数学:1.2轴对称的性质同步练习(苏科版八年级上)
苏科版八年级数学上册《2.4线段、角的轴对称性》同步练习含答案解析
2.4 线段、角的轴对称性一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.116.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.37.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.119.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm11.如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )A .70°B .80°C .40°D .30°12.如图,在△ABC 中,AC=4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( )A .1cmB .2cmC .3cmD .4cm13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.814.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB=______.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为______.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=______°.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=______.20.已知点P在线段AB的垂直平分线上,PA=6,则PB=______.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为______cm.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为______.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.2.4 线段、角的轴对称性参考答案与试题解析一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【考点】线段垂直平分线的性质.【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.6.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.3【考点】线段垂直平分线的性质;勾股定理.【分析】设BD=x,先根据线段垂直平分线的性质可得BD=AD=x,则CD=4﹣x,然后在△BCD中根据勾股定理列出关于x的方程,解方程即可求得BD的长.【解答】解:设BD=x,∵AB垂直平分线交AC于D,∴BD=AD=x,∵AC=4,∴CD=AC﹣AD=4﹣x,在△BCD中,根据勾股定理得x2=22+(4﹣x)2,解得x=.故选C.【点评】本题考查了线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等,同时考查了勾股定理.7.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】线段垂直平分线的性质.【专题】应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.11【考点】线段垂直平分线的性质.【专题】计算题.【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选D.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.9.如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C 的度数即可判断A ;求出∠ABC 和∠ABD 的度数,求出∠DBC 的度数,即可判断B ;根据三角形面积即可判断C ;求出△DBC ∽△CAB ,得出BC 2=BC •AC ,求出AD=BC ,即可判断D .【解答】解:A 、∵∠A =36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确,B 、∵DO 是AB 垂直平分线,∴AD=BD ,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD ,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=CD•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.10.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【考点】线段垂直平分线的性质;等边三角形的判定与性质.【专题】压轴题.【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.【解答】解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选C.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.11.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm【考点】线段垂直平分线的性质.【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.8【考点】线段垂直平分线的性质;含30度角的直角三角形;勾股定理.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.【点评】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.14.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB= 7 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据等腰三角形的性质可得∠A的度数,再根据线段垂直平分线的性质可得AE=BE,进而可得∠ABE=∠A=36°,然后可计算出∠EBC的度数.【解答】解:∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°,∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故答案为:36°.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= 87 °.【考点】线段垂直平分线的性质.【分析】根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.【解答】解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.【点评】此题本题考查的知识点为线段垂直平分线的性质,关键是根据角平分线的性质,三角形内角和定理等知识点进行分析.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.【点评】本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为 6 cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为m+n .【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC=∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.【解答】解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故答案为:m+n.【点评】本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为8 .【考点】线段垂直平分线的性质;平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质,得知AO=OC,由于OE⊥AC,根据线段垂直平分线的性质,可知AE=EC,则△CDE的周长为CD与AD之和,即可得解.【解答】解:根据平行四边形的性质,∴AO=OC,∵OE⊥AC,∴OE为AC的垂直平分线,∴AE=EC,∴△CDE的周长为:CD+AD=5+3=8,故答案为:8.【点评】本题考查了平行四边形的性质以及线段垂直平分线的性质,熟记各性质与定理是解题的关键.。
苏科版八年级上册第二章轴对称图形 线段和最值问题(有答案)
八上第二章线段和最值问题班级姓名得分一、选择题1.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A. 6B. 8C. 10D. 122.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为A. 12B. 16C. 24D. 323.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 7B. 72C. 9 D. 1124.如图,∠MON=90°,OB=2,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两角平分线所在的直线交于点F,求点A在运动过程中线段BF 的最小值为()A. 2B. 4C. √2D. √3二、填空题5.如图,等腰△ABC的底边BC长为4,面积是14,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为____.6.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.7.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.8.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长的最小值为_________cm.9.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.10.如图,四边形ABCD为菱形,∠C=120°,AB=4,H为边BC上的动点,连接AH,作AH的垂直平分线GF交CD于F点,则线段GF的最小值为.11.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.12.如图,在锐角△ABC中,AB=4√3,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为13.如图,在锐角△ABC中,AB=3√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.14.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC=√6,若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC的最小值是__________.三、解答题16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为______.17.如图,BD是ΔABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30∘,∠C=45∘,ED=2√10,点H是BD上的一个动点,求HG+HC的最小值.18.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是______度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.19.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM 的长;(2)若CD=13,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求2AP+PQ+QB的最小值.答案和解析1.【答案】C【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ×AD =12×4×AD =16,解得AD =8, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =8+12×4=8+2=10. 故选C .2.【答案】A【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,从而得到AD 长,由等腰三角形三线合一的性质可得AD 为BC 边上的高,最后由三角形面积公式求得答案.【解答】解:连接AD ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,△CDM 的周长为CM +DM +CD ,∴AD 的长为CM +MD 的最小值,∵CD =2,∴AD =6,∵AB =AC ,D 为BC 中点,∴AD ⊥BC ,∴△ABC 的面积为4×6÷2=12. 故选A .3.【答案】C【解析】【分析】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=7+2=9. 故选C .4.【答案】C【解析】【分析】作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,由角平分线的性质得出FD =FC ,证出点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,BF 最小,△OBF 为等腰直角三角形,即可得出BF =√22OB =√2. 【解答】解:作FC ⊥OB 于C ,FD ⊥OA 于D ,FE ⊥AB 于E ,如图所示:∵∠MAB 与∠ABN 的角平分线AF 与BF 交于点F ,∴FD =FE ,FE =FC ,∴FD =FC ,∴点F 在∠MON 的平分线上,∠BOF =45°,在点A 在运动过程中,当OF ⊥AB 时,F 为垂足,BF 最小,此时,△OBF 为等腰直角三角形,BF =√22OB =√2; 故选C .5.【答案】9【解析】【分析】本题考查垂直平分线的性质,轴对称的性质和等腰三角形的性质,得出AD 的长为CM +MD 的最小值是解题的关键,先做C 点关于EF 的对称点A ,连接AD 交EF 于M ,此时CM +MD 的值最小,求出周长即可.【解答】解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =14,解得AD =7, ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=(CM +MD )+CD =AD +12BC =7+12×4=8+2=9. 故答案为9.6.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.7.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S ∆ABC =12BC ·AD =12×4×AD =12,解得AD =6,∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.8.【答案】8【解析】【分析】本题考查的是轴对称 -最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【解答】解:如图,连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6cm , ∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM +MD 的最小值,∴△BDM 的周长最短=(BM +MD )+BD =AD +12BC =6+12×4=6+2=8cm . 故答案为8.9.【答案】8【解析】【分析】连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.故答案为8.10.【答案】3【解析】【分析】这是一道考查菱形的性质以及线段垂直平分线的性质的题目,解题关键在于知道当AH ⊥BC 时,GF 最短,即可求出答案.【解答】解:连接AF 、HF ,则当AH 最短时,GF 最小,此时AH ⊥BC ,AH ⊥AB ,∵GF 为AH 的垂直平分线,∴G 为AH 中点,F 为CD 中点,∴GF =12(AD +HC )=3.故答案为3.11.【答案】8【解析】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM 的周长的最小值为DB +AD =2+6=8.连接AD 交EF 与点M ′,连结AM ,由线段垂直平分线的性质可知AM =MB ,则BM +DM =AM +DM ,故此当A 、M 、D 在一条直线上时,MB +DM 有最小值,然后依据要三角形三线合一的性质可证明AD 为△ABC 底边上的高线,依据三角形的面积为12可求得AD 的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12.【答案】6【解析】【分析】本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM +MN 进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【解答】解:如图,在AC 上截取AE =AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM =∠NAM ,在△AME 与△AMN 中,{AE =AN∠EAM =∠NAM AM =AM,∴△AME ≌△AMN (SAS ),∴ME =MN .∴BM +MN =BM +ME ≥BE .∵BM +MN 有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4√3,∠BAC=60°,此时,在Rt△ABE中,得出BE=6,即BE取最小值为6,∴BM+MN的最小值是6.故答案为6.13.【答案】3【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAM AM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=3√2,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=3,即BE取最小值为3,∴BM+MN的最小值是3.故答案为3.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.14.【答案】3√22【解析】【分析】本题考查了垂线段最短的性质,角的平分线的性质,勾股定理以及直角三角形的性质.解题关键是根据角平分线的性质和垂线段最短得出CE的长是PN+PC的最小值.作CE⊥AB 于点E,则CE的长就是PN+PC的最小值,在Rt△ACE中利用勾股定理求解即可.【解答】解:作CE⊥AB于点E,交AD于P点,∵AD是∠BAC的平分线,PN⊥AC,CE⊥AB,∴PN =PE ,∴PN +PC =PE +PC =CE ,∴根据“垂线段最短”可知CE 的长就是PN +PC 的最小值.在Rt △ACE 中,∠BAC =60°,AC =√6, ∴AE =12AC =√62, 由勾股定理得:CE =3√22. 故答案是3√22.15.【答案】8【解析】【分析】本题主要考查三角形周长的知识,关键是知道线段垂直平分线的性质,知道等腰三角形的性质.【解答】解:连接AD 交EF 与点M ′,连结AM .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC •AD =12×4×AD =12,解得AD =6, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM +MD =MD +AM .∴当点M 位于点M ′处时,MB +MD 有最小值,最小值6.∴△BDM的周长的最小值为DB+AD=2+6=8.故答案为8.16.