原子吸收光谱法的基本原理
原子吸收光谱法原理

原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。
该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。
以下是原子吸收光谱法的原理。
1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。
电子在这些轨道上具有不同的能量,称为电子能级。
当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。
2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。
当电子从高能级返回到低能级时,必须释放出能量。
这个能量的差别可以以光子形式释放出来,其波长与能级差相关。
3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。
这些光源会发出特定波长的光,射入样品中。
4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。
当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。
5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。
一般使用光电器件来测量吸收光的强度。
可以采用单光束或双光束系统进行测量。
6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。
通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。
利用这个曲线,可以根据样品的吸光度值来确定其浓度。
总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。
该技术广泛应用于元素分析和环境监测等领域。
原子吸收光谱,红外光谱之间异同点

原子吸收光谱和红外光谱是化学分析领域中常见的分析方法,它们在原子和分子结构的解析和鉴定中具有重要作用。
虽然二者都是用于分析样品成分和结构的光谱技术,但它们在原理和应用上有着明显的异同点。
一、原子吸收光谱1.原子吸收光谱的基本原理原子吸收光谱是利用原子对特定波长的光进行吸收而产生的,通过分析光的衰减程度来测定样品中不同元素的含量。
当原子吸收特定波长的光后,电子从基态跃迁至激发态,从而产生吸收峰。
这一原理被广泛应用于分析金属元素和其他原子的定量测定。
2.原子吸收光谱与光谱仪的关系原子吸收光谱仪是用于测定原子吸收光谱的分析仪器,它包括光源、样品室、光路等部分。
通过光源发出特定波长的光线,样品中的原子吸收部分光线,剩余的光线经光路到达检测器,从而实现对样品中不同元素含量的测定。
3.原子吸收光谱的应用原子吸收光谱在环境监测、食品安全和医药等领域都有着广泛的应用。
利用原子吸收光谱可以对水体中的重金属离子进行快速测定,保障水质安全;在医药领域,原子吸收光谱可以用于药品成分的分析和检测。
二、红外光谱1.红外光谱的基本原理红外光谱是利用物质吸收、透射和反射红外光的特性来分析物质结构的一种技术。
物质中的分子在吸收红外光后会发生振动和转动,产生特征的红外光谱图谱。
通过分析这些谱图可以确定物质的结构和成分。
2.红外光谱仪的组成及原理红外光谱仪包括光源、样品室、光路和检测器等组成部分。
当红外光穿过样品时,被吸收的波长和强度会发生改变,检测器可以通过测量这些改变来分析样品的成分和结构。
3.红外光谱的应用红外光谱在化学、材料和生物领域都有着广泛的应用。
红外光谱可以用于药品成分的鉴定和质量控制;在材料领域,红外光谱可以帮助分析材料的组成和结构。
对比原子吸收光谱和红外光谱,可以发现它们在分析原子和分子结构上有着明显的异同点。
原子吸收光谱主要用于分析元素的含量和测定,对于金属元素和其他原子有着较广泛的应用;而红外光谱主要用于分析化合物的结构和成分,可以辅助分析有机化合物和聚合物的结构。
原子吸收光谱法的基本原理

第一节 基本原理
∫K d = e2N0ƒ/mc
2,峰值吸收
第一节 基本原理
1
2
3
4
5
在一般原子吸收测量条件下,原子吸收轮廓取决于 Doppler (热变宽)宽度,通过运算可得峰值吸收系数: K0 = 2/△D(ln2/)1/2 e2N0ƒ/mc 可以看出,峰值吸收系数与原子浓度成正比,只要能测出K0 就可得出N0。 3,锐线光源 锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数
Ni / N0 = gi / g0 exp(- Ei / kT) Ni与N0 分别为激发态与基态的原子数; gi / g0为激发态与基态的统计权重,它表示能级的简并度;T为热力学温度; k为Boltzman常数; Ei为激发能。 从上式可知,温度越高, Ni / N0值越大,即激发态原子数随温度升高而增加,而且按指数关系变化;在相同的温度条件下,激发能越小,吸收线波长越长,Ni /N0值越大。尽管如此变化,但是在原子吸收光谱中,原子化温度一般小于3000K,大多数元素的最强共振线都低于 600 nm, Ni / N0值绝大部分在10-3以下,激发态和基态原
第一节 基本原理
第一节 基本原理
01
03
05
02
04
第一节 基本原理
由图可知,在频率 0处透过光强度最小,即吸收最大。若将吸收系数对频率作图,所得曲线为吸收线轮廓。原子吸收线轮廓以原子吸收谱线的中心频率(或中心波长)和半宽度 表征。中心频率由原子能级决定。半宽度是中心频率位置,吸收系数极大值一半处,谱线轮廓上两点之间频率或波长的距离。 谱线具有一定的宽度,主要有两方面的因素:一类是由原子性质所决定的,例如,自然宽度;另一类是外界影响所引起的,例如,热变宽、碰撞变宽等。 1,自然宽度
原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。
原子吸收光谱仪的原理、构成、操作及应用领域详解

