离子依次通过,取得一张完整的质谱图。
质谱分析法
第十四章 质谱分析法(Mass Spectrometry, MS )§14-1 质谱分析概述质谱分析法是通过测定被测样品离子的质荷比(m/z )大小的来进行分析的方法。
上世纪40年代初,质谱开始用于石油工业分析,60年代,质谱仪已用于有机和生物化学领域。
随着计算机的应用、质谱实验技术和色谱-质谱联用技术的成熟,质谱的应用领域大大扩展,已经成为研究复杂有机物结构强有力的工具。
与其它仪器分析方法相比,质谱分析法有两个显著的特点:(1) 它是惟一可以确定化合物分子质量的方法(2) 灵敏度极高(检出限可达10-14g )除以上显著的优势外,质谱分析还具有样品用量少,分析速度快,分离和鉴定同时进行等优点,目前,质谱已广泛应用于化学、环境、医学、生命科学和材料等领域,成为不可缺少的标准分析方法。
质谱仪基本原理是使带电的样品离子根据质荷比m/z 进行分离的装置。
一般具有以下几个部分:质谱仪种类非常多,质谱仪按用途可分为:同位素质谱仪,无机质谱仪、有机质谱仪等,虽然都由以上几个部分组成,但仪器工作原理和应用范围也有很大的区别。
从质量分析器的工作原理,质谱仪可分为动态仪器和静态仪器两大类。
在静态仪器中用稳定的电磁场,按空间位置将m/z 不同的离子分开,如单聚焦和双聚焦质谱仪。
在动态仪器中采用变化的电磁场,按时间不同来区分m/z 不同的离子,如飞行时间和四极滤质器式的质谱仪。
本章主要讨论有机质谱仪,有机质谱仪包括气相色谱-质谱联用仪(GC-MS )、液相色谱-质谱联用仪(LC-MS )和富立叶变换质谱仪(FT-MS )等。
§14-2 质谱仪器原理各种质谱仪主要部件通常包括真空系统、进样系统、离子源、质量分析器和离子检测和记录系统等。
以单聚焦质谱仪为例,离子进入分析器后,由于磁场的作用,其运动轨道发生偏转改作圆周运动。
进入的样品,以气体形式进入离子源,由热丝阴极向阳极发射电子流,轰击气态样品使样品分子电离。
质谱分析法PPT课件
离子的类型 1.分子离子峰:
在电子轰击下,有机物分子电离一个电子形成 的离子,叫分子离子 分子离子的质量就是化合物的相对分子量。
分子离子足够稳定,质谱中位于质荷比最高 位置的峰就是分子离子峰。
1
辨认分子离子峰的方法
1. 分子离子峰一定是质谱中质量数最大的峰,应处在质 谱图的最右端。
正相反。苯甲醇中M-1峰很强,是因为生成了稳定的羟基 离子 m/z107;苄醇也有M-2 ,M-3的峰,强度较弱,苯酚的M-1是弱峰。 酚的裂解如下:
H O┐ rH
┐
O H H
m/z 94
m/z 94
H
CHO
┐
或
H
┐
H
m/z 66
m/z 65
41
苯甲醇和酚的特征裂解都有经过H转移丢失CO产生M-28 的峰,还有丢失 CHO基团的M-29的峰。苯甲醇有M(CHO),即m/z79的峰是基峰。酚有M-28(m/z66)和 M-29(m/z65)的弱峰。
同部分碎片峰,可粗略推测化合物的大致结构。 • 以所有可能方式把各部分结构单元连接起来,再利
用质谱数据,将造成的结构中不合理的结构排除掉。
45
质谱图解析 —— 例1 (P266)
46
47
质谱图解析 —— 例2
48
49
GC和MS联用的优点
• GC:善于分离,不善于定性 • MS:善于定性,不善于分离 • GC-MS:分离,定性同时进行
10
离子开裂的几种类型
单纯开裂— 断一个键,脱离一个游离基 重排开裂— 有两个键断裂,一个氢原子发生转移,
脱去一个中性分子 复杂开裂— 几个键开裂,并有氢原子的转移 双重重排— 有两个氢的转移
质谱分析法Massspectrometry
m 2 Bz R
离子质荷比与运动轨道曲线半径R的关系:
m z = B R 2U
2 2
或
R= (
2U B
2
m ) 1/2 z
质谱分析法的基本公式叫质谱方程式。若加速电 压U和磁场强度B都一定时,不同m/z的离子,由于运动 的曲线半径不同,在质量分析器中彼此分开。
二质谱仪器
2. 化学电离源(Chemical Ionization, CI)
作用过程:样品分子在承受电子轰击前,被一种
反应气(通常是甲烷)稀释,稀释比例约为103:1,因
此样品分子与电子的碰撞几率极小,所生成的样品分