【答案】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,{∠EDF=∠GBF ∠EFD=∠GFB DF=BF,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2√10,∴EM=12BE=√10,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=√10,MN=DE=2√10,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=√10,∴MC=3√10,在RT△EMC中,∵∠EMC=90°,EM=√10.MC=3√10,∴EC=√EM2+MC2=√(√10)2+(3√10)2=10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.【解析】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可;(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.17.【答案】(1)50(2)①6②14【解析】解:(1)∵AB =AC ,∴∠C =∠ABC =70°,∴∠A =40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM =90°,∴∠NMA =50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM =BM ,∴△MBC 的周长=BM +CM +BC =AM +CM +BC =AC +BC ,∵AB =8,△MBC 的周长是14,∴BC =14-8=6;②当点P 与M 重合时,△PBC 周长的值最小,理由:∵PB +PB =PA +PC ,PA +PC ≥AC ,∴P 与M 重合时,PA +PC =AC ,此时PB +PC 最小,∴△PBC 周长的最小值=AC +BC =8+6=14.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM =BM ,然后求出△MBC 的周长=AC +BC ,再代入数据进行计算即可得解,②当点P 与M 重合时,△PBC 周长的值最小,于是得到结论.本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.18.【答案】解:(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .在Rt △ACM 中,AM 2=AC 2+CM 2=32+(6-x )2,在Rt △BDM 中,BM 2=DM 2+BD 2=x 2+62,∵AM =MB ,∴32+(6-x )2=x 2+62,解得x =34,∴CM =CD -MD =6-34=214.(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.根据对称的性质可知:PA =PA ′,QB =QB ′,∴PA +PQ +QB =PA ′+PQ +QB ′=A ′B ′,∴PA +PQ +PB 的最小值为线段A ′B ′的长,在Rt △A ′B ′H 中,∵HB ′=CD =132,HA ′=DB ′+CA ′=7+6=13,∴A ′B ′=√HA′2+B′H 2=√132+(132)2=132√5, ∴AP +PQ +QB 的最小值为132√5.【解析】(1)如图1中,连接AB ,作线段AB 的中垂线MN ,交AB 于N ,交EF 于M ,连接AM ,BM .设DM =x .根据MA =MB 构建方程即可解决问题;(2)如图2中,如图,作点A 故直线GH 的对称点A ′,点B 关于直线EF 的对称点B ′,连接A ′B ′交GH 于点P ,交EF 于点Q ,作B ′H ⊥CA 交CA 的延长线于H .则此时AP +PQ +QB 的值最小.最小值为线段A ′B ′的长;本题考查轴对称-最短问题,平行线的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用轴对称解决问题问题,学会利用参数构建方程解决问题,属于中考压轴题.。
苏科版数学八年级上册第2章轴对称图形章末重难点题型(举一反三)(原卷版)
轴对称图形章末重难点题型汇编【举一反三】【苏科版】【考点1 判断轴对称图形】【方法点拨】掌握轴对称图形的概念:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
注意:理解轴对称图形的定义应注意两点:(1)轴对称图形是一个图形,反映的是这个图形自身的性质。
(2)符合要求的“某条直线”可能不止一条,但至少要有一条。
【例1】(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.【变式1-1】(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.【变式1-2】(2018秋•开封期中)下列四个图形中,不是轴对称图形的是()A.B.C.D.【变式1-3】(2018秋•宜兴市校级期中)下列图形中,不是轴对称图形的有()A.1个B.2个C.3个D.4个【考点2 角平分线的应用】【方法点拨】掌握角平分线的性质定理:角平分线上的点到角两边的距离相等牢记:(1)角平分线的性质是证明线段相等的一个比较简单的方法;(2)当遇到有关角平分线的问题时,通常过角平分线上的点向角的两边作垂线,构造相等的线段。
【例2】(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【变式2-1】(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.10【变式2-2】(2018秋•思明区校级期中)如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.6【变式2-3】(2018秋•西城区校级期中)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC =24,DE=4,AB=7,则AC长是()A.3B.4C.6D.5【考点3 线段垂直平分线性质的应用】【方法点拨】掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等注意:(1)这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
初中数学苏科版八年级上册第2章 轴对称图形2.5 等腰三角形的轴对称性-章节测试习题(8)
章节测试题1.【题文】如图,AD是等边三角形ABC的中线,E是AB上的点,且AE=AD,求∠EDB的度数.【答案】15°【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得又由根据等边对等角与三角形内角和定理,即可求得的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠BAC=60°=30°,∴∠ADB=90°.∵AE=AD.∴∠ADE=∠AED==75°.∴∠EDB=∠ADB-∠ADE==15°.2.【题文】如图,等边三角形的边长为4,点是边上一动点(不与点重合),以为边在的下方作等边三角形,连接.(1)在运动的过程中,与有何数量关系?请说明理由.(2)当时,求的度数.【答案】(1) ,理由见解析;(2) .【分析】(1)AE=CD,证明△ABE≌△CBD,即可解决问题.(2)证明AE⊥BC;证明∠BDC=∠AEB,即可解决问题.【解答】解:(1)AE=CD;理由如下:∵△ABC和△BDE等边三角形∴AB=BC,BE=BD,∠ABC=∠EBD=60°;在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵BE=2,BC=4∴E为BC的中点;又∵等边三角形△ABC,∴AE⊥BC,由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=90°.3.【题文】如图点D、E分别在等边ΔABC边BC、CA上,且CD=AE,联结AD、BE.(1)求证:BE=AD;(2)延长DA交BE于F,求∠BFD的度数.【答案】(1)证明见解析;(2)60°【分析】(1)根据等边三角形的性质可以得到∠BAC=∠ACB=60°,AC=AB,则∠EAB=∠ACD,根据SAS即可证得△ABE≌△CAD,然后根据全等三角形的对应边相等,即可证得:AD=BE.(2)易证∠AFE=∠ACD,从而∠BFA=∠ACB=60°.【解答】解:证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,∵在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE.(2)如图,∵△ABE≌△CAD∴∠E=∠D∵∠EAF=∠DAC∴∠BFD=∠E+∠EAF=∠D+∠DAC=60°4.【题文】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】详见解析.【分析】要证△ADE为等边三角形,可以先证它为等腰三角形,再证该等腰三角形的一个内角为60°. 综合分析已知条件可知,可以利用△ABD和△ACE全等证明AD=AE. 根据已知条件和等边三角形的性质,不难证明∠B=∠ACE,进而利用SAS 证明△ABD和△ACE全等. 利用全等三角形的性质可以得到△ADE是等腰三角形. 利用全等三角形的性质,通过相关角之间的和差关系,不难证明∠DAE=∠BAC=60°,从而证明△ADE为等边三角形.【解答】证明:∵△ABC为等边三角形,∴∠B=∠ACB=∠BAC=60°,AB=AC.∵∠ACB=60°,∴∠ACD=180°-∠ACB=180°-60°=120°,∵CE平分∠ACD,∴.∴∠B=∠ACE.∵在△ABD和△ACE中,,∴△ABD≌△ACE (SAS),∴AD=AE,∠BAD=∠CAE.∵∠BAD=∠CAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAC=∠DAE=60°.∵∠DAE=60°,AD=AE,∴△ADE为等边三角形.5.【题文】如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED=EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【答案】(1)=;(2)AE=BD.【分析】(1)△BCE中可证,∠BCE=30°,又EB=EC,则∠D=∠ECB=30°,所以△BCE 是等腰三角形,结合AE=BE即可;(2)过E作EF∥BC交AC于F,用AAS证明△DEB≌△ECF.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,AB=AC=BC.∵E为AB的中点,所以∠BCE=30°.∵ED=EC,∴∠D=∠BCE=30°,∴∠BED=30°,∴∠D=∠BED,∴BD=BE,∴BD=AE.(2)当点E为AB上任意一点时,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC.∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°.∴△AEF是等边三角形.∴AE=EF=AF.∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE=EC,∴∠D=∠ECD.∴∠BED=∠ECF.在△DEB和△ECF中,∴△DEB≌△ECF(AAS).∴BD=EF=AE,即AE=BD.6.【题文】如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由。
苏科版八年级上册数学第2章《轴对称图形》同步练习(7份)(全章含答案)初二数学试题.doc
2.5等腰三角形的轴对称性(3)【基础训练】在AABC 中,ZA=100° , ZB=40° ,则ZXABC 是 如图,求证:AE=AF. 6. 如图,在厶ABC 中,ZABC 和ZACB 的平分线相交于 点F,过点F 作DE 〃BC,交AB 于点D,交AC 于点E.若BD + CE=2013,则线段DE 的长为( ).A. 2014B. 2011C. 2012D. 20131.2. 三角形. CD 是 RtAABC 斜边 AB±的中线,CD=1006,贝ij AB= _______3・ 4. 长.如图, 如图, ZC=36° ZB = 72° 在ZXABC 中, 点D 、(第3题)找出图中所有的等腰三角形 ______ .cm,求Z\ADE 的周 E 在 BC 上,且Z1 = ZB, Z2=ZC, BC=10 5.如图,在AABC 中,AD 平分ZBAC, E 是CA 延长线上的一点,EG 〃AD, ,ZBAD=36° , DB交AB 于点F.7.如图,ZDAC是厶ABC的一个外角,AE平分ZDAC,且AE〃B(么?8.如图,在四边形ABCD中,ZABC=ZADC=90° , M. N分别是AC、BD的中点,试说明:(1)MD = MB:(2)M N 丄BD・【提优拔尖】9.已知:在RtAABC中,AB = BC;在RtAADE中,AD = DE;连接EC,取EC的中点M,连接DM 和BM.(1)若点D在边AC上,点E在边AB±且与点B不重合,如图(1),求证:BM = DM,且BM丄DM;(2)如果将图⑴中的AADE绕点A逆时针旋转小于45°的角,如图(2),那么⑴中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给出证明.(第9题)10.如图,在AABC屮,作ZABC的平分线BD,交AC于点D,作线段BD的垂直平分线EF, 分别交AB 于点E,交BC于点F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)11.⑴如图⑴,O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求ZAEB的大小;(2)如图(2), AOAB固定不动,保持AOCD的形状和大小不变,将AOCD绕着点O旋转(△ OAB 和AOCD不能重叠).求ZAEB的大小.12・如图,在AABC 中,AB = AC=10, BC = 8, AD 平分ZBAC交 BC 于点 D,点,连接DE,则ACDE 的周长为().4. 10cm5. 略6. D7. AB = AC8. 略9. ⑴略(2)当AADE 绕点A 逆时针旋转小于45°的角时,⑴中的结论仍成立. 10.13. A. 20 B. 12C ・14 如图,己知AC 丄BC, BD 丄AD, D. 13AC 与BD 交于点O, AC=BD ・求证:(1) B C = AD :(2) A OAB 是等腰三角形.参考答案1.等腰2. 20123. AABD, AABC, AADC 点E 为AC 的中△BOFMABOF、ABOF^ADOF 等,证明略.11.(l)ZAEB=60°(2)2AEB = 60° .12. C13.略我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
八年级数学上册 第2章 轴对称图形《2. 设计轴对称图案》同步练习苏科
《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2。
苏科版八年级数学上册 第二章 2.2 轴对称的性质练习题
苏科版八年级数学上册上册第二章 2.2 轴对称的性质一、单选题1.下列说法错误的是()A. 关于某直线成轴对称的两个图形一定能完全重合B. 线段是轴对称图形C. 全等的两个三角形一定关于某直线成轴对称D. 轴对称图形的对称轴至少有一条2.如图,△ABC和△A′B′C′关于直线L对称,下列结论中符合题意的有()⑴△ABC≌△A′B′C′⑵∠BAC=∠B′A′C′⑶直线L垂直平分CC′⑷直线BC和B′C′的交点不一定在直线L上.A. 4个B. 3个C. 2个D. 1个3.将一长方形纸片,按右图的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A. 60°B. 75°C. 90°D. 95°4.如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD折叠后,若点C恰好落在AB边上的点E处,则△ADE的周长为( )A. 5B. 6C. 7D. 85.如图,把一个正方形经过上折、右折、下方折三次对折后沿虚线剪下,则所得图形是()A. B. C. D.6.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A. 40°B. 80°C. 90°D. 140°7.如图,把一长方形纸片ABCD沿EG折叠后,点A,B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()A. 40°B. 50°C. 65°D. 80°8.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A. 1B. 2C. 3D. 49.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°10.如图,在四边形 ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分别是 BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()A. 30°B. 40°C. 50°D. 70°二、填空题11.如图,ΔABC是一个三角形纸片,其中AB=AC,∠A=36°,沿DE 折叠纸片,使点A落在点B处,则∠BEC= ________.12.将一个矩形纸片沿BC折叠成如图所示的图形,若∠ABC=27°,则∠ACD的度数为________.13.如图,点D、E分别在ΔABC的AB、AC边上,沿DE将ΔADE翻折,点A的对应点为点A′,∠A′EC=α,∠A′DB=β,且α<β,则∠A等于________(用含α、β的式子表示).14.如图,点P是直线AC外的一点,点D,E分别是AC,CB两边上的点,点P关于CA的对称点P1恰好落在线段ED上,P点关于CB的对称点P2落在ED的延长线上,若PE=2.5,PD=3,ED=4,则线段P1P2的长为________.15.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE 沿直线DE折叠,点A落在点F处,且点F在△ABC外部,则阴影部分图形的周长为________cm.16.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠BAC=70°,∠ABC=60°,∠ACB=50°,则∠ADB +∠BEC+∠CFA=________°.17.如图,在△ABC中,将∠C沿DE折叠,使顶点C落在△ABC内C′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.18.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,CB=3,点D是BC边上的点,将△ADC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是________.19.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按如图的方式折叠,若EF的长度为a,则△DEF 的周长为________(用含a的式子表示).20.如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BDn= ________.三、综合题21.作出已知图形△ABC 关于给定直线 l 的对称图形△A'B'C'.22.如图,在△ABC中,AB=AC,DE是△ABE的对称轴,△BCE的周长为14,BC=6,求AB 的长.23.探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于________;(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=________;(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________;(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.24.如图1,在△ABC中,∠A<90°,P是BC边上的一点,P1, P2是点P关于AB、AC的对称点,连结P1P2,分别交AB、AC于点D、E.(1)若∠A=52°,求∠DPE的度数;(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2,(不写作法,保留作图痕迹),试判断点P1, P2与点A是否在同一直线上,并说明理由.25.ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为________;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为________.26.如图(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设∠AED的度数为x ,∠ ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.答案解析部分一、单选题1.【答案】 C【考点】轴对称的性质,轴对称图形解:A、关于某直线成轴对称的两个图形一定能完全重合,符合题意,故本选项不符合题意;B、线段是轴对称图形,符合题意,故本选项不符合题意;C、全等的两个三角形不一定关于某直线成轴对称,但关于某直线成轴对称的两个三角形一定全等,故本选项符合题意;D、轴对称图形的对称轴至少有一条,符合题意,故本选项不符合题意.故答案为:C.【分析】根据轴对称的概念以及性质对各选项分析判断即可得解.2.【答案】 B【考点】轴对称的性质解:∵△ABC和△A′B′C′关于直线l对称,∴①△ABC≌△A′B′C′,符合题意;②∠BAC=∠B′AC′,∴∠BAC+∠CAC′=∠B′AC′+∠CAC′,即∠BAC′=∠B′AC符合题意;③l垂直平分CC′,符合题意;④应为:直线BC 和B′C′的交点一定在l上,故本小题不符合题意.综上所述,结论正确的是①②③共3个.故答案为:B.【分析】轴对称的性质:①成轴对称的两个图形全等,②成轴对称的两个图形,对称点的连线被对称轴垂直平分,据此逐一判断即可.3.【答案】 C【考点】翻折变换(折叠问题)解:∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,=90°,∴∠A′BC+∠E′BD=180°× 12即∠CBD=90°.故答案为:C.【分析】根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD=180°× 12 =90°,则∠CBD=90°。
