离心泵串并联实验讲义
离心泵的串并联讲义
离心泵的串并联实验讲义一、实验目的1.了解离心泵结构与特性,学会离心泵的操作2.测量不同转速下离心泵的特性曲线。
3.测量离心泵串联时的压头和流量的关系。
4.测量离心泵并联时的压头和流量的关系。
二、实验原理1.单台离心泵的特性曲线离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。
由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。
1)扬程H 的测定与计算在泵进、出口取截面列柏努利方程:gu u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:gp p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。
2)轴功率N 的测量与计算轴的功率可按下式计算: w N ∙=94.0式中,N —泵的轴功率,W w —电机输出功率,W由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。
3)效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne 可用下式计算:Ne=HV ρg 故η=Ne/N=HV ρg/N4)离心泵性能参数的换算泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。
但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。
离心泵串并联及工况调节综合实验
离心泵串并联及工况调节综合实验
一、实验目的
1.绘制两台离心泵串联运行工况调节图;
2.绘制两台离心泵并联运行工况调节图(共用管路节流调节方式):
二.实验装置
1.离心泵、电动机、管路系统(包括管路、阀门、水箱等);
2.真空表、压力表;玻璃转子流量计
三.实验原理
离心泵实验系统布置图如下图
图1 离心泵实验系统布置图
1—电动机;2—离心式水泵;3—压力表;4—转子流量计;5—2”弯头;6—真空表
7—三通;8—闸阀;9—水箱;;10—逆止阀
四.实验步骤
1.检查管路是否接好,流量计中水是否充满。
2.离心泵阀门全开,联好线路,打开电源开关。
3.将管路调制离心泵串联运行,稳定后,从小到大调节阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
4.将管路调制离心泵并联运行,稳定后,从小到大调节共用管路阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。
五.实验数据记录与处理
1.原始数据
当地重力加速度:g= m/s2;水池距离地面高度: cm;
测试水温:t= ℃;该温度下水的密度:ρ= kg/m3(查表);
1#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2#离心泵出口截面中心与进口截面中心的高度差∆z= m;
2实验数据记录与处理
表2
3.两台离心泵串联运行工况调节图
4.两台离心泵并联运行工况调节图(共用管路节流调节)
六、注意事项
1.实验过程中,禁止沙粒抽进泵体。
2.长期停用时,开启前请先拨动叶片,确定转动灵活再接电源。
3.越冬前,请排净泵内积水一方冻裂。
10离心泵 串联和并联
10.1离心泵的串并联
在同一管路中两台泵串联后的扬程等于两台泵扬程之和而小于两台泵单独工作时的扬程之和因为串联后的管路流量增大阻力损失也随之增大致使串联后的扬程与单泵工作扬程相比不可能成倍增加管路阻力损失越大或者说管路特性曲线越陡峭串联扬程与两台独工作时的扬程之和相差也越小反之管路阻力损失越小或者说管路特性曲线越平坦串联扬程与两台泵单独工作时的扬程之和相差也越大为提高扬程而采用串联工作的效果就越差。
所以说两台性能相同的离心泵串联工作时或多或少地既能提高扬程也能增大流量其增加量不取决于泵本身而取决于管路特征曲线的平坦与陡峭程度。
10.2离心泵并联工作