子离子主要由反应气分子组成。
进 入 电 离 源 的 分 子 R-CH3 大 部 分 与 C2H5+ 碰 撞 产 生
硬源:离子化能量高,伴有化学键的断裂,谱图复杂, 可得到分子官能团的信息。
软源:离子化能量低,产生的碎片少,谱图简单,可得 到分子量信息。因此,可据分子电离所需能量不同可选 择不同电离源。
1. 电子轰击源(Electron Bomb Ionization,EI)
作用过程:
采用高速(高能)电子束冲击样品,从而产生电子和 分子离子,继续受到电子轰击而引起化学键的断裂 直接探针进样:高沸点液体及固体 探针杆通常是一根规格为25cm 6mm i.d.,末端有 一装样品的黄金杯(坩埚),将探针杆通过真空闭锁系 统引入样品,如图所示。 优点:
1)引入样品量小,样品蒸汽压可以很低;
2)可以分析复杂有机物; 3)应用更广泛。 3 色谱进样:利用气相和液相色谱的分离能力,进行 多组份复杂混合物分析。
图14.2直接探针进样系统
(三) 电离源(室)
质谱分析法简介
质谱分析法简介质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。
一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。
一、进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。
1. 直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。
吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。
对于固体样品,常用进样杆直接导入。
将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。
这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。
目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。
主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。
质谱分析方法
4.质量分析器
质谱仪的质量分析器位于离子源和检测器 之间,依据不同方式将样品离子按质荷比m/ z分开。质量分析器的主要类型有:磁分析器、 飞行时间分析器、四极滤质器、离子捕获分 析器和离子回旋共振分析器等。随着微电子 技术的发展,也可以采用这些分析器的变型。 (l)磁分析器 最常用的分析器类型之一就是扇形磁分析 器。离子束经加速后飞入磁极间的弯曲区, 由于磁场作用,飞行轨道发生弯曲,见图 21.7。
解: 要分辨N+2和CO+,要求质谱仪分辨率 至少为:
Rneed 27.995 = = 2545 28.006 27.995
质谱仪的分辨率: Rsp=245/0.52=471 Rsp<Rneed, 故不能满足要求。
质谱仪的分辨本领由几个因素决定: (i)离子通道的半径;(ii)加速器与收集 器狭缝宽度;(iii)离子源的性质。 质谱仪的分辨本领几乎决定了仪器的 价格。分辨率在500左右的质谱仪可以满足 一般有机分析的要求,此类仪器的质量分析 器一般是四极滤质器、离子阱等,仪器价格 相对较低。若要进行准确的同位素质量及有 机分子质量的准确测定,则需要使用分辨率 大于10000的高分辨率质谱仪,这类质谱仪 一般采用双聚焦磁式质量分析器。目前这种 仪器分辨率可达100000,当然其价格也将会 是低分辨率仪器的4倍以上。
R = m/W0.05
如果该峰是高斯型的,上述两式计算结果是 一样的。
【例16.1】要鉴别N+2(m/z为28.006)和CO+ 16. 要鉴别N m/z为28.006)和CO (m/z为27.995)两个峰,仪器的分辨率至少是多少? m/z为27.995)两个峰,仪器的分辨率至少是多少? 在某质谱仪上测得一质谱峰中心位置为245u,峰高5 在某质谱仪上测得一质谱峰中心位置为245u,峰高5 %处的峰宽为0.52u,可否满足上述要求? %处的峰宽为0.52u,可否满足上述要求?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H H CH3 C C H2 C H2