秋苏科版八年级上2.3设计轴对称图案同步练习含答案
第二章 2.3 设计轴对称图案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个3.)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有______个.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:______(填字母).10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到______个.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为______次.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有______个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)参考答案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有4个位置使之成为轴对称图形.故选C.【点评】此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.3.下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.【解答】解:如图所示:故选:A.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种【分析】根据轴对称的定义,及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:,共6种.故选C.【点评】本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形.故选C.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解.二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有4个.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).【分析】直接利用轴对称图形的性质分析得出即可.【解答】解:如图所示:现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).故答案为:c,h,k,m.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有4种.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到2个.【分析】利用轴对称图形的性质,分别得出符合题意的图形即可.【解答】解:如图所示:符合题意有2个点.故答案为:2.【点评】本题考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为7次.【分析】根据题意画出图形,然后即可作出判断.【解答】解:根据图形可得总共反射了7次.故答案为7.【点评】本题考查轴对称的知识,难度不大,注意画出图形会使问题比较简单直观.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:所设计图案如下所示:【点评】本题考查利用轴对称设计图案,注意掌握轴对称的特点,选择不同的直线当对称轴是解决本题的突破点.三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.【分析】根据勾股定理可得平行四边形的一边长为5,根据网格可得另一边长为6,因此可以截出一个等腰三角形,也可截出一个菱形.【解答】解:如图1所示:△ABC是等腰三角形,是轴对称图形;如图2所示:四边形ABCD是菱形,是轴对称图形.【点评】此题主要考查了利用轴对称设计图案,关键是正确掌握轴对称图形的定义:一个图形沿一条直线折叠,直线两旁的部分能完全重合.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:【点评】此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键.17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.【分析】可以利用轴对称设计一个图案,再利用平移设计一个图案即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,利用平移设计图案,关键是正确理解题目要求.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有3个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)【分析】(1)根据轴对称图形的定义:沿着一直线折叠后直线两旁的部分能完全重合进行添图.(2)首先画出A、B所在直线的交点P,再延长AP使AP=CP,然后再作AC的垂直平分线即可得到l.【解答】解:(1)如图:,共3个,故答案为:3;(4)如图所示:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握对称轴是对称点连线的垂直平分线.。
2020秋苏科版初中数学八年级上册2.2 轴对称的性质 同步练习及答案
初中数学苏科版八年级上册2.2 轴对称的性质同步练习一、单选题(共10题;共20分)1.下列说法错误的是()A. 关于某直线成轴对称的两个图形一定能完全重合B. 线段是轴对称图形C. 全等的两个三角形一定关于某直线成轴对称D. 轴对称图形的对称轴至少有一条2.如图,△ABC和△A′B′C′关于直线L对称,下列结论中符合题意的有()⑴△ABC≌△A′B′C′⑵∠BAC=∠B′A′C′⑶直线L垂直平分CC′⑷直线BC和B′C′的交点不一定在直线L上.A. 4个B. 3个C. 2个D. 1个3.将一长方形纸片,按右图的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A. 60°B. 75°C. 90°D. 95°4.如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD折叠后,若点C恰好落在AB边上的点E处,则△ADE的周长为( )A. 5B. 6C. 7D. 85.如图,把一个正方形经过上折、右折、下方折三次对折后沿虚线剪下,则所得图形是()A. B. C. D.6.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A. 40°B. 80°C. 90°D. 140°7.如图,把一长方形纸片ABCD沿EG折叠后,点A,B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()A. 40°B. 50°C. 65°D. 80°8.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A. 1B. 2C. 3D. 49.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A. 120°B. 108°C. 126°D. 114°10.如图,在四边形ABCD 中,∠C=70°,∠B=∠D=90°,E、F 分别是BC、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为()A. 30°B. 40°C. 50°D. 70°二、填空题(共10题;共10分)11.如图,是一个三角形纸片,其中,,沿折叠纸片,使点落在点处,则________.12.将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.13.如图,点、分别在的、边上,沿将翻折,点的对应点为点,,,且,则等于________(用含、的式子表示).14.如图,点P是直线AC外的一点,点D,E分别是AC,CB两边上的点,点P关于CA的对称点P1恰好落在线段ED上,P点关于CB的对称点P2落在ED的延长线上,若PE=2.5,PD=3,ED=4,则线段P1P2的长为________.15.如图,等边的边长为,D、E分别是、上的点,将沿直线折叠,点A落在点F处,且点F在外部,则阴影部分图形的周长为________cm.16.如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC 的内角∠BAC=70°,∠ABC=60°,∠ACB=50°,则∠ADB+∠BEC+∠CFA=________°.17.如图,在△ABC中,将∠C沿DE折叠,使顶点C落在△ABC内C′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.18.如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,CB=3,点D是BC边上的点,将△ADC沿直线AD 翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是________.19.如图,在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按如图的方式折叠,若EF的长度为a,则△DEF的周长为________(用含a的式子表示).20.如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD n= ________.三、综合题(共6题;共45分)21.作出已知图形△ABC 关于给定直线l 的对称图形△A'B'C'.22.如图,在△ABC中,AB=AC,DE是△ABE的对称轴,△BCE的周长为14,BC=6,求AB的长.23.探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于________;(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=________;(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是________;(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由. 24.如图1,在△ABC中,∠A<90°,P是BC边上的一点,P1,P2是点P关于AB、AC的对称点,连结P1P2,分别交AB、AC于点D、E.(1)若∠A=52°,求∠DPE的度数;(2)如图2,在△ABC中,若∠BAC=90°,用三角板作出点P关于AB、AC的对称点P1、P2,(不写作法,保留作图痕迹),试判断点P1,P2与点A是否在同一直线上,并说明理由.25.ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为________;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为________.26.如图(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设的度数为x,∠的度数为y,那么∠1,∠2的度数分别是多少?(用含有x 或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】D8.【答案】D9.【答案】D10.【答案】B二、填空题11.【答案】72°12.【答案】126°13.【答案】14.【答案】4.515.【答案】316.【答案】36017.【答案】40°18.【答案】419.【答案】3A20.【答案】三、综合题21.【答案】解:如图所示:△A′B′C′即为所求.22.【答案】解:因为DE是△ABE的对称轴,所以AE=BE.所以C△BCE=BC+CE+BE=BC+CE+AE=BC+AC=14.因为BC=6,所以AC=8.所以AB=AC=8.23.【答案】(1)270°(2)220°(3)∠1+∠2=180°+∠A(4)∠1+∠2=2∠A,理由如下:∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°-2∠AFE,∠2=180°-2∠AEF,∴∠1+∠2=360°-2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°-∠A,∴∠1+∠2=360°-2(180°-∠A)=2∠A.24.【答案】(1)解:∵P1,P2是点P关于AB、AC的对称点,∴PD=P1D,PE=P2E,∴∠EDP=2∠DPP1,∠DEP=2∠EPP2,∵∠DPP1+∠DPE+∠EPP2+∠A=180°①,2∠DPP1+∠DPE+2∠EPP2=180°②②-①得:∠DPP1+∠EPP2=∠A,∵∠A=52°,∴∠DPP1+∠EPP2=52°,∴∠DPE=180°-(∠PDE+∠DEF)=180°-2(∠DPP1+∠EPP2)=180°-104°=76°(2)解:点P1,P2与点A在同一条直线上.理由如下:连接AP,AP1,AP2.根据轴对称的性质,可得∠4=∠1,∠3=∠2,∵∠BAC=90°,即∠1+∠2=90°,∴∠3+∠4=90°,∴∠1+∠2+∠3+∠4=180°,即∠P1AP2=180°,∴点P1,P2与点A在同一条直线上.25.【答案】(1)90°(2)解:∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°(3)180°﹣2β°26.【答案】(1)解:①根据翻折的性质知△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②)∵∠AED=x,∠ADE=y,∴∠AEA′=2x,∠ADA′=2y,∴∠1=180°-2x,∠2=180°-2y;③∠A= (∠1+∠2);∵∠1=180°-2x,∠2=180°-2y,∴x=90- ∠1,y=90- ∠2,∴∠A=180°-x-y=190-(90- ∠1)-(90- ∠2)= (∠1+∠2).(2)解:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°,整理得,2∠A=∠2-∠1.∴∠A= (∠2-∠1).。
苏科版八年级数学上册《23设计轴对称图案》同步练习含答案解析初二数学试题.docx
2. 3设计中心对称图案一、填空题1. _______________ 如图,在4X4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以 格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格 点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的 作法共有 __________2. ___________ 如图,在4X4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以 格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格 点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的 作法共有 __________ 种.二、解答题3. 如图,每个小方格都是边长为1个单位长度的正方形,AQG 在平面直角坐标系中位置如图所示.(1) AABC 与厶A|BQ 关于某条直线m 对称,画出对称轴m.(2)画出绕原点0顺时针旋转90°所得的△A?B?C2・此时点A?的坐标为 _____________ ・求出 点A,旋转到点A 2的路径长.(结果保留根号)111- ---------- —J—I J(1) 将AABC 向下平移3个单位得到△ Ab®,作出平移后的厶AQG;⑵ 作岀AABC 关于点0的中心对称图形厶A 2B 2C 2,并写出点A?的坐标.5. 如图,在平面直角坐标系中,AABC 的三个顶点都在格点上,点A 的坐标为(2, 4),请 解答下列问题:(1)画出AABC 关于x 轴对称的厶A 】BQ,并写出点人的坐标.(2) 画出△ AQG 绕原点0旋转180。
后得到的厶A 2B 2C 2,并写出点A?的坐标. 网格中小正方形的边长为1,请解答下列问题:6. 如图,在平面直角坐标系中,RtAABC的三个顶点分别是A (-3, 2) , B (0, 4) , C(0, 2)・(1)将AABC以点C为旋转中心旋转180°,画出旋转后对应的△ AQC;平移AABC,若点A 的对应点A?的坐标为(0, -4),画出平移后对应的△ A2B2C2;(2)若将△ AQC绕某一点旋转可以得到AA2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.7. 如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1) 将AABC向左平移6个单位长度得到得到△ AQC“(2) 将AABC 绕点0 按逆时针方向旋转180。
2.2 轴对称的性质(2)课件(苏科版八年级上)
A B
变:如图,已知,∠AOB内有一点P,求作 △PQR,使Q在OA 上,R在OB上,且使△PQR 的周长最小. P′ Q
●
A P
O
R P″
B
小结
去
依
配
注
1) 成轴对称的两个图形全等. (2) 如果两个图形成轴对称,那么对称轴是对称点 连线的垂直平分线. 2. 轴对称图形对称点的连线互相平行或在同一条 直线上. 3. 轴对称图形中的对称线段所在直线的交点在对称 轴上或对称线段所在直线互相平行.
×
想一想 如图,点A、B、 C都在方格纸的格 点上,请你再找一 个格点D,使点A、 B、C、D组成一个 轴对称图形。
D4 D1
C A B
D3 D2
(二)如果直线l外有一点A,那么怎样画出点A关 于直线l的对称点A′?