在同一管路中两台泵并联后的流量等于两台泵流量之和而小于两台泵单独工作时的流量之和因而并联后的管路流量增大阻力损失也随之增大要保持能量平衡必须提高扬程致使单泵流量减少即并联后的流量与单泵工作流量相比不可能成倍增加。
管路的阻力损失越大或者说管路特性曲线越陡峭并联流量与两台泵单独工作时的量之和相差越大为提高流量而采用并联工作的效果就越差。
离心泵串并联实验
离心泵串并联实验
一、离心泵的联用方式
1 、并联操作
两台型号相同的泵并联后,其特性曲线可用单泵特性曲线合成,见图。
当管路特性曲线不变时,并联后的流量增加,但小于两台单泵的流量之和,即Q并<2Q单,而H并>H单
2 、串联操作
两台型号相同的泵串联后,其特性曲线亦可用单泵特性曲线合成,见下图。
当管路特性曲线不变时,串联后的压头增加,但亦小于两台单泵的压头之和,即H串<2H单,而Q并>Q单。
3 、组合方式的选择
若管路两端的()项值大于泵所能提供的最大压头,则必须用串联操作。
对低阻型管路(即管路特性曲线比较平缓),并联泵输送的流量、压头均大于串联泵。
对高阻型管路(即管路特性曲线比较陡峭),串联泵输送的流量、压头均大于并联泵,见下图。
二、离心泵的安装和运转
离心泵的安装高度应低于允许的安装高度(即计算的安装高度),以免产生汽蚀现象。
为减少吸入管段的流体阻力,吸入管径不应小于泵入口直径,吸入管应短而直,不装阀门,但当泵的吸入口高于液面时应加一止逆底阀。
离心泵启动前或停时应注意:(1)灌满液体,以免产生气缚现象;关闭出口阀门,以减小启动功率;(2)离心泵停泵前应先关闭出口阀门;(3)离心泵运转时,应定期检查轴封有无泄漏,轴承、填料函等发热情况,轴承应注意润滑。
泵 实验教案 2
1离心泵串并联实验一、实验目的验证离心泵联合运行、即串、并联工作时的性能以及与单泵运行时性能的关系。
二、实验装置离心泵串并联工作实验系统。
三、实验原理及方法 1、 流量流量采用体积法进行测量。
t V Q =式中:Q ——泵系统的流量(L/s );t ——计量时间(S );V —— t 时间内流入计量箱内水的体积(L )。
2、 扬程扬程采用离心泵进出口压力表及真空表压力表进行测量。
(1) 单泵)(100v P P Z H ++∆=式中:H ——离心泵扬程(m );Z ∆——离心泵进出口压力表与真空表高差(m );P ,Pv ——离心泵进出口压力表与真空表读数(MPa )。
(2) 串联)(100VB VA B A P P P P Z H ++++∆= 式中:H ——串联泵总扬程(m );P A ,P B ——A ,B 泵出口压力表读数值(MPa ); P V A ,P VB ——A ,B 泵进口真空表读数值(MPa ),该读值在正压时取负。
(3) 并联)(100v P P Z H ++∆= 3、 串联泵性能叠加原理将串联在一起的两台单泵的扬程与流量关系曲线,按相同流量下扬程相加,即所谓竖加法原理,合成两台泵串联工作时的扬程与流量关系曲线。
4、 并联泵性能叠加原理将并联在一起的两台单泵的扬程与流量关系曲线,按相同扬程下流量相加,即所谓横加法原理,合成两台泵并联工作时的扬程与流量关系曲线。
四、实验步骤 1、 单泵(1) 准备a 、 全开泵吸水管阀门4A 或4B ,全开系统出口阀门7A 或7B ;b 、 关闭串联切换阀门5A 或5B 、6A 或6B ,并联切换阀门8;c 、 关闭压水管阀3A 或3B ;d 、 搬动系统出水口5或6,令其指向泄水水箱4;e 、 打开计量水箱放空阀7或8,待水放空后,关闭此阀门;f 、 用手盘动电机与水泵的联轴器,使其转动自如。
(2) 实测(A 泵和B 泵可同时操作)a 、 启动电机;b 、 均匀开启压水管阀门3A 或3B 直至全开,稳定后,记录压力表和真空表读数值,同时使用计量水箱2或3和秒表计量t 时间内流入计量水箱水的体积V ,读值后,打开放空阀门7或8将水放空,然后关闭此阀。
离心泵的串并联课件
农田灌溉中的离心泵串并联
总结词
在农田灌溉中,离心泵的串并联应用可以实现大面积 灌溉和精准灌溉,提高灌溉效率和节约水资源。
详细描述