原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。
1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。
原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。
电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。
电子的运动状态由波函数0描述。
求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。
原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。
一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。
2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。
基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。
已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。
检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。
原子吸收光谱法原理简述

原子吸收光谱法原理简述
原子吸收光谱法是一种用于分析物质中金属元素含量的方法。
它的原理简述如下:
当金属原子处于基态时,它们会吸收特定波长的光。
原子吸收光谱法利用这一特性来测量样品中金属元素的含量。
首先,样品被转化成气态原子或原子的气态化合物,然后通过光源发出的特定波长的光照射样品。
如果样品中含有被检测的金属元素,这些原子会吸收光,使得光源透过样品时的光强度减弱。
测量光源透过样品前后的光强度差异,就可以确定金属元素的含量。
原子吸收光谱法的原理基于不同金属元素吸收光的特性。
每种金属元素都有特定的吸收光谱线,这些谱线对应着特定波长的光。
因此,通过测量样品对不同波长光的吸收情况,可以确定样品中不同金属元素的含量。
此外,原子吸收光谱法还遵循比尔-朗伯定律,即吸收光强度与浓度成正比。
因此,可以通过测量吸收光强度的变化来确定金属元素的浓度。
总的来说,原子吸收光谱法利用金属原子对特定波长光的吸收特性,通过测量样品对光的吸收来确定其中金属元素的含量。
这一方法在分析化学和环境监测等领域有着广泛的应用。
原子吸收光谱工作原理

原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。
当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。
原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。
每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。
因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。
原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。
这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。
如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。
这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。
2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。
横向加热石墨炉解决了温度分布不均匀的问题。
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。
3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。
因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。
原子吸收光谱法基本原理