A
●
┏ O
●
A′
l
变:如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′? B A
● ●
B′
B A A′ l B
B′
●
O
A′
B′ A′ A l
●
l
拓展与操作
1.如图,画出△ABC关于直线MN的对称图形. 如右图,四边形ABCD与四边形EFGH关于直 线MN的对称,AC,BD交于P,怎样找出点P关于 M 直线MN的对称点Q? M H D A′ A ┏ A E P Q B′ ┏ B B F ┏ C G C C′ N
基础训练
(一)判断
1.若线段AB和A′B′关于直线l对称,则AB=A′B′ ( )
√
2.若线段AB和A′B′在直线l的两旁,且AB=A′B′,
则线段AB和A′B′关于直线l对称(
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)【14份】
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)第1课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于3的是( )n 且n为整数).如图,请你2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正n边形(这里3(1)边形有条对称轴(2)当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想:不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程.第2课时 轴对称的性质(1)1.如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则1∠的度数为( )A. 115°B. 120°C. 130°D. 140°2.如图,点P 关于,OA OB 的对称点分别是12,P P ,12PP 分别交,OA OB 于点,D C ,12P P =16 cm ,则PCD ∆的周长为 cm.3.如图,O 为ABC ∆内部一点, 132OB =.(1)分别画出点O 关于直线,AB BC 的对称点,P Q ;(2)请指出当ABC ∠的度数为多少时,PQ =7,并说明理由;(3)请判断当ABC ∠的度数不是(2)中的度数时,PQ 的长度是小于7还是大于7,并说明你的判断的理由.第3课时 轴对称的性质(2)1.如图,点,A B 在方格纸的格点位置上,若要再找一个格点C ,使它们所构成的三角形为轴对称图形,则这样的格点C 在图中共有( )A. 4个B. 6个C. 8个D. 10个2.如图,在2×2的正方形网格纸中,有一个以格点为顶点的ABC ∆.请你找出网格纸中所有与ABC ∆成轴对称且也以格点为顶点的三角形,这样的不角形共有 个.3.如图,在由边长为1的正方形组成的6×5方格中,点,A B 都在格点上.(1)在给定的方格中将线段AB 平移到CD ,使得四边形ABDC 是长方形,且点,C D 都落在格点上.画出四边形ABDC ,并叙述线段AB 的平移过程.(2)在方格中画出ACD ∆关于直线AD 对称的AED ∆.(3)求五边形AEBDC 的面积.第4课时 轴对称的性质—习题课7.如图,线段AB 在直线l 的一侧,请在直线l 上找一点P ,使PAB ∆的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点Q ,使得,QA QB 与直线l 的夹角相等.画出图形,保留画图痕迹,不写画法.3. (1)如图①, P 是AOB ∠内一点,在,OA OB 上分别找点,C D ,使得PCD ∆的周长最短.画出图形,保留画图痕迹,不写画法.(2)如图②, ,P Q 是AOB ∠内的两点,在,OA OB 上分别找点,C D ,使得以,,,P Q C D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第5课时 设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是( )2.在4×4的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在3×3的正方形网格图中,有格点三角形ABC 和格点三角形DEF ,且ABC ∆和DEF ∆ 关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的DEF ∆.(每种方案均不相同)第6课时 线段、角的轴对称性(1)1.如图,在ABC ∆中,AC 的垂直平分线分别交,AC BC 于点,,E D EC = 4 , ABC ∆的周长为23,则ABD ∆的周长为( )A. 13B. 15C. 17D. 192.如图,在ABC ∆中,AB 的垂直平分线分别交,AB BC 于点,,D E AC 的垂直平分线分别交,AC BC 于点,F G .若AEG ∆的周长为2018,则线段BC 的长为 .3.如图,在ABC ∆中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点,F D 为线段CE 的中点,且18,72CAD ACB ∠=︒∠=︒.求证: BE AC =.第7课时 线段、角的轴对称性(2)1.设P 是ABC ∆内一点,满足PA PB PC ==,则P 是ABC ∆ ( )A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若EDC ∆的周长为24, ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .3.在ABC ∆中,,AB AC O =为平面上一点,且OB OC =.点A 到BC 的距离为8,点O 到BC 的距离为3.求AO 的长.第8课时 线段、角的轴对称性(3)1.如图,ABC ∆的面积为6,AC =3,现将ABC ∆沿AB 所在直线翻折,使点C 落在直线AD 上的点C '处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A. 3B. 4C. 5. 5D. 102.如图,//,,AB CD BP CP 分别平分,,ABC DCB AD ∠∠过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离为 .3.如图,MN 为ABC ∆的边AC 的垂直平分线,过点M 作ABC ∆另外两边,AB BC 所在直线的垂线,垂足分别为,D E ,且AD CE =,作射线BM .求证: BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.如图,,ABC EAC ∠∠的平分线,BP AP 交于点P ,过点P 作,PM BE PN BF ⊥⊥,垂足分别为,M N .下列结论:①CP 平分ACF ∠;②180ABC APC ∠+∠=︒;③AM CN AC +=;④2BAC BPC ∠=∠.其中正确的是( )A. ①②③B. ①③④C. ②③④D.①③2.如图,AD 是ABC ∆的角平分线,,DE DF 分别是ABD ∆和ACD ∆的高,连接EF ,交AD 于点O .下列结论:①DE DF =;②OA OD =;③AD EF ⊥;④AE DF AF DE +=+; ⑤AD 垂直平分EF .其中一定正确的是 .(填序号)3.如图.在ABC ∆中,AB AC >,边BC 的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.第10课时 等腰三角形的轴对称性(1)1.如图,在ABC ∆中,55,30B C ∠=︒∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65°B. 60°C. 55°D. 45°2.如图,在ABC ∆中,D 为AB 上一点,E 为BC 上一点,且,50AC CD BD BE A ===∠=︒,则CDE ∠的度数为 .3.如图,在ACB ∆中,90ACB ∠=︒, ,D E 为斜边AB 上的两点,且,BD BC AE AC ==,求DCE ∠的度数.第11课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的底角的度数为( )A. 30°B. 75°C. 15°或30°D. 75°或15°2.如图,在ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,在边AC 所在的直线上找一点P ,使ABP ∆是等腰三角形,此时APB ∠的度数为 .3.在ABC ∆中,,AB AC AB =的垂直平分线DE 与AC 所在的直线相交所成的锐角为40°,求B ∠的度数.第12课时 等腰三角形的轴对称性(2)1.如图,在ABC ∆中,,36,,AB AC A BD CE =∠=︒分别是,ABC ACB ∠∠的平分线,且相交于点F ,则图中的等腰三角形有( )A. 5个B. 6个C. 7个D. 8个2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3.如图①,在ABC ∆中,,,AB AC ABC ACB =∠∠的平分线交于点O ,过点O 作//EF BC 交,AB AC 于点,E F .(1)图中有几个等腰三角形?猜想EF 与,BE CF 之间有怎样的数量关系,并说明理由.(2)如图②,若AB AC ≠,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来;另外在(1)中EF 与,BE CF 之间的数量关系还存在吗?(3)如图③,若在ABC ∆中, ABC ∠的平分线BO 与ABC ∆的外角平分线交于点O ,过点O 作//OE BC 交AB 于点E 、交AC 于点F .这时图中还有等腰三角形吗?EF 与,BE CF 之间的数量关系又如何?并说明你的理由.第13课时 等腰三角形的轴对称性(2)—习题课1.如图,120AOB ∠=︒,OP 平分AOB ∠,且OP =2.若点,M N 分别在,OA OB 上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A. 1个B. 2个C. 3个D. 3个以上2.如图,在等边三角形ABC 中,,,AE CD AD BE =相交于点,P BQ AD ⊥于点Q ,则线段,BP PQ 的数量关系为 .3.如图,C 为线段AB 上一点,ACM ∆,CBN ∆是等边三角形.,AN BM 相交于点,,O AN CM 交于点P , ,BM CN 交于点Q ,连接PQ .(1)求证: AN MB =;(2)求AOB ∠的度数;(3)求证: //PQ AB .第14课时 等腰三角形的轴对称性(3)1.如图,在ABC ∆中,,BE AC CF AB ⊥⊥ ,垂足分别为,E F .若M 是BC 的中点,则图中等腰三角形有( )A. 1个B. 3个C. 4个D. 5个2.如图,在四边形ABCD 中,90BCD BAD ∠=∠=︒ , ,AC BD 相交于点,,E G H 分别是,AC BD 的中点.如果80BEC ∠=︒,那么GHE ∠的度数为 .3.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在边AC 上(不与点,A C 重合), DE AB ⊥于点E ,连接,BD F 为BD 的中点.试猜想A ∠与CEF ∠的关系并证明.第2章 轴对称图形第1课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1) n(2)圆 无数3. 从方阵的数据看出,正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是10,相加后如图所示,这样方阵中的所有数据之和为1010100⨯=第2课时 轴对称的性质(1)1.A2. 163. (1)如图,过点O 画OH AB ⊥,垂足为H ,在垂线段OH 的延长线上取一点P ,使得PH OH =P ,此时点P 就是点O 关于直线AB 的对称点,同理画出点Q .(2)当90ABC ∠=︒时,7PQ =理由:如图,连接BP 、BQ∵点O 、P 关于直线AB 对称∴直线AB 垂直平分OP∴90BHO BHP ∠=∠=︒,PH OH =∵BH BH =∴BHO BHP ∆≅∆ ∴132OB PB ==,OBH PBH ∠=∠ 同理132OB QB ==,OBC QBC ∠=∠∴1133722PB QB +=+= 若7PQ =,则PB QB PQ +=,此时P 、B 、Q 三点共线∴180PBQ ∠=︒ ∴1902ABC OBH OBC PBQ ∠=∠+∠=∠=︒ (3)当90ABC ∠≠︒时,7PQ <理由:∵90ABC ∠≠︒∴P 、B 、Q 三点不在同一直线上,此时构成PBQ ∆∴PB BQ PQ +>.由(2),得7PB BQ +=∴7PQ <第3课时 轴对称的性质(2)1.D2. 53.(1)如图,将线段AB 先向右平移1个单位长,再向上平移2个单位长度,得线段CD (平移过程不唯一).(2)如图,画点C 关于直线AD 的对称点E ,连接AE 、DE ,则AED ∆即为所求. ( 3)1152(35)21322ACD AEBDC AEBD S S S ∆=+=⨯⨯+⨯+⨯=五边形梯形第4课时 轴对称的性质—习题课1. 由干线段AB 的长度是固定的,要使PAB ∆的周长最短,只要PA PB +最短即可.如图,过点A 作它关于直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接PA 、PB ,此时PAB ∆就是周长最短的三角形,∴点P 即为所求.2.如图,过点A 作它关干直线l 的对称点'A ,连接'A B 交直线l 于点Q .连接QA 、QB ,此时AQH BQD ∠=∠,∴点Q 即为所求.3. (1)如图①,过点P 分别作关于射线OA 、OB 的对称点1P 、2P ,连接12P P ,分别交OA 、OB 于点C 、D ,连接PC 、PD 、CD ,此时PCD ∆的周长最短,∴点C 、D 和PCD ∆即为所求.(2)如图②.过点P 、Q 分别作射线OA 、OB 的对称点1P 、1Q ,连接11PQ ,分别交OA 、OB 于点C 、D ,连接PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点C 、D 和四边形PCDQ 即为所求.第5课时 设计轴对称图案1.A2. 133.要使DEF ∆和ABC ∆于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以33⨯的正方形网格图的对称轴为对称轴画出所求的DEF ∆,有四个不同位置的三角形;也可以以ABC ∆的边AC 、BC 的中点连线所在的直线为对称轴画出所求的DEF ∆,有一个三角形;还可以把过ABC ∆的顶点C 与边AB 平行的直线作为对称轴画出所求的DEF ∆,也有一个三角形.如图①~⑥中的DEF ∆即为所求第6课时 线段、角的轴对称性(1)1.B2. 20183. 连接AE ,∵EF 是AB 的垂直平分线∴AE BE =∵在ADC ∆中.,18CAD ∠=︒,72ACB ∠=︒∴18090ADC CAD ACB ∠=︒-∠-∠=︒即AD EC ⊥∵D 为线段CE 的中点∴ED CD =∴AD 垂直平分EC∴AE AC =∴BE AC =第7课时 线段、角的轴对称性(2)1.D2. 63.∵AB AC =∴点A 在线段BC 的垂直平分线上∵OB OC =∴点O 也在线段BC 的垂直平分线上∴AO 所在的直线即为线段BC 的垂直平分线.设直线AO 与BC 交于点M .由题意,得8,3AM OM ==如图①.