C C H2
C H2
M/Z = 86
M/Z = 100 +
OH C C H3
M/Z = 58
+
OH C
CH2
C H2
M/Z = 58
C H3
麦氏重排的规律
H Y W Z X C
45
70 73
88
酚类: (1)失去 C = O M/Z 28
(2)失去 H2O
(3)具有苯的特征
M/Z
18
(2)醛、酮、醚 辛酮—4 85 O
CH3CH2CH3—C—CH2CH2CH2CH3 43 57 71
M/Z 128 85 71 57
M/Z
128
43
再例如
对羟基苯甲醛
CHO+ -H
C
质谱法分类:
有机质谱
按用途分 无机质谱 同位素质谱 按原理分
单聚焦质谱
双聚焦质谱
四极质谱
飞行时间质谱
回旋共振质谱
气质联用 按联用 方式分 液质联用
质质联用
第二节
质谱分析的原理与仪器
一、质谱分析的过程与原理
1、进样 化合物通过汽化引入离子化室; 2、离子化
在离子化室,组分分子被一束加速电子碰 撞(能量约70eV),撞击使分子电离形 成正离子; M —— M+ + e
(4)胺类
CH3(CH2)8—CH2—NH2+
CH3(CH2)8.
CH2 = NH2+ M / Z = 30
醇、醚、酮等化合物均无此分裂。
三、分裂和重排 (1)麦氏重排(Mclafferty) 在辛酮-4的质谱中,除43、57、71、85和128的 质谱峰外,还有一个很高的峰,质量58,以及另两个 峰,质量86和100。这是由于发生了重排:
3 3
(3)异构烷烃(支链烷烃)分支处易断裂: 例如5-甲基十五烷 C10H21—CH—C4H9 CH3
169
85
2、烯烃 (1)具有烷烃的特征
(2)易发生烯丙断裂,生成很强的烯丙离子
+ CH2 = CH — CH2 CH2 = CH — R R— CH2 — CH2 — CH2 — CH = CH2
需要用高分辨质谱.
(4) 灵敏度
指信噪比大于10时的样品量。
第三节 常见化合物的质谱
一、烃类质谱 1、烷烃
29
43
57 71
正构烷烃的裂解规律:
(1)质谱特征是具有质量相差14(CH2)单位的 CnH2n+1系列; (2)碎片离子C3以上强度递减,因为碎片可继续分 + 裂,但 C3可重排为CH CHCH 而稳定;
3 主要用于液相色谱质谱联用仪
3、质量分析器(mass analyzer)
1 单聚焦分析器(single focusing mass analyzer) 2 双聚焦分析器(double focusing mass analyzer) 3 四极杆分析器 (quadrupole analyzer) 4 离子阱分析器 (Ion trap)
电子发射
抽真空
特点
• 仪器结构简单,不需要磁场、电场等; • 扫描速度快,可在10-5 s内观察到整段图 谱; • 无聚焦狭缝,灵敏度很高; • 可用于大分子的分析(几十万原子量单 位),在生命科学中用途很广;
4、 真空系统 离子源的真空度应达到10-3-10-5 Pa, 质量分析器应达到10-6 Pa。
1、样品引入系统
气体——直接导入或用气相色谱进样
液体——加热汽化或雾化进样
固体——用直接进样探头
进样系统
Sweep Gas In
Heater
Water Vapor
HEN Nebulizer
Heated Gas
Dry Aerosol
Water Vapor
Nebulizer Gas
Sample Flow In
(4)电喷雾源(electronspray ionization
结构:喷嘴,雾化气,干燥气 原理:喷雾 蒸发 电压
喷雾针尖电压 电场方向
ESI)
小孔板电压
喷雾针
带电液滴
溶剂挥发
样品离子
小孔板
图2-1 样品在ESI接口中的离子化过程
特点: 1 适用于强极性,大分子量的样品分析 如肽,蛋白质,糖等
2 产生的离子带有多电荷
(3)分辨率R 质谱对相邻两质量组分分开的能力
M R M
例如:CO+ 27.9949
N2+
28.0061
M 27.9949 R 2500 M 28.0061 27.9949
四极质谱恰好能将此分开.