在农田灌溉中,离心泵的串并联应用可以根据不同的 地形和水源条件进行灵活布置。通过将多台离心泵串 联起来,可以实现大面积灌溉,提高灌溉效率;同时, 通过离心泵的并联使用,可以实现精准灌溉,根据不 同地块的需水情况调节灌溉水量,节约水资源。此外, 离心泵的串并联还具有结构简单、运行稳定、易于维 护等优点。
离心泵串并联的应用场景 01 02
离心泵串并联的工作原理
离心泵串并联的工作原理主要是通过 多个离心泵的共同作用,实现扬程和 流量的叠加。
VS
在串联系统中,水流从一个泵的出口 流入下一个泵的入口,通过多个泵的 共同作用,实现高扬程、大流量;在 并联系统中,多个泵的出口和入口分 别连接在一起,形成一个共同的管道 系统,通过多个泵的共同作用,实现 流量增加和可靠性提高。
contents
目录
• 离心泵串并联概述 • 离心泵的串联 • 离心泵的并联 • 离心泵串并联的选用原则 • 离心泵串并联的实际应用案例
离心泵串并联的定义
离心泵串并联是指将两个或多个离心泵按照一定的方式连接起来,形成一个整体 的系统。
离心泵的串并联可以通过串联或并联的方式实现,其中串联是指将多个离心泵依 次连接,水流从一个泵的出口流入下一个泵的入口;并联是指将多个离心泵的出 口和入口分别连接在一起,形成一个共同的管道系统。
水处理系统中的离心泵串并联
总结词
在水处理系统中,离心泵的串并联应用主要涉及污水 提升和处理流程,通过串并联实现水位和水质的控制。
详细描述
在水处理系统中,离心泵的串并联应用可以实现污水的 提升和处理。例如,在污水处理厂的沉砂池和沉淀池中, 通过将多台离心泵串联起来,可以将污水逐级提升到更 高的位置,以满足后续处理流程的需求;在过滤池中, 离心泵的并联使用可以增加流量,提高过滤效率。此外, 离心泵的串并联还可以用于调节水位和水质,确保水处 理系统的稳定运行。
离心泵的串联与并联回顾
离心泵的串联与并联
整理课件
1
回顾
❖ 1、离心泵的主要性能参数有:
❖
流量、扬程、功率、效率
压头与流量的关系也在坐标图上表示出来,称为管路特性曲线。管路 特性曲线由管路布局和操作条件决定,与泵的性能无关。如图2,为 特定管路对应的管路特性曲线和离心泵特性曲线,图中M点为同时符 合管路和离心泵特性的点,即为离心泵的工作点。
图2 管路特性曲线和泵的工作点
一、离心泵的并联
当两台离心泵并联
时,如图3,依据单台泵 特性曲线Ⅰ上坐标点, 保持其纵坐标H不变,使 横坐标qV加倍,得到一 条两台泵并联的合成特
由图5可知串联后工作点的压头 H串>He,而且H串<2He,即串联离心 泵的总压头必低于单台离心泵压头 的两倍。
整理课件
Ⅰ——单台离心泵特性曲线; Ⅱ——两台离心泵串联特性曲线; Ⅲ——管路特性曲线。
图5 离心泵串联特性曲线
7
当两台泵并联后,输送的液体进 入相同的管路中,见图1,流量增大使 管路流动阻力增加,受到输送管路的 限制,并联离心泵的总流量必低于单 台离心泵的两倍。
图1 离心泵并联图
由于离心泵并联的总流量同时受 到离心泵特性和管路特性的影响,因 此,在这里补充一下管路特性的概念。
整理课件
3
补充知识
管路特性曲线 在特定管路系统,固定的操作条件下,流体流经该管路时所需的
性曲线Ⅱ,与管路特性 曲线的交点就是并联操 作的工作点M并。
Ⅰ——单台离心泵特性曲线;Ⅱ——两台离心泵并联特性曲线; Ⅲ——管路特性曲线。
离心泵串并联实验讲义全
离⼼泵串并联实验讲义全离⼼泵串并联实验讲义⼀、实验⽬的1.增进对离⼼泵并、串联运⾏⼯况及其特点的感性认识。
2.绘制单泵的⼯作曲线和两泵并、串联总特性曲线。
⼆、实验原理在实际⽣产中,有时单台泵⽆法满⾜⽣产要求,需要⼏点组合运⾏。
组合⽅式可以有串联和并联两种⽅式。
下⾯讨论的容限于多台性能相同的泵的组合操作。
基本思路是:多台泵⽆论怎样组合,都可以看作是⼀台泵,因⽽需要找出组合泵的特性曲线。
1.泵的并联⼯作当⽤单泵不能满⾜⼯作需要的流量时,可采⽤两台泵(或两台以上)的并联⼯作⽅式,如图所⽰。
离⼼泵I 和泵II 并联后,在同⼀扬程(压头)下,其流量Q并是这两台泵的流量之和,Q并=Q I+QⅡ。
并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线 (Q - H )I和 (Q - H )II上的对应的流量相加,得到并联后的各相应合成流量Q并,最后绘出 (Q - H )并曲线如图所⽰。