当点A 、O 在BC 的同侧时,835AO AM OM =-=-=;如图②,当点A 、O 在BC 的异侧时,8311AO AM OM =+=+=第8课时 线段、角的轴对称性(3)1.A2. 43.连接MA 、MC∵点M 在AC 的垂直平分线上∴MA MC =∵,MD AB ME BC ⊥⊥∴90ADM CEM ∠=∠=︒在Rt MAD ∆和Rt MCE ∆中MA MC AD CE=⎧⎨=⎩ ∴Rt MAD Rt MCE ∆≅∆∴点M 在ABC ∠的平分线上,即BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.B2. ①③④⑤3.如图.在ABC ∆中,AB AC >,边的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.3.过点D 作DN MC ⊥,垂足为N ,连接DB 、DC .∵DN MC ⊥,DF AB ⊥∴90AND AFD ∠=∠=︒∵AD 平分BAM ∠∴NAD FAD ∠=∠在DNA ∆和DNA ∆中,AND AFD NAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DNA DFA ∆≅∆∴,AN AF DN DF ==∵DE 是边BC 的垂直平分线 ∴DB DC =∵DN MC ⊥,DF AB ⊥ ∴90DNC DFB ∠=∠=︒在Rt DFB ∆和Rt DNC ∆中DB DC DF DN =⎧⎨=⎩∴Rt DFB Rt DNC ∆≅∆∴BF CN =∵CN AC AN AC AF =+=+∴BF AC AF =+第10课时 等腰三角形的轴对称性(1)1.A2. 52.5°3.设,BDC x AEC y ∠=∠=∵BD BC =∴BDC BCD x ∠=∠=∵BDC ∆的内角和为180°∴1802B x ∠=︒-同理可求1802A y ∠=︒-∵在ACB ∆中,90ACB ∠=︒∴90A B ∠+∠=︒即1802180290x y ︒-+︒-=︒整理,得135x y +=︒∵DEC ∆的内角和为180°第11课时 等腰三角形的轴对称性(1)—习题课1.D2. 15°或30°或75°或120°3.分三种情况讨论:①当顶角BAC ∠为锐角时,如图①.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,904050A ∠=︒-︒=︒∵AB AC = ∴1(18050)652B C ∠=∠=︒-︒=︒ ②当顶角BAC ∠为直角时,BA AC ⊥,此时//DE AC ,不合题意,舍去.③当顶角BAC ∠为钝角时,如图②.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,50BAE ∠=︒∵BAE B C ∠=∠+∠∴50B C ∠+∠==︒∵AB AC = ∴150252B C ∠=∠=⨯︒=︒ 综上所述,B ∠的度数为65︒或25︒第12课时 等腰三角形的轴对称性(2)1.D2. 50°或80°或65°2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3. (1)图中有5个等腰三角形:ABC ∆、AEF ∆、OBC ∆、EBO ∆、FOC ∆EF 与BE 、CF 之间的数量关系是EF BE CF =+理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =+=+(2)若AB AC ≠,则图中仍旧存在2个等腰三角形:EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =+仍旧存在.(3)图中存在等腰三角形EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =- 理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =-=-第13课时 等腰三角形的轴对称性(2)—习题课1.D2.2BP PQ =3. (1)如图,∵ACM ∆,CBN ∆都是等边三角形∴6160∠=∠=︒,,AC CM CN BC ==∵180ACB ∠=︒∴360∠=︒,120ACN MCB ∠=∠=︒在ACN ∆和MCB ∆中AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩∴ACN MCB ∆≅∆∴AN MB =(2)如图,由(1),知ACN MCB ∆≅∆∴54∠=∠∵OQN ∆与CQB ∆的内角和均为180°,且OQN CQB ∠=∠∴160NOQ ∠=∠=︒∵180AOB NOQ ∠+∠=︒∴120AOB ∠=︒(3)如图,∵160∠=︒,360∠=︒∴31∠=∠在PCN ∆和QCB ∆中3154CN CB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴PCN QCB ∆≅∆∴PC QC =又360∠=︒∴PCQ ∆为等边三角形∴260∠=︒∴21∠=∠∴//PQ AB第14课时 等腰三角形的轴对称性(3)1.D2. 10°3. A CEF ∠=∠ 证明:,EBF x CBF y ∠=∠=∵在Rt ABC ∆中,90ACB ∠=︒∴1809090A x y x y ∠=︒-︒--=︒--∵90ACB ∠=︒,F 为BD 的中点 ∴12CF BD BF == ∴FCB FBC y ∠=∠=∴2DFC FCB FBC y ∠=∠+∠=∵DE AB ⊥,F 为BD 的中点 ∴12EF BD BF == ∴FEB FBE x ∠=∠=∴2DFE FEB FBE x ∠=∠+∠=∴22EFC DFE DFC x y ∠=∠+∠=+ 又∵12CF BD =,12EF BD = ∴CF EF =∴CEF ECF ∠=∠∵CEF ∆的内角和为180° ∴11(180)(18022)9022CEF EFC x y x y ∠=︒-∠=︒--=︒-- ∴A CEF ∠=∠。
最新苏科版八年级数学上册等腰三角形的轴对称性同步练习(含解析)
等腰三角形的轴对称性一.选择题(共15小题)1.(2022•益阳)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形2.(2022•台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180°D.∠A+∠1>180°3.(2022•宁夏)如图,在△ABC中AC=BC,点D和E分别在AB 和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°4.(2022•山西)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°5.(2022•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°6.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b7.(2018•丹东)如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3 B.4 C.5 D.6 8.(2018•兰州)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.29.(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°10.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O 出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个12.如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°13.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°14.如图,已知等边△ABC外有一点P,P落在∠BAC内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4B.8C.9D.12 15.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40°B.50°C.60°D.不能确定二.填空题(共9小题)16.(2022•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=°.17.(2022•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.18.(2022•广安)等腰三角形的两边长分别为6cm,13cm,其周长为cm.19.(2022•绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.20.(2022•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.21.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则Sn =.22.(2018•葫芦岛)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnAn+1∁n的面积为.(用含正整数n的代数式表示)23.(2017•本溪)如图,∠AOB=60°,点O1是∠AOB平分线上一点,OO1=2,作O1A1⊥OA,O1B1⊥OB,垂足分别为点A1,B1,以A1B1为边作等边三角形A1B1O2;作O2A2⊥OA,O2B2⊥OB,垂足分别为点A2,B2,以A2B2为边作等边三角形A2B2O3;作O3A3⊥OA,O3B3⊥OB,垂足分别为点A3,B3,以A3B3为边作等边三角形A3B3O4;…按这样的方法继续下去,则△AnBnOn的面积为(用含正整数n的代数式表示).24.(2017•抚顺)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为.(n≥2,且n为整数)三.解答题(共16小题)25.(2022•攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.26.(2022•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.27.(2022•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.28.(2022•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.29.(2016•常州)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.30.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC =60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.31.如图,四边形ABCD中,AD=CD,∠A=∠C.求证:AB=BC.32.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,33.用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数为a,内部的格点个数为b,则S=a+(b﹣1).对于正三角形网格中的类似问题也有对应结论:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图是该正三角形格点中的两个多边形(设格点多边形的面积为S,该多边形各边上的格点个数为m,内部的格点个数为n):(1)根据图中提供的信息填表:sm n﹣1多边形1 11 15多边形2 8 1…………(2)则S与m、m﹣1之间的关系为(用含m、n的代数式表示).34.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.35.(2022•宜兴市二模)已知,如图,等边△ABC中,点D为BC 延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.36.(2018•东城区一模)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.37.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3=12.第(2)个多边形由正方形“扩展”而来,边数记为a4=20,…,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n⩾3)(1)由题意可得a5=;(2)求+++…+.38.已知,在△ABC中,AB=AC=5,AD平分∠BAC,点M是AC 的中点,在AD上取点E,使得DE=AM,EM与DC的延长线交于点F.(1)当∠BAC=90°时,①求AE的长;②求∠F的大小.(2)当∠BAC≠90°时,探究∠F与∠BAC的数量关系.39.在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点O:①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.40.已知,在△ABC中,点D在BC上,点E在BC的延长线上,且BD=BA,CE=CA.(1)如图1,若∠BAC=90°,∠B=45°,试求∠DAE的度数;(2)若∠BAC=90°,∠B=60°,则∠DAE的度数为(直接写出结果);(3)如图2,若∠BAC>90°,其余条件不变,探究∠DAE与∠BAC 之间有怎样的数量关系?答案与解析一.选择题(共15小题)1.(2022•益阳)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形D.等腰三角形【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【解答】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.【点评】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2.(2022•台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2 B.∠1=∠2 C.∠A+∠2<180°D.∠A+∠1>180°【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.【解答】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.【点评】本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.3.(2022•宁夏)如图,在△ABC中AC=BC,点D和E分别在AB 和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°【分析】根据等腰三角形和平行线的性质即可得到结论.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.4.(2022•山西)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.5.(2022•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,“进一步根”据三角形的外角性质”可知∠BDE=3∠ODC=75°”,即可求出∠ODC“的度”数,进而求出∠CDE的度数.