但是:
ArCl+ 74.9312 As+ 74.9216
M 74.9216 R 7800 M 74.9312 74.9216
Makeup Gas
Sweep Gas Out
Laser Ablation of Plastics Applying Different Wavelenghts
308 nm 1064 nm 248 nm
对于蒸汽压低的样品进行衍生化后进样
例如:葡萄糖变成三甲基硅醚的衍生物
CH2OH O OH CH2OSiMe3
Me3SiCl
HO
HO
OH Me3SiO Me3SiO
O
OSiMe3
OSiMe3
2、 离子源(ion source)
主要作用是使分析物的分子离子化 电子电离源(electron ionization EI)
化学电离源(chemical ionization CI) 快原子轰击(fast atom bombardment 电喷雾源(electronspray ionization FAB) ESI)
O C3H7 C C4H9
H H H C CH2 C H2 O C
H H CH3 C C H2 C H2
+
H H H C CH2 C H2 OH
+
+
OH C
H H CH3 C C H2 C H2
C C H2
C H2
M/Z = 86
M/Z = 100
H H H C CH2 C H2 OH
+
+
OH C
可在平行电子 束的方向附加一弱磁 场,使电子沿螺旋轨 道前进,增加碰撞机 会,提高灵敏度。
特点:
碎片离子多,结构信息丰富, 有标准化合物质谱库; 不能汽化的样品不能分析; 有些样品得不到分子离子;
(2)化学电离源(chemical ionization CI) 结构与EI同,但是在离子化室充CH4, 电子首先将CH4离解,其电离过程如下: CH4 + e CH4+ + CH4 CH4 + + 2e CH5 + + CH3
5 飞行时间分析器(time of flight)
6 富立叶变换离子回旋共振 (Fourier tranform ion cyclotron resonance)
(1)单聚焦分析器(single focusing mass analyzer)
1)结构: 扇形磁场 (可以是 1800 900 600等)
原理:
由(3)式可知:
m H r Z 2V
2 2
(3)
离子的m/Z大,偏转半径也大,通过磁场 可以把不同离子分开;
当 r 为仪器设置不变时,改变加速电压或 磁场强度,则不同m/z的离子依次通过狭缝到达 检测器,形成质谱。
(2)双聚焦分析器 (Double focusing mass analyzer)
大气压化学电离(atmospheric pressure
chemical ionization APCI)
基质辅助激光解吸电离(matrix assisted laser Desorption ionization MALDI)
(1) 电子电离源(electron iቤተ መጻሕፍቲ ባይዱnization
EI)
由阴极发射电 子束,通过离子化室 到达阳极,电子能量 70eV,有机化合物的 电离电位8-15eV。
2 2
(3)
当 r 为仪器设置不变时,改变加速电压或磁 场强度,则不同m/z的离子依次通过狭缝到 达检测器,形成质量谱,简称质谱。
二、质谱仪的组成
进样系统(inlet system)
离子源(ion source)
质量分析器(mass analyzer) 检测器(detecter) 真空系统(Vacuum system)
质量频谱分析法
Mass Spectrometry,MS
第一节
概述
分子
质谱法是一种按照离子的质核比(m/z)大 小对离子进行分离和测定的方法。
质谱法的主要作用是:
(1)准确测定物质的分子量 (2)根据碎片特征进行化合物的结构分析 分析时,首先将分子离子化,然后利 用离子在电场或磁场中运动的性质,把离子 按质核比大小排列成谱,此即为质谱。
CH3—CH2—OH(M /Z 46) CH3—CH2—OH(M /Z 46) CH3—CH = OH CH2 = OH M / Z 45 M / Z 31
C3H7 — CH — CH3 OH
M/Z = 88
C3H7CH OH M/Z = 73
M-CH3 M-H2O M-1 M
CH—CH3 OH M/Z = 45
+
-
+
小孔电压
聚焦环电压
一级四极杆电压
碰撞四极杆电压