图中两根虚线为两台泵各⾃的特性曲线 (Q - H )I和 (Q - H )II;实线为并联后的总特性曲线 (Q - H )并,根据以上所述,在 (Q - H )并曲线上任⼀点M,其相应的流量Q M是对应具有相同扬程的两台泵相应流量Q A和Q B之和,即Q M=Q A+Q B。
图泵的并联⼯作东真-515图两台性能曲线相同的泵的并联特性曲线上⾯所述的是两台性能不同的泵的并联。
在⼯程实际中,普遍遇到的情况是⽤同型号、同性能泵的并联,如图所⽰。
(Q - H )I和 (Q - H )II特性曲线相同,在图上彼此重合,并联后的总特性曲线为 (Q - H )并。
本实验台就是两台相同性能的泵的并联。
进⾏教学实验时,可以分别测绘出单台泵I 和泵II ⼯作时的特性曲线 (Q - H )I和(Q - H )II,把它们合成为两台泵并联的总性能曲线 (Q - H )并。
再将两台泵并联运⾏,测出并联⼯况下的某些实际⼯作点与总性能曲线上相应点相⽐较。
离心泵并联及工况调节实验
专业基础综合实验指导书实验五 离心泵并联及工况调节实验一、实验目的了解离心泵并联运行时的特点,分析两台泵并联运行时不同负荷下的经济运行方案。
二、实验要求1、绘制两台离心泵并联运行工况调节图;①. 共用管路节流调节方式;②. 泵出口非共用管路节流调节方式;2、当两台离心泵并联运行时,通过分析计算,确定出在50%负荷和75%负荷时经济运行的调节方式。
三、实验原理并联各泵所产生的扬程均相等;而并联后的总流量为并联各泵所输送的流量之和。
即∑=∑∑==ni ViV i q q H H 1 (1-1)与一台泵单独运行时相比,并联运行时的总扬程和总流量也均有所增加。
四、实验所需仪器、设备、材料(试剂)离心泵系统额定转速下的基本参数如下表,其实验系统布置如图1所示。
图1 离心泵实验系统布置图1——电动机;2—转矩转速仪;3——离心式水泵;4——压力表;5—压水管路;6——2 弯头;7——三通;8——油任;9——闸阀;10—涡轮流量计;11——水箱;12—手持式转速表;13—计算机系统(数据采集卡及软件);14——真空表;15—吸水管路;16—吸水池17——逆止阀;18—联轴器联轴器传动机械效率ηtm =98%; 离心泵叶轮直径:162mm ; 进出口管路内径D 20=50mm ;水泵压强测点布置、三角水堰示意图如图2所示。
其中:h 0+h 2-h 1=0.385m 。
对于西侧2#泵水箱,H 0=0.162m ,对于东侧1#泵水箱,H 0=0.158m 。
图2 水泵压强测点布置、三角水堰示意图五、实验预习要求、实验条件、方法及步骤本实验的先修实验课为:《离心泵性能实验》、《流体力学阻力实验》及《流量测量实验》,即本实验要求学生在熟悉和掌握以下几点的基础之上进行: ①.离心泵启动前的准备、启动、停止步骤以及应注意的事项; ②.各种测量仪表测取有关数据的操作方法; ③.离心泵性能参数的测定和计算方法; ④.管路特性曲线的计算及获取方法。
离心泵的组合运转 ppt课件
几台泵的串联相当于
有几台原动机的一台
1
2
多级泵
离心泵的组合运转
5
两台同型号泵串联时,其流量、压头是 相同的。因此串联的特性曲线就是单台 泵的特性曲线纵坐标加倍,
管路的特性曲线不变
通过作图可以看出,两台相同泵串联运 转的压头比任一台单独使用时高,但并 不是高一倍
离心泵的组合运转
6
组合方式的比较与选择
1
2பைடு நூலகம்
➢ 泵特性曲线相同
两台离心泵并联安装
离心泵的组合运转
3
泵的H-q曲线相同
单台泵的特性曲线横坐标加倍,即可求得 并联泵的合成特性曲线
管路的特性曲线不变
通过作图可以看出,并联流量q并比单泵流 量q大,但并不是2倍的关系,只要有管 路阻力损失存在,流量就不会加倍
离心泵的组合运转
4
二、串联
单台泵流量可以满足, 但扬程无法满足
并联可以提高流量,同时压头也有所提高 串联可以提高压头,同时流量也有所提高
管路特性方程中A=△Z+△P/ρg 大于单泵所
提供的最大压头,必须采用串联安装 许多情况下,单泵可以输送流体,只是流量过
低达不到要求,究竟采用哪种组合更为有利?