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.【点评】本题主要考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.6.图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b 【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【点评】本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.7.(2018•丹东)如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3 B.4 C.5 D.6【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:∵AB的垂直平分线DE,∴AE=CE,∵△BCE的周长为10,BC=4,∴4+BE+CE=10,∵AE=BE,∴AE+BE=10﹣4=6,∴AB=6.故选:D.【点评】本题考查了线段垂直平分线性质,等腰三角形性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8.(2018•兰州)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE:S△ABC=1:4,即S△ADE=S△ABC=×=,故选:A.【点评】本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.9.(2018•福建)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.10.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O 出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.11.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【分析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.【解答】解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF ⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选:D.【点评】本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.12.如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°【分析】过点B作BD∥l1,如图,根据平行线的性质可得∠ABD =∠β.根据平行线的传递性可得BD∥l2,从而得到∠DBC=∠α=35°.再根据等边△ABC可得到∠ABC=60°,就可求出∠DBC,从而解决问题.【解答】解:过点B作BD∥l1,如图,则∠ABD=∠β.∵l1∥l2,∴BD∥l2,∵∠DBC=∠α=35°.∵△ABC是等边三角形,∴∠ABC=60°,∴∠β=∠ABD=∠ABC﹣∠DBC=60°﹣25°=35°.故选:A.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.13.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.14.如图,已知等边△ABC外有一点P,P落在∠BAC内,设P到BC、CA、AB的距离分别为h1,h2,h3,满足h2+h3﹣h1=6,那么等边△ABC的面积为()A.4B.8C.9D.12【分析】先设等边三角形ABC的边长为a,连接PA、PB、PC,根据S△PAB+S△PAC﹣S△PCB=S△CAB,得出ah1+ah2﹣ah3=,再根据h2+h3﹣h1=6,求得a=4即可得到等边△ABC的面积.【解答】解:设等边三角形ABC的边长为a,连接PA、PB、PC,则S△PAB+S△PAC﹣S△PCB=S△CAB,即ah1+ah2﹣ah3=,∴a(h2+h3﹣h1)=,∵h2+h3﹣h1=6,∴a=4,∴S△CAB==12,故选:D.【点评】本题主要考查了等边三角形面积的计算,等边三角形高线长与边长之间的关系.根据等边三角形的高计算等边三角形的面积是解决问题的关键.15.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40°B.50°C.60°D.不能确定【分析】根据AB=AD,可得出∠B=∠ADB,再由∠ADB=α+∠C,可得出∠C=β﹣10°,再根据三角形的内角和定理得出β即可.【解答】解:∵AB=AD,∴∠B=∠ADB,∵α=10°,∠ADB=α+∠C,∴∠C=β﹣10°,∵∠BAC=90°,∴∠B+∠C=90°,即β+β﹣10°=90°,解得β=50°,故选:B.【点评】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形外角的性质,是基础知识要熟练掌握.二.填空题(共9小题)16.(2022•镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=40 °.【分析】根据等边三角形的性质得到∠BDC=60°,根据平行线的性质求出∠2,根据三角形的外角性质计算,得到答案.【解答】解:∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2﹣∠A=40°,故答案为:40.【点评】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.17.(2022•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为9 .【分析】利用等腰三角形的性质和题目的已知条件证得△BAD≌△CAE后即可求得CE的长.【解答】解:∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,故答案为:9.【点评】本题考查了等腰三角形的性质,解题的关键是利用已知和隐含条件证得三角形全等.18.(2022•广安)等腰三角形的两边长分别为6cm,13cm,其周长为32 cm.【分析】题目给出等腰三角形有两条边长为6cm和13cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.(2022•绥化)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36 度.【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可.【解答】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.【点评】本题考查了等腰三角形的性质及三角形内角和定理;根据三角形的边的关系,转化为角之间的关系,从而利用方程求解是正确解答本题的关键.20.(2022•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为2.【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.【解答】解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==2【点评】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.21.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则Sn=•()n﹣1 .【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故Sn=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.22.(2018•葫芦岛)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△AnAn+1∁n的面积为()2n﹣2×.(用含正整数n的代数式表示)【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△AnBn+1∁n的边长为()n﹣1×即可解决问题;【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△AnAn+1∁n的边长为()n﹣1×,∴△AnAn+1∁n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.23.(2017•本溪)如图,∠AOB=60°,点O1是∠AOB平分线上一点,OO1=2,作O1A1⊥OA,O1B1⊥OB,垂足分别为点A1,B1,以A1B1为边作等边三角形A1B1O2;作O2A2⊥OA,O2B2⊥OB,垂足分别为点A2,B2,以A2B2为边作等边三角形A2B2O3;作O3A3⊥OA,O3B3⊥OB,垂足分别为点A3,B3,以A3B3为边作等边三角形A3B3O4;…按这样的方法继续下去,则△AnBnOn的面积为或(用含正整数n的代数式表示).【分析】先根据勾股定理和直角三角形30度角的性质求A1O1=B1O1=OO1=1,OA1=OB1=,证明△A1OB1是等边三角形,则A1B1=,求△A1B1O1的面积=,易证得△A1B1O1∽△A2B2O2,可得==,根据面积比等于相似比的平方得:==,计算==,同理可得:==×,…,可得结论.【解答】解:如图,由题意得:∠A1OC1=∠B1OO1=30°,OO1=2,∠OA1O1=∠OB1O1=90°,∴A1O1=B1O1=OO1=1,∴OA1=OB1=,∵∠AOB=60°,∴△A1OB1是等边三角形,∴A1B1=,设OO4分别与A1B1,A2B2,A3B3的交点为C1,C2,C3,∴高OC1=,O1C1=2﹣=,∴△A1B1O1的面积为A1B1×O1C1=,易证得△A1B1O1∽△A2B2O2,∴==,∴==,∴==,同理可得:==×,…,==×=(或).故答案为:或.【点评】本题是图形变化类的规律题,考查了找规律,解决此类问题的关键是依据所给出的若干个具体数据、图形或式子,归纳出具有普遍性的规律,再依据规律求解.24.(2017•抚顺)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为.(n≥2,且n为整数)【分析】根据等边三角形的性质分别求出△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长即可解决问题.【解答】解:∵等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,∴A1D1=D1C2,∴△A2C2C3的周长=△A1C1C2的周长=,∴△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长分别为1,,,…,,∴△A1C1C2,△A2C2C3,△A3C3C4,…,△An∁nCn+1的周长和为1+++…+=.故答案为.【点评】本题考查等边三角形的性质、解题的关键是理解题意,灵活运用所学知识,属于中考常考题型.三.解答题(共16小题)25.(2022•攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.【分析】(1)连接DE,根据垂直的定义得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DE=CE,根据线段垂直平分线的性质即可得到结论;(2)根据等腰三角形的性质和三角形的外角的性质即可得到结论.【解答】解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.【点评】本题考查了等腰三角形的判定和性质,线段垂直平分线的性质,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.26.(2022•杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.【分析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ =∠BQA,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.【点评】本题主要考查了等腰三角形的性质、垂直平分线的性质以及三角形的外角性质,难度适中.27.(2022•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【点评】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.28.(2022•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.。
2022-2023学年江苏八年级数学上学期压轴题精练专题04 线段、角的轴对称性(含详解)