原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。
测定对象:金属元素及少数非金属元素。
二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。
分光法:分子或离子的吸收为带状吸收。
原子法:基态原子为线状吸收。
三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。
(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。
原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。
νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。
发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。
原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。
中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。
吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K0 = 2/△D(ln2/)1/2 e2N0ƒ/mc
可以看出,峰值吸收系数与原子浓度成正比,只要能测出K0 就可得出N0。 3,锐线光源 锐线光源是发射线半宽度远小于吸收线半宽度的光源, 如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小, 并且发射线与吸收线的中心频率一致。这时发射线的轮廓可 看作一个很窄的矩形,即峰值吸收系数
第一节 基本原理
3,压力变宽 由于辐射原子与其它粒子(分子、原子、离子和电子等) 间的相互作用而产生的谱线变宽,统称为压力变宽。压力变 宽通常随压力增大而增大。 在压力变宽中,凡是同种粒子碰撞引起的变宽叫 Holtzmark(赫尔兹马克)变宽;凡是由异种粒子引起的变 宽叫Lorentz(罗伦兹)变宽。 此外,在外电场或磁场作用下,能引起能级的分裂,从 而导致谱线变宽,这种变宽称为场致变宽。 4,自吸变宽
第一节 基本原理
子数之比小于千分之一,激发态原子数可以忽略。因此。基 态原子数N0可以近似等于总原子数N。
一、原子吸收光谱轮廓
原子吸收光谱线有相当窄的频率或波长范围,即有一定 宽度。 一束不同频率强度为I0的平行光通过厚度为l的原子蒸气, 一部分光被吸收,透过光的强度I服从吸收定律
I = I0 exp(-kl)
第一节 基本原理
分吸收系数的方法。如果采用发射线半宽度比吸收线半宽度 小得多的锐线光源,并且发射线的中心与吸收线中心一致, 如下图。
发射线 K0 吸收 线
0 这样就不需要用高分辨率的单色器,而只要将其与其它谱线 分离,就能测出峰值吸收系数。
第一节 基本原理
在一般原子吸收测量条件下,原子吸收轮廓取决于 Doppler (热变宽)宽度,通过运算可得峰值吸收系数:
第一节 基本原理
K 在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。 这样,一定的K0即可测出一定的原子浓度。 4,实际测量 在实际工作中,对于原子吸收值的测量,是以一定光强 的单色光I0通过原子蒸气,然后测出被吸收后的光强I,此一 吸收过程符合朗伯-比耳定律,即
I = I0e-K N L
式中K为吸收系数,N为自由原子总数(基态原子数),L为 吸收层厚度。
第一节 基本原理
Ni / N0 = gi / g0 exp(- Ei / kT)
Ni与N0 分别为激发态与基态的原子数; gi / g0为激发 态与基态的统计权重,它表示能级的简并度;T为热力学温 度; k为Boltzman常数; Ei为激发能。 从上式可知,温度越高, Ni / N0值越大,即激发态原子 数随温度升高而增加,而且按指数关系变化;在相同的温度 条件下,激发能越小,吸收线波长越长,Ni /N0值越大。尽 管如此变化,但是在原子吸收光谱中,原子化温度一般小于 3000K,大多数元素的最强共振线都低于 600 nm, Ni / N0 值绝大部分在10-3以下,激发态和基态原
式中k是基态原子对频率为的光的吸收系数。不同元
第一节 基本原理
素原子吸收不同频率的光,透过光强度对吸收光频率作图, 如下图:
I
I0
0 I 与 的关系
第一节 基本原理
由图可知,在频率 0处透过光强度最小,即吸收最大。 若将吸收系数对频率作图,所得曲线为吸收线轮廓。原子吸 收线轮廓以原子吸收谱线的中心频率(或中心波长)和半宽 度 表征。中心频率由原子能级决定。半宽度是中心频率位置, 吸收系数极大值一半处,谱线轮廓上两点之间频率或波长的 距离。 谱线具有一定的宽度,主要有两方面的因素:一类是由 原子性质所决定的,例如,自然宽度;另一类是外界影响所 引起的,例如,热变宽、碰撞变宽等。 1,自然宽度
第一节 基本原理
由自吸现象而引起的谱线变宽称为自吸变宽。空心阴极 灯发射的共振线被灯内同种基态原子所吸收产生自吸现象, 从而使谱线变宽。灯电流越大,自吸变宽越严重。
二、原子吸收光谱的测量
1,积分吸收 在吸收线轮廓内,吸收系数的积分称为积分吸收系数, 简称为积分吸收,它表示吸收的全部能量。从理论上可以得 出,积分吸收与原子蒸气中吸收辐射的原子数成正比。数学 表达式为:
原子吸收光谱法 第一节 基本原理
原子吸收光谱法是基于被测元素基态原子在蒸气状态对 其原子共振辐射的吸收 进行元素定量分析的方法。 基态原子吸收其共振辐射,外层电子由基态跃迁至激发 态而产生原子吸收光谱。原子吸收光谱位于光谱的紫外区和 可见区。 在通常的原子吸收测定条件下,原子蒸气中基态原子数 近似等于总原子数。在原子蒸气中(包括被测元素原子), 可能会有基态与激发态存在。根据热力学的原理,在一定温 度下达到热平衡时,基态与激发态的原子数的比例遵循 Boltzman分布定律。
第一节 基本原理
∫K d = e2N0ƒ/mc 式中e为电子电荷;m为电子质量;c为光速;N0为单位体积 内基态原子数;f 振子强度,即能被入射辐射激发的每个原 子的平均电子数,它正比于原子对特定波长辐射的吸收几率。 这是原子吸收光谱分析法的重要理论依据。 若能测定积分吸收,则可求出原子浓度。但是,测定谱 线宽度仅为10-3nm的积分吸收,需要分辨率非常高的色散仪 器。 2,峰值吸收 目前,一般采用外界影响,谱线仍有一定的宽度称为自然宽度。它 与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越 窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数 量级。 2,多普勒变宽 由于辐射原子处于无规则的热运动状态,因此,辐射原 子可以看作运动的波源。这一不规则的热运动与观测器两者 间形成相对位移运动,从而发生多普勒效应,使谱线变宽。 这种谱线的所谓多普勒变宽,是由于热运动产生的,所以又 称为热变宽,一般可达10-3nm,是谱线变宽的主要因素。