离心泵的组合运转
7
离心泵的串联与并联
化工原理第二章第二节 2011.9
离心泵的组合运转
1
组合运转分类
并联安装工况
➢ 流量变化大 ➢ 扩建,降低投资成本
串联安装:单台泵无法满足压头要求
➢ 出口容器高位能 ➢ 出口容器高静压能
探讨特性相同的泵组合工况
离心泵的组合运转
2
并联操作
探讨最简单情况
➢ 两台泵并联
➢ 管路特性曲线相同
离心泵的串并联讲义
离心泵的串并联讲义
离心泵是一种常见的工业泵,其工作原理是将液体通过旋转叶轮的离心力输送。
离心泵的使用非常灵活,可用于各种场合,例如水处理、化学生产和石油提取等。
离心泵的串联和并联是在工业过程中经常用到的两种操作方式。
串联是将两个或多个泵连接在一起,使它们的输出流量逐级增加,压力也逐级增高;并联则将两个或多个泵连接在一起,使它们的流量同时进入一个管道,从而获得更大的流量。
本文将详细介绍离心泵的串联和并联操作。
离心泵的串联是将多个离心泵连接在一起,让它们的流出口和流入口分别连通,以便将其同步用于输送高压和大流量的液体。
串联操作将多个离心泵按照流量逐级相连,形成一个输送液体的管道,输出流量随着泵的数量逐级增加,压力也逐级增高。
串联离心泵的优点是可以获得高压和大流量,能够将液体输送到较远的地方。
但是串联也存在不足之处,例如多个泵之间可能产生流量不均,泵的寿命缩短等问题。
因此,在进行串联操作时,需要根据具体情况进行技术评估和设计,以达到最佳效果。
并联离心泵的优点是可以获得更高的流量,能够快速将液体输送到目的地。
并联操作通常使用于液体输送量大且距离近的场合,比如污水处理厂,水厂和工厂等。
需要注意的是,在进行离心泵的并联时,需要确保所有泵的输出流量相同,否则会出现其中一台泵输出过量,其他泵流量不足的现象,导致整个操作失败。
在实际操作过程中,需要根据具体情况选择串联和并联操作方式。
一般来说,串联操作更适合输送高压和大流量的液体,可以输送到较远的地方;而并联操作适合输送大量液体,其中流量相对较小,但是输送距离较近。
因此,在选择操作方式时,需要充分考虑液体输送距离、输送量和压力等因素。
离心泵并联及串联运行工况课件
06
结论与展望
并联与串联的适用选择
并联适用场景
当需要提高总流量或总扬程,特 别是在流量变化大或系统要求可 靠性高的场合,通常采用离心泵 并联运行。
串联适用场景
当需要提高扬程或克服管路中的 静扬程时,特别是当管路阻力大 或要求压力稳定时,通常采用离 心泵串联运行。
未来研究方向与展望
探索新型的离心泵结构,以提高 其性能和适应性,满足更多复杂 工况的需求。
在离心泵并联运行时,扬程基本保持不变,这是因为并联运行中,每个泵的扬程 大致相同,总扬程等于单个泵的扬程。而在串联运行时,扬程会增加,因为水流 经过每个泵时,都会被增加一定的能量或高度。
能耗变化对比
总结词
并联能耗增加,串联能耗减少
详细描述
在离心泵并联运行时,能耗会增加,这是因为每个泵同时运行,都会消耗一定的电能。而在串联运行 时,如果前一个泵的效率低于后一个泵,则总效率可能会高于单个泵的效率,从而使得能耗减少。
并联与串联的定义
并联是指多个离心泵同时连接到同一 管道系统,共同完成液体输送任务。
串联是指多个离心泵依次连接,前一 个泵的出口连接到后一个泵的入口, 形成连续的输送流程。
02
离心泵并联运行工况
并联运行的特点
两个或多个离心泵并 联连接,共同向一个 管道系统供水。
系统的总流量大于单 个泵的流量,总扬程 等于单个泵的扬程。
05
实际应用案例分析
并联运行案例分析
案例一:水厂供水系统
01
输0入2
标题
离心泵并联运行在水厂供水系统中,可以满足不同时 段的水量需求。当用水量较大时,可以开启多台离心 泵同时供水,保证水压和流量的稳定。
03
在农业灌溉系统中,离心泵并联运行可以提供稳定的 水源,满足大面积农田的灌溉需求。同时,可以根据
离心泵串并联实验报告
离心泵串并联实验报告实验目的:掌握离心泵的串并联运行特性,了解离心泵的工作原理和性能。
实验仪器:离心泵、水泵、水箱、流量计、压力表、水管。