2022-2023学年苏科版数学八年级上册压轴题专题精选汇编专题04 线段、角的轴对称性考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________题号一 二 三 总分得分评卷人得 分 一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·南京期末)如图,点P 在锐角 AOB ∠ 的内部,连接 OP , 3OP = ,点P 关于 OA 、 OB 所在直线的对称点分别是 1P 、 2P ,则 1P 、 2P 两点之间的距离可能是( )A .8B .7C .6D .52.(2分)(2021八上·嵩县期末)如图, AD 是 ABC 的角平分线, DE AB ⊥ 于点E , 9ABC S = , 2DE = , 5AB = ,则 AC 的长是( )A .2B .3C .4D .53.(2分)(2021八上·海曙期末)如图,CD 是等腰三角形 △ABC 底边上的中线,BE 平分∠ABC ,交CD 于点E ,AC =8,DE =2,则 △ BCE 的面积是( )A .4B .6C .8D .124.(2分)(2021八上·嵩县期末)如图, ABC 中, 130BAC ∠=︒ , AB , AC 的垂直平分线分别交 BC 于点E ,F ,与 AB , AC 分别交于点D ,G ,则 EAF ∠ 的度数为( )A .80︒B .70︒C .65︒D .60︒5.(2分)(2021八上·淳安期末)已知下列尺规作图:①作一个角的角平分线;②作一个角等于已知角;③作一条线段的垂直平分线,其中作法正确的是( )A .①②B .①③C .②③D .①②③6.(2分)(2021八上·如皋期末)如图,在 ABC 中, AC BC = , 30B ∠=︒ ,D 为 AB 的中点,P 为 CD 上一点,E 为 BC 延长线上一点,且 .PA PE = 有下列结论:①30PAD PEC ∠+∠=︒ ;②PAE 为等边三角形;③PD CE CP =- ;④.ABC AECP S S =四边形 其中正确的结论是( )A .①②③④B .①②C .①②④D .③④7.(2分)(2021八上·如皋月考)如图,四边形ABCD 中,AB=AD ,点B 关于AC 的对称点B′恰好落在CD 上,若αBAD ∠=,则ACB ∠的度数为( )A .45︒B .α45-︒C .1α2 D .190α2︒- 8.(2分)(2021八上·盐湖期中)有一题目:“如图,∠ABC =40°,BD 平分∠ABC ,过点D 作DE ∥AB 交BC 于点E ,若点F 在AB 上,且满足DF =DE ,求∠DFB 的度数.”小贤的解答:以D 为圆心,DE 长为半径画圆交AB于点F,连接DF,则DE=DF,由图形的对称性可得∠DFB=∠DEB.结合平行线的性质可求得∠DFB=140°.而小军说:“小贤考虑的不周全,∠DFB还应有另一个不同的值”.下列判断正确的是()A.小军说的对,且∠DFB的另一个值是40°B.小军说的不对,∠DFB只有140°一个值C.小贤求的结果不对,∠DFB应该是20°D.两人都不对,∠DFB应有3个不同值9.(2分)(2021八上·长沙月考)如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠MCB 的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;②AF﹣CG=CA;③DE=DC;④CF=2CD+EG;其中正确的有()A.②③B.②④C.①②③④D.①③④10.(2分)(2021八上·江津期中)如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()个A.1B.2C.3D.4评卷人得分二.填空题(共10小题,满分10分,每小题1分)11.(1分)(2021八上·永定期末)在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为.12.(1分)(2021八上·淳安期末)如图,在△ABC中,∠ABC=∠ACB,D为BC的中点,连接AD,E是AB上的一点,P是AD上一点,连接EP、BP,AC=10,BC=12,则EP+BP的最小值是.13.(1分)(2021八上·徐汇期末)如图,∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=2,则EF=.14.(1分)(2021八上·槐荫期末)如图,在△ABC中,∠C=90°,AD平分∠BAC 交BC于点D,DE⊥AB,垂足为E,若BC=7,DE=3,则BD的长为.15.(1分)(2021八上·交城期末)如图,在△ABC中,∠C=90°,BD为△ABC的角平分线,过点D作直线l AB,点P为直线l上的一个动点,若△BCD的面积为16,BC=8,则AP最小值为.16.(1分)(2021八上·建华期末)小聪在研究题目“如图,在等腰三角形ABC 中,AB AC = , 50BAC ∠=︒ , BAC ∠ 的平分线与AB 的垂直平分线OD 交于点O ,点C 沿直线EF 折叠后与点O 重合,你能得出那些结论?”时,发现了下面三个结论:①50OEF ∠=︒ ;②图中没有60°的角;③D 、O 、C 三点共线.请你直接写出其中正确的结论序号:17.(1分)(2021八上·如皋月考)如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF 的周长为 .18.(1分)(2021八上·广州期中)如图,在 ABC ∆ 中, BAC ∠和 ABC ∠ 的平分线 AE 、BF 相交于点 O , AE 交 BC 于点 E , BF 交 AC 于点 F ,过点 O 作 OD BC ⊥ 于点 D ,则下列三个结论:①1902AOB C ∠=+∠ ;②当 60C ∠= 时, AF BE AB += ;③若 OD a = , 2AB BC CA b ++= ,则 12ABC S ab ∆= .其中正确的是 . 19.(1分)(2021八上·余杭月考)如图, ABC 中,∠ABC 、∠EAC 的角平分线BP 、AP 交于点P ,延长BA 、BC ,PM ⊥BE ,PN ⊥BF ,则下列结论中正确的是 .①CP 平分∠ACF ;②∠ABC +2∠APC =180°;③∠ACB =2∠APB ;④S △PAC =S △MAP +S △NCP .20.(1分)(2020八上·怀宁期末)如图,在△ABC 中,∠BAC =124°,分别作AC ,AB 两边的垂直平分线PM ,PN ,垂足分别是点M ,N .以下说法:①∠P =56°;②∠EAF =68°;③PE =PF ;④点P 到点B 和点C 的距离相等.正确的是 (填序号).评卷人得 分三.解答题(共9小题,满分70分)21.(5分)(2021八上·海珠期末)已知:如图,PC 平分∠APB ,CM ⊥PA 于M ,CN ⊥PB 于N ,D 、E 分别是边PA 和PB 上的点,且CD =CE .求证:∠APB+∠DCE =180°.22.(5分)(2021八上·房山期末)如图,ABC 中,CD 平分ACB ∠,DE AB⊥且E 为AB 的中点,DM BC ⊥于M ,DN AC ⊥于N ,请你判断线段BM 与AN 的数量关系并加以证明.23.(8分)(2021八上·松桃期末)如图,在ABC 中, 30BAC ∠=︒ ,AB 边的垂直平分线分别交AB 于点E ,交AC 于点F ,点D 在EF 上,且 BD CD = ,G 是AC 的中点,连接DG.;(1)(4分)求证:DG AC(2)(4分)判断BCD是否是等边三角形,并说明理由.24.(10分)(2021八上·延庆期末)如图,∠AOB=45°,OC是∠AOB的角平分线,点D是射线OB上的一点,点M为线段OD的中点,过点M作OD的垂线,交射线OA于点E,交射线OC于点F,连接ED,交OC于点G.(1)(3分)依题意补全图形;(2)(3分)猜想EF和EG的数量关系并证明;(3)(4分)求证:ED+EF=2EM.25.(7分)(2020八上·东海期末)问题情境:七下教材第149页提出这样一个问题:如图1,∠AOB=90°,OC平分∠AOB,把三角尺的直角顶点落在OC的任意一点P上,并使三角尺的两条直角边分别与OA、OB相交于点E、F,PE与PF相等吗?(1)(3分)七年级学习这部分内容时,我们还无法对这个问题的结论加以证明,八下教材第59页第11题不仅对这一问题给出了答案:“通过实验可以得到PE=PF”,还要求“现在请你证明这个结论”,请你给出证明:(2)(4分)变式拓展:如图2,已知∠AOB =120°,OC 平分∠AOB ,P 是OC 上一点,∠EPF =60°,PE 边与OA 边相交于点E ,PF 边与射线OB 的反向延长线相交于点F.试解决下列问题:①PE 与PF 还相等吗?为什么?②试判断OE 、OF 、OP 三条线段之间的数量关系,并说明理由.26.(10分)(2021八上·松江期末)如图,在Rt △ABC 中,∠ABC=90°,∠C=30°,AB=1,点D 是边AC 上一点(不与点 A 、C 重合),EF 垂直平分BD ,分别交边AB 、BC 于点E 、F ,联结DE 、DF .(1)(3分)如图1,当BD ⊥AC 时,求证:EF=AB ;(2)(3分)如图2,设CD=x ,CF=y ,求y 与x 的函数解析式,并写出函数的定义域;(3)(4分)当BE=BF 时,求线段CD 的长.27.(7分)(2021八上·淮滨月考)(1)(1分)如图1所示,在 ABC 中, 90ACB ∠=︒ ,BC 的垂直平分线交AB 于点D ,垂足为E ,当BD=5cm , 30B ∠=︒ , ACD 的周长= .(2)(1分)如图2所示,在 ABC 中,AB AC = , 120A ∠=︒ ,D 是BC 的中点, DE AB ⊥ ,垂足为E ,那么 BE EA =: .(3)(5分)如图3所示,在等边△ABC 中,D ,E 分别是BC ,AC 上的点,且AE=DC ,AD ,BE 交于点P ,作BQ ⊥AD 于点Q ,若BP=2,求PQ 的长.28.(8分)(2021八上·崇阳期中)(1)(4分)如图,在四边形ABCD 中,∠BAD=α,∠BCD=180°−α,BD 平分∠ABC.①如图1,若α=90°,请直接写出AD 与CD 之间的数量关系_ _;②在图2中,①中结论是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)(4分)根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC ,求证:BD+AD=BC.29.(10分)(2021八上·余杭月考)在 ABC 中, AB AC = .(1)(3分)如图1、求证: B C ∠=∠ :(2)(3分)如图2,D 为AB 上一点,连接CD ,E 为CD 中点,过点E 作 EF CD ⊥ 于点E ,连接 FC FD , ,求证: FC FD = ;于点H,连接AF,若AF∥BC,FH=4,(3)(4分)如图3,在(2)的条件下,过点F作FH ACCH=20,BD=10 ,求ADF的面积2022-2023学年苏科版数学八年级上册压轴题专题精选汇编专题04 线段、角的轴对称性考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·南京期末)如图,点P 在锐角 AOB ∠ 的内部,连接 OP , 3OP = ,点P 关于 OA 、 OB 所在直线的对称点分别是 1P 、 2P ,则 1P 、 2P 两点之间的距离可能是( )A .8B .7C .6D .5【答案】D【完整解答】解:连接OP 1,OP 2,P 1P 2,∵点P 关于直线OA ,OB 的对称点分别是点P 1,P 2,∴OP 1=OP=3,OP=OP 2=3, OP 1+OP 2>P 1P 2, 0<P 1P 2<6,所以A ,B ,C 不符合题意,D 符合题意;故答案为:D.【思路引导】连接OP 1,OP 2,P 1P 2,利用轴对称的性质和垂直平分线的性质,可证得OP 1=OP=3,OP=OP 2=3,再利用三角形三边关系定理,可求出0<P 1P 2<6,由此可得答案.2.(2分)(2021八上·嵩县期末)如图, AD 是 ABC 的角平分线, DE AB ⊥ 于点E , 9ABC S = , 2DE = , 5AB = ,则 AC 的长是( )A .2B .3C .4D .5【答案】C【完整解答】解:如图,过点D 作 DF ⊥AC ,DE AB ⊥ , AD 是△ABC 的角平分线,∴DE DF =2=ABC ABD ACD S S S =+ , 5AB = , 9ABC S =1122ABC S AB DE AB DF ∴=⨯+⨯即 ()19252AC =⨯⨯+ 解得 4AC =故答案为:C.【思路引导】过点D 作DF ⊥AC 于点F ,利用角平分线上的点到角两边的距离相等可求出DF 的长,再利用ABC ABD ACD S S S =+可求出AC 的长.3.(2分)(2021八上·海曙期末)如图,CD 是等腰三角形 △ABC 底边上的中线,BE 平分∠ABC ,交CD 于点E ,AC =8,DE =2,则 △ BCE 的面积是( )A .4B .6C .8D .12【答案】C【完整解答】解:过点E 作EF ⊥BC 于F ,∵AC =BC =8,CD 是等腰三角形△ABC 底边上的中线,∴CD ⊥AB ,∵BE 平分∠ABC ,ED ⊥AB ,EF ⊥BC ,∴EF =DE =2,∴△BCE 的面积=12×BC×EF =12×8×2=8.【思路引导】过点E 作EF ⊥BC 于F ,利用等腰三角形的性质可证得CD ⊥AB ,利用角平分线上的点到角两边的距离相等,可求出EF 的长;再利用三角形的面积公式可求出△BCE 的面积.4.(2分)(2021八上·嵩县期末)如图, ABC 中, 130BAC ∠=︒ , AB , AC 的垂直平分线分别交 BC 于点E ,F ,与 AB , AC 分别交于点D ,G ,则 EAF ∠ 的度数为( )A .80︒B .70︒C .65︒D .60︒【答案】A【完整解答】解:∵DE 垂直平分AB ,FG 垂直平分AC ,∴EB=EA ,FA=FC ,∴∠BAE=∠B ,∠FAC=∠C ,∵△ABC 中,∠BAC=130°,∴∠B+∠C=50°,∴∠BAE+∠FAC=50°,∴∠EAF=∠BAC ﹣(∠BAE+∠FAC )=80°.故答案为:A.【思路引导】利用垂直平分线的性质可知EA=EB ,FA=FC ,利用等边对等角得∠BAE=∠B ,∠FAC=∠C ;再利用三角形的内角和定理可求出∠B+∠C 的度数;然后可用∠EAF=∠BAC ﹣(∠BAE+∠FAC )计算可求解.5.(2分)(2021八上·淳安期末)已知下列尺规作图:①作一个角的角平分线;②作一个角等于已知角;③作一条线段的垂直平分线,其中作法正确的是( )A .①②B .①③C .②③D .①②③【答案】A 【完整解答】解:由作图可知:作图正确的是①②.【思路引导】利用作一个角等于已知角的方法,作线段垂直平分线的方法,可得答案.6.(2分)(2021八上·如皋期末)如图,在 ABC 中, AC BC = , 30B ∠=︒ ,D 为 AB 的中点,P 为 CD 上一点,E 为 BC 延长线上一点,且 .PA PE = 有下列结论:①30PAD PEC ∠+∠=︒ ;②PAE 为等边三角形;③PD CE CP =- ;④.ABC AECP S S =四边形 其中正确的结论是( )A .①②③④B .①②C .①②④D .③④【答案】C【完整解答】解:如图,连接BP ,∵AC =BC ,∠ABC =30°,点D 是AB 的中点,∴∠CAB =∠ABC =30°,AD =BD ,CD ⊥AB ,∠ACD =∠BCD =60°,∴CD 是AB 的中垂线,∴AP =BP ,而AP =PE ,∴AP =PB =PE∴∠PAB =∠PBA ,∠PEB =∠PBE ,∴∠PBA+∠PBE =∠PAB+∠PEB ,∴∠ABC =∠PAD+∠PEC =30°,故①正确;∵PA =PE ,∴∠PAE =∠PEA ,∵∠ABC =∠PAD+∠PEC =30°,∴∠PAE+∠PEA = 18060120︒-︒=︒,60APE ∴∠=︒ 而 PA PE =,∴△PAE 是等边三角形,故②正确;如图,延长 PD 至 P ' ,使 PD P D =',则点P 关于AB 的对称点为P′,连接P′A , ∴AP =AP′,∠PAD =∠P′AD ,∵△PAE 是等边三角形,∴AE =AP ,∴AE =AP′,∵∠CAD =∠CAP+∠PAD =30°,∴2∠CAP+2∠PAD =60°,∴∠CAP+∠PAD+∠P′AD =60°﹣∠PAC ,60EAC PAC ∴∠=︒-∠,∴∠P′AC =∠EAC , ∵AC =AC ,∴△P′AC ≌△∠EAC (SAS ),∴CP′=CE ,∴CE =CP′=CP+PD+DP′=CP+2PD , ∴2CE CP PD -= . 故③错误;过点A 作AF ⊥BC ,在BC 上截取CG =CP ,∵CG =CP ,∠BCD =60°,∴△CPG 是等边三角形,∴∠CGP =∠PCG =60°,∴∠ECP =∠PGB =120°,且EP =PB ,∠PEB =∠PBE ,∴△PCE ≌△PGB (AAS ),∴CE =GB ,∴AC =BC =BG+CG =EC+CP ,∵∠ABC =30°,AF ⊥BE ,∴AF =12AB =AD , ∵S △ACB = 12 CB×AF = 12 (EC+CP )×AF = 12 EC×AF+ 12 CP×AD =S 四边形AECP , ∴S 四边形AECP =S △ABC .故④正确.所以其中正确的结论是①②④.故答案为:C.【思路引导】连接BP ,根据等腰三角形的性质以及内角和定理可得∠CAB =∠ABC =30°,AD =BD ,CD ⊥AB ,∠ACD =∠BCD =60°,进而推出AP =BP =PE ,由等腰三角形的性质可得∠PAB =∠PBA ,∠PEB =∠PBE ,然后根据角的和差关系可判断①;易得∠PAE+∠PEA =120°,∠APE=60°,据此判断②;延长PD 至P′,使PD=P′D ,则点P 关于AB 的对称点为P′,连接P′A ,由等边三角形的性质可得AE =AP ,则AE =AP′,推出∠P′AC =∠EAC ,证明△P′AC ≌△∠EAC ,得到CP′=CE=CP+2PD ,据此判断③;过点A 作AF ⊥BC ,在BC 上截取CG =CP ,则△CPG 是等边三角形,则∠CGP =∠PCG =60°,证明△PCE ≌△PGB ,得到CE =GB ,推出AC =BC =EC+CP ,根据含30°角的直角三角形的性质可得AF =12AB =AD ,据此不难判断④.7.(2分)(2021八上·如皋月考)如图,四边形ABCD 中,AB=AD ,点B 关于AC 的对称点B′恰好落在CD 上,若αBAD ∠=,则ACB ∠的度数为( )A .45︒B .α45-︒C .1α2D .190α2︒- 【答案】D【完整解答】解:如图,连接AB′,BB′,过A 作AE ⊥CD 于E ,∵点B 关于AC 的对称点B′恰好落在CD 上,∴AC 垂直平分BB′,∴AB =AB′,∴∠BAC =∠B′AC ,∵AB =AD ,∴AD =AB′,又∵AE ⊥CD ,∴∠DAE =∠B'AE ,∴∠CAE =12∠BAD =12α, 又∵∠AEB′=∠AOB′=90°,∴四边形AOB′E 中,∠EB′O =180°−12α, ∴∠ACB′=∠E B′O−∠COB′=180°−12α−90°=90°−12α, ∴∠ACB =∠ACB′=90°−12α, 故答案为:D.【思路引导】连接AB′,BB′,过A 作AE ⊥CD 于E ,利用轴对称的性质可证得AC 垂直平分BB′,∠BAC =∠B′AC ,利用垂直平分线的性质可推出AB =AB′,由此可推出AD=AB′;利用等腰三角形的性质可得到∠DAE=∠BAE ,由此可表示出∠CAE 及∠EB′O ;然后根据∠ACB′=∠E B′O−∠COB′,代入计算可表示出∠ACB的度数.8.(2分)(2021八上·盐湖期中)有一题目:“如图,∠ABC=40°,BD平分∠ABC,过点D作DE∥AB 交BC于点E,若点F在AB上,且满足DF=DE,求∠DFB的度数.”小贤的解答:以D为圆心,DE长为半径画圆交AB于点F,连接DF,则DE=DF,由图形的对称性可得∠DFB=∠DEB.结合平行线的性质可求得∠DFB=140°.而小军说:“小贤考虑的不周全,∠DFB还应有另一个不同的值”.下列判断正确的是()A.小军说的对,且∠DFB的另一个值是40°B.小军说的不对,∠DFB只有140°一个值C.小贤求的结果不对,∠DFB应该是20°D.两人都不对,∠DFB应有3个不同值【答案】A【完整解答】解:如图,以点D为圆心,DE长为半径画圆交AB于点F,F',连接DF,DF',则DE DF DF==',',∠DFF DF F∴∠='∠,BD平分ABC∠=∠,由图形的对称性可知:DFB DEBDE AB,40∠=︒,ABC∴∠=︒-︒=︒,DEB18040140∴∠=︒,140DFB当点F位于点F'处时,=',DF DF18014040DF B DFF ∴∠=∠='︒-︒='︒ .故答案为:A .【思路引导】以点D 为圆心, DE 长为半径画圆交 AB 于点F ,F ' ,连接 DF ,DF ' ,则 DE DF DF ==' ,由图形的对称性可知DFB DEB ∠=∠ ,结合平行线的性质求∠DFB=140°,当点F 位于点 F ' 处时,由DF=DF'可求出∠DF'B 的度数.9.(2分)(2021八上·长沙月考)如图,在Rt △ABC 中,∠CBA =90°,∠CAB 的角平分线AP 和∠MCB 的平分线CF 相交于点D ,AD 交CB 于点P ,CF 交AB 的延长线于点F ,过点D 作DE ⊥CF 交CB 的延长线于点G ,交AB 的延长线于点E ,连接CE 并延长交FG 于点H ,则下列结论:①∠CDA =45°;②AF ﹣CG =CA ;③DE =DC ;④CF =2CD+EG ;其中正确的有( )A .②③B .②④C .①②③④D .①③④【答案】C【完整解答】解:设∠GCD =x ,∠DAC =y ,根据三角形外角的性质可得:=2=2x y ADC x y ABC+∠⎧⎨+∠⎩ , ∴1==452ADC ABC ∠∠︒ ,故①正确; 延长GD 与AC 相交于点P ,∵DE ⊥CF ,∴∠CDG =∠CDP =90°,∵CF 平分∠GCP ,∴∠GCD =∠PCD ,在△GCD 和△PCD 中,===GCD PCD CD CDCDG CDP ∠∠⎧⎪⎨⎪∠∠⎩, ∴△GCD ≌△PCD (ASA ),∴CG =CP ,∵∠ADC =45°,∴∠ADP =∠ADF ,在△AFD 和△APD 中,===FAD PAD AD ADADF ADP ∠∠⎧⎪⎨⎪∠∠⎩, ∴△AFD ≌△APD (ASA ),∴AF =AP ,∴AF ﹣CG =CA ,故②正确;同理△ACD ≌△AED (ASA ),∴CD =DE ,故③正确;在DF 上截取DM =CD ,则DE 是CM 的垂直平分线, ∴CE =EM ,∵∠ECG =∠GCD ﹣45°,∠MEF =∠DEF ﹣45°,∴∠ECG =∠FEM ,∵EF =CP ,CP =CG ,∴EF =CG ,在△EMF 和△CEG 中,===EM CE FEM ECG EF CG ⎧⎪∠∠⎨⎪⎩,∴EMF CEG ≌ (SAS ), ∴FM =GE ,∴CF =2CD+EG ,故④正确;故答案为:C.【思路引导】设∠GCD =x ,∠DAC =y ,根据三角形外角的性质可得∠ADC=45°,据此判断①;延长GD 与AC 相交于点P ,根据角平分线的概念可得∠GCD =∠PCD ,证明△GCD ≌△PCD ,得到CG =CP ,进而证明△AFD ≌△APD ,得到AF =AP ,据此判断②;同理△ACD ≌△AED ,据此判断③;在DF 上截取DM=CD ,则DE 是CM 的垂直平分线,CE =EM ,易得∠ECG =∠FEM ,证明△EMF ≌△CEG ,得到FM =GE ,据此判断④.10.(2分)(2021八上·江津期中)如图,D 为∠BAC 的外角平分线上一点并且满足BD =CD ,∠DBC =∠DCB ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE =AB+AE ;③∠BDC =∠BAC ;④∠DAF =∠CBD.其中正确的结论有( )个A .1B .2C .3D .4【答案】D【完整解答】解:∵AD 平分 CAF ∠ ,DE ⊥AC ,DF ⊥AB ,∴DE DF = ,在 Rt CDE 和 Rt BDF 中,BD CD DE DF =⎧⎨=⎩,∴Rt CDE Rt BDF ≅ ,故①正确;∴CE AF = ,在 t ADE R 和 Rt ADF 中,AD AD DE DF=⎧⎨=⎩ ,∴Rt ADE Rt ADF ≅ , ∴AE AF = ,∴CE AB AF AB AE =+=+ ,故②正确;∵Rt CDE Rt BDF ≅ ,∴DBF DCE ∠=∠ ,又∵AOB DOC ∠=∠ ,∴∠BDC =∠BAC ,故③正确;∵AD 平分 CAF ∠ ,∴DAF DAE ∠=∠ ,∵BD CD = ,∴DBC DCB ∠=∠ ,∵180BAC DAF DAE ∠+∠+∠=︒ , 180BDC DBC DCB ∠+∠+∠=︒ ,∠BDC =∠BAC , ∴DAF DAE DBC DCB ∠+∠=∠+∠ ,∴∠DAF =∠CBD ,故④正确;综上所述,正确的有①②③④;故答案为:D.【思路引导】由角平分线的性质可得DE=DF ,根据HL 证明Rt CDE Rt BDF ≅,可得CE=AF , DBF DCE ∠=∠ ,根据HL 证明Rt ADE Rt ADF ≅,可得AE AF =,从而得出CE AB AF AB AE =+=+,据此判断①②;在△AOB 和△DOC 中,DBF DCE ∠=∠,∠AOB=∠DOC ,可得∠BDC =∠BAC ,据此判断③;利用三角形的内角和可求∠DAF+∠DAE=∠DBC+∠DCB,从而得出∠DAF =∠CBD ,据此判断④.二.填空题(共10小题,满分10分,每小题1分)11.(1分)(2021八上·永定期末)在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为.【答案】6【完整解答】解:如图,先标注字母,∵在△ABC中,AD⊥BC,BD=CD,∴AB=AC,∠ADB=∠ADC=90°,S△ABD=S△ACD,∴∠BAD=∠CAD,在△ABE和△ACE中,AB=AC,∠BAE=∠CAE,AE=AE,∴△ABE≌△ACE(SAS),∴S△ABE=S△ACE,在△BDF和△CDF中,BD=CD,∠BDF=∠CDF,DF=DF,∴△BDF≌△CDF(SAS),∴S△BDF=S△CDF,∴S△BEF=S△CEF,∵S△ABC=12BC•AD=12×4×6=12,∴S阴影=12S△ABC=6.故答案为:6.【思路引导】由AD⊥BC于D点,BD=CD,得△ABC是等腰三角形,易证△ABE≌△ACE,△BDF≌△CDF,继而可得S阴影=12S△ABC,则可求得答案.12.(1分)(2021八上·淳安期末)如图,在△ABC中,∠ABC=∠ACB,D为BC的中点,连接AD,E是AB上的一点,P是AD上一点,连接EP、BP,AC=10,BC=12,则EP+BP的最小值是.【答案】9.6【完整解答】解:连接PC,∵∠ABC=∠ACB,∴AB=AC,∵D为BC的中点,∴AD垂直平分BC,BD=12BC=6∴BP=CP,22221068AD AB BD=-=-=∴EP+BP=EP+CP要使EP+BP的值最小,利用两点之间线段最短和垂线段最短,可知当点E,P,C在同一直线上时,且CE ⊥AB时,EP+BP的值最小,最小值为EC的长;∵1122ABCS AB CE CB AD=⋅=⋅,∴10CE=12×8解之:CE=9.6.故答案为:9.6.【思路引导】连接PC,利用已知易证△ABC是等腰三角形,利用等腰三角形的性质可求出BD的长,利用勾股定理求出AD的长,利用垂直平分线的性质可证得BP=PC;由此可得到EP+BP=EP+CP,要使EP+BP的值最小,利用两点之间线段最短和垂线段最短,可知当点E,P,C在同一直线上时,且CE⊥AB时,EP+BP 的值最小,最小值为EC的长;然后三角形的面积公式可求出CE的长.13.(1分)(2021八上·徐汇期末)如图,∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=2,则EF=.【答案】4【完整解答】解:作EG⊥OA于G,如图所示:∵EF//OB,∠AOE=∠BOE=15°,EC⊥OB,∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.【思路引导】作EG⊥OA于G,根据平行线的性质及角平分线的定义可得∠EFG=15°+15°=30°,再利用含30°角的性质可得EF=2EG=4.14.(1分)(2021八上·槐荫期末)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=7,DE=3,则BD的长为.【答案】4【完整解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=3,∴CD=3,∴BD=BC−CD=7−3=4.故答案为:4.【思路引导】由角平分线的性质可得CD=DE=3,利用BD=BC−CD即可求解.15.(1分)(2021八上·交城期末)如图,在△ABC 中,∠C =90°,BD 为△ABC 的角平分线,过点D 作直线l AB ,点P 为直线l 上的一个动点,若△BCD 的面积为16,BC =8,则AP 最小值为 .【答案】4【完整解答】解:∵∠C =90°,△BCD 的面积为16,BC =8, ∴1162BC CD ⋅=,即4CD =, 作DE ⊥AB ,∵BD 为△ABC 的角平分线,∴4DE CD ==,∵直线l AB ,∴AP 最小值与DE 相等为4,故答案为:4.【思路引导】根据三角形的面积公式求出CD ,根据角平分线的性质求出DE ,根据垂线段最短解答即可。
八年级数学上册轴对称解答题(培优篇)(Word版含解析)
八年级数学上册轴对称解答题(培优篇)(Word版含解析)一、八年级数学轴对称解答题压轴题(难)1.如图1, ZiABC 中,AB=AC・ ZBAC = 905, D、E 分别在BC、AC 边上,连接AD、BE 相交于点F,且ZCAD =丄ZABE.2⑵如图2,连接CF,若EF = EC,求ZCFD的度数:(3)如图3,在⑵的条件下,若AE = 3,求BF的长.【答案】(1)答案见详解:(2)45。
,(3)4.【解析】【分析】(1)设ZCAD二x,则ZABE=2x, ZBAF二90° -x, ZAFB=180° -2x-(90° -x)= 90° -x,进而得到ZBAF二ZAFB,即可得到结论:(2)由ZAEB=90°-2x t进而得到ZEFC= (90°-2x) +2=45。
-x,由BF=AB,可得:ZEFD=ZBFA=90° 根据ZCFD=ZEFD-ZEFC> 即可求解;⑶设EF=EC二x,则AOAE+EC二3+x・可得BE二BF+EF=3+x+x=3+2x,根据勾股左理列出方程,即可求解.【详解】(1)设ZCAD二x,1VZCAD=-ZABE, ZBAC=90S2AZABE=2x, ZBAF=90° -x,V ZABE+ZBAF+ZAFB=180° ,A ZAFB=180° -2x-(90° ・x)= 90° %AZBAF=ZAFB t•••BF = AB;VAB=AC,ABF = AC:(2)由(1)可知:ZCAD二x, ZABE二2x, ZBAC=90^,•••ZAEB=90°-2x,VEF = EC,AZEFC=ZECF,•/ Z EFC+ Z ECF= ZAEB=90°-2x,AZEFC= (90°-2x) -2=45° -x,VBF=AB,AZBFA=ZBAF=(180a -ZABE)-s-2=(180° -2x)-s-2=90° -x,AZEFD=ZBFA=90° ・x,A ZCFD=ZEFD-ZEFC=(90° -x) -(45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 1.2轴对称的性质
⒈如图,下列图案是我国几家银行的标志,其中是轴对称图形的有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
⒉ 在△ABC 中,AB=AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为 ( )
A 、12cm
B 、6 cm
C 、 7 cm
D 、5 cm
⒊下列说法中,正确说法的个数有 ( )
①角是轴对称图形,对称轴是角的平分线; ②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁.
A 、1个
B 、2个
C 、3个
D 、4个 ⒋ 圆的对称轴是_____________________________________,它有________条对称轴. ⒌ 观察下图形,你觉得______比较特别,简述理由是__________________________.
⒍ 在锐角∠AOB 内有一点P ,点P 关于OA 、OB 的对称点分别为E 、F, 则△EOF 一定是_____________三角形.
⒎如图,△ABC 中,∠BAC=1100,E 、G 分别为AB 、AC 中点,DE ⊥AB ,FG ⊥AC ,求∠DAF .
⒏在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如
图所示,在斜边AB 上取一点E ,使BE=BC ,过点E 作ED ⊥AB ,交AC 于D ,那么BD 就是∠ABC 的平分线,你认为对吗?为什么?
⑴ ⑵ ⑶ ⑸
⑷ D C D
C
中考资源网期待您的投稿!zkzyw@
- 2 -
⒐如图,DA 、CB 是平面镜前同一发光点S 发出的经平面镜反射后的反射光线,请通过画图确定发光点S。