实验原理:1. 离心泵的工作原理:离心泵是利用离心力将液体从低压区域输送到高压区域的装置。
当电机带动叶轮高速旋转时,液体被吸入叶轮的中心,并随着叶轮的旋转被甩到叶轮的外缘,形成离心力,使液体获得动能,从而产生压力,将液体输送到出口处。
2. 离心泵的串联:多台离心泵按照流体的流动方向依次连接,流体依次通过每台离心泵,形成离心泵的串联。
串联后的离心泵可以提高总扬程,适用于输送高扬程的液体。
3. 离心泵的并联:多台离心泵同时连接到同一水源和出口处,流体同时通过每台离心泵,形成离心泵的并联。
并联后的离心泵可以提高总流量,适用于输送大流量的液体。
实验步骤:1. 将水泵固定在实验台上,并连接好水源和出口处的水管。
2. 将水泵的进口管连接到水箱,出口管连接到流量计。
3. 打开水泵和流量计,记录下流量计的读数和压力表的读数,作为并联状态下的初始数据。
4. 关闭水泵,将流量计的出口管连接到离心泵的进口处。
5. 打开水泵和流量计,记录下流量计的读数和压力表的读数,作为串联状态下的初始数据。
6. 关闭水泵,将流量计的出口管从离心泵的进口处断开,连接到离心泵的出口处。
7. 打开水泵和流量计,记录下流量计的读数和压力表的读数,作为并联状态下的初始数据。
8. 分别调节水泵的转速,记录下不同转速下的流量计读数和压力表读数。
9. 对比并分析串联和并联状态下的流量和压力变化情况。
实验结果:1. 并联状态下,随着水泵转速的增加,流量逐渐增大,压力基本保持不变。
2. 串联状态下,随着水泵转速的增加,流量逐渐增大,压力逐渐增加。
实验结论:1. 并联状态下,多台离心泵可以提高总流量,但对于压力的增加影响较小。
2. 串联状态下,多台离心泵可以提高总扬程和压力,但对于流量的增加影响较小。
3. 应根据实际需求选择离心泵的串联或并联运行方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离心泵串并联实验讲义一、实验目的1.增进对离心泵并、串联运行工况及其特点的感性认识。
2.绘制单泵的工作曲线和两泵并、串联总特性曲线。
二、实验原理在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。
组合方式可以有串联和并联两种方式。
下面讨论的内容限于多台性能相同的泵的组合操作。
基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。
1.泵的并联工作当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。
离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q并是这两台泵的流量之和,Q并=Q I+QⅡ。
并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线 (Q - H )I和 (Q - H )II上的对应的流量相加,得到并联后的各相应合成流量Q并,最后绘出 (Q - H )并曲线如图所示。
图中两根虚线为两台泵各自的特性曲线 (Q - H )I和 (Q - H )II;实线为并联后的总特性曲线 (Q - H )并,根据以上所述,在 (Q - H )并曲线上任一点M,其相应的流量Q M是对应具有相同扬程的两台泵相应流量Q A和Q B之和,即Q M=Q A+Q B。
图泵的并联工作东真-515图两台性能曲线相同的泵的并联特性曲线上面所述的是两台性能不同的泵的并联。
在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。
(Q - H )I和 (Q - H )II特性曲线相同,在图上彼此重合,并联后的总特性曲线为 (Q - H )并。
本实验台就是两台相同性能的泵的并联。
进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线 (Q - H )I和(Q - H )II,把它们合成为两台泵并联的总性能曲线 (Q - H )并。
再将两台泵并联运行,测出并联工况下的某些实际工作点与总性能曲线上相应点相比较。
2.泵的串联工作当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。
离心泵串联后,通过每台泵的流量Q是相同的,而合成压头是两台泵的压头之和。
串联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应合成压头,从而可绘制出串联系统的总特性曲线 (Q - H )串如图所示。
串联特性曲线 (Q - H )串上的任一点M 的压头H M,为对应于相同流量Q M的两台单泵I 和II 的压头H A和H B之和,即H M=H A+ H B。
教学实验时,可以分别测绘出单台泵泵I 和泵II 的特性曲线 (Q - H )I和 (Q - H )II,并将它们合成为两台泵串联的总性能曲线 (Q - H )串,再将两台泵串联运行,测出串联工况下的某些实际工作点与总性能曲线的相应点相比较。
He=H出口压力表-H进口压力+H0+(u出-u入2)/2g 真图两台泵的串联的特性曲线计算方法和公式:泵的扬程用下式计算:2式中:H出口压力——泵出口处压力(米)H真空表——泵入口真空度(米)H0——压力表和真空表测压口之间的垂直距离(米)u出——泵出口处液体流速(立方米/秒)u入——泵入口处液体流速(立方米/秒)g——重力加速度三、实验装置与流程(1)实验装置(天大提供)泵的最小频率:1900 转/分泵的最大频率:2900 转/分泵的额定扬程:50 米泵的电机效率:90%泵的进口管内径:41 毫米泵的出口管内径:41 毫米两测压口间垂直距离:0.3 米(2)实验流程真串并联实验装置流程图四、实验步骤先到参数设置画面进行泵的参数设置:主要是选泵和调节泵的转速。
然后再进行实验。
(1)单台泵I 特性曲线 (Q - H )I的测定。
①关闭泵出口阀V2,开启泵的进水阀门V1;②接通电源,启动泵Ⅰ;③稍稍打开阀门V2,调节其流量,待真空表P1 和压力P2 稳定,记下压力表和真空表的读数和孔板流量计的流量,由此测得一个工况下的H 和Q。
④开大阀门V2 的开度,重复③的步骤,测得十组数据。
⑤依次关闭出水阀V2,关闭泵Ⅰ的电源,关闭泵进水阀V1。
(2)单台泵II 特性曲线 (Q - H )II的测定。
①关闭泵出口阀V4,开启泵的进水阀门V3;②接通电源,启动泵II;③稍稍打开阀门V4,调节其流量,待真空表P3 和压力P4 稳定,记下压力表和真空表的读数和孔板流量计的流量,由此测得一个工况下的H 和Q。
④开大阀门V4 的开度,重复③的步骤,测得十组数据。
⑤依次关闭出水阀V4,关闭泵II 的电源,关闭泵进水阀V2。
(3)两台泵并联工况下特性曲线 (Q - H )I的测定。
①并闭阀门V2、V4 和V5,开启阀门V1 和V3。
②接通电源,起动泵Ⅰ和泵Ⅱ。
③打开阀门V2 和V4,调节其流量,使压力表P2 和P4 都指示在某一相同的压力,此时,记下孔板流量计的相应流量,由此测得一个工况下的H并和Q并。
④按上述的③的方法,再测试出几个不同并联工况下的H并和Q并,即改变H并,,测出相应的Q并。
⑤依次关闭泵Ⅰ出口阀V2、泵Ⅰ电源和进水阀V1;再依次关闭泵Ⅱ出口阀V4、泵Ⅱ电源和进水阀V3。
(4)两台泵串联工况下特性曲线 (Q - H )I的测定。
①关闭阀门V2、V4 和V5,开启阀门V1 和V3;②接通电源,首先启动泵II,待其运行正常后,打开串联阀门V5,再启动泵I,待泵I又运行正常后,关闭V3,最后打开泵II 的出口阀门V4;③调节阀门V4 到一定开度,即调到某一扬程H串和流量Q串的工况,在此工况下测读压力表P1 和P4 的扬程值,并测得孔板流量计的流量,计算出Q串。
④按上述③的方法,再测试出几个不同串联工况下的H串和Q串。
⑤依次关闭泵Ⅱ出口阀V4,泵Ⅱ电源,串联阀V5,泵I 电源,泵I 进水阀V1。
五、注意事项:1.先开进水阀,再打开泵,否则会发生气缚现象;2.当出口阀全开的情况下启动泵,可能会发生烧泵事故。
六、报告要求:实验数据记录和处理H(m)泵II3Q(m /h)H(m)并联3Q(m /h)H(m)串联3Q(m /h) 真-725将实验中所测得的数据H、Q记入记录表中,并以Q为横座标,H为纵座标,由实验数据在座标系中绘出一系列实验点,再将这些点光滑地分别连成单泵I 和II 的 (Q - H )I和(Q - H )II特性曲线,再分别合成为并联和串联的总特性曲线 (Q - H )并和 (Q - H )串如图所示。
最后,再把并联和串联工况下实际测出的一些工作点在合成的总特性曲线周围标出,以示比较。
图实验结果的Q-H 图实验数据记录和处理:(1)单台泵I 特性曲线 (Q - H )I的测定。
泵一的真空表读数(Mpa,表压);泵一的压力表读数(Mpa,表压);泵一的真空表(m,绝压);泵一的压力表(m,绝压);泵一的压头(m);总管路的流量(m3/h);(2)单台泵II 特性曲线 (Q - H )I的测定。
泵二的真空表读数(Mpa,表压);泵二的压力表读数(Mpa,表压);泵二的真空表(m,绝压);泵二的压力表(m,绝压);泵二的压头(m);总管路的流量(m3/h);(3)两台泵并联工况下特性曲线 (Q - H )I的测定。
泵一的真空表读数(Mpa,表压);泵一的压力表读数(Mpa,表压);泵一的真空表(m,绝压);泵一的压力表(m,绝压);泵二的真空表读数(Mpa,表压);泵二的压力表读数(Mpa,表压);泵二的真空表(m,绝压);泵二的压力表(m,绝压);两泵并联的压头(m);总管路的流量(m3/h);(4)两台泵串联工况下特性曲线 (Q - H )I的测定。
泵一的真空表读数(Mpa,表压);泵一的真空表(m,绝压);泵二的压力表读数(Mpa,表压);泵二的压力表(m,绝压);两泵串联的压头(m);总管路的流量(m3/h);基本数据:真-14泵的进口管内径:41 毫米;泵的出口管内径:41 毫米;两侧压口间垂直距离:0.3 米;水温:25 摄氏度。
七、思考题1. 离心泵调节流量方法中经济性最差的是()调节。
A 节流B 回流C 变速D 视具体情况而定答案:a2. 当离心泵内充满空气时,将发生气缚现象,这是因为( )A. 气体的粘度太小B. 气体的密度太小C. 气体比液体更容易起漩涡D. 气体破坏了液体的连续性答案:b3. 两台不同大小的泵串联运行, 串联工作点的扬程为H 串, 若去掉其中一台, 由单台泵运行时, 工作点扬程分别为H 大或H 小,则串联与单台运行间的扬程关系为()A.H 串= H 大+ H 小B. H 串>H 大+ H 小C. H 大<H 串<H 大+ H 小D. H 小<H 串< H 大+ H 小答案:c4. 采用离心泵串并联可改变工作点,对于管路特性曲线较平坦的低阻管路,采用( )组合可获得较高的流量和压头;A.串联 B.并联答案:b5. 采用离心泵串并联可改变工作点,而对于高阻管路,采用( )组合较好;A.串联 B.并联答案:a6. 采用离心泵串并联可改变工作点,对于(ΔZ+ΔP/ρ)值高于单台泵所能提供最大压头的特定管路,则采用( )组合方式.A.串联 B.并联答案:a7. 从你所测定的特性曲线中分析,你认为以下哪项措施可以最有效的增加该泵的流量范围?A.增加管路直径B.增大出口阀开度C.增大泵的转速 D.减小泵的转速答案:c8. 离心泵启动和关闭之前,为何要关闭出口阀?()A.否则容易发生气缚;B.否则容易发生气蚀;C.否则容易因为功率过大,引起烧泵;D.否则容易引起倒吸。
答案:c9. 离心泵的液体是由以下哪种方式流入流出的?()A.径向流入,轴向流出;B.轴向流入,径向流出;C.轴向流入,轴向流出;D.径向流入,径向流出。
答案:b10. 以下哪项不属于离心泵的优点?()A.结构简单,易操作;B.流量大,流量均匀;C.泵送的液体粘度范围广;D.有自吸能力。
答案:d11. 随流量增大,泵的压力表及真空表的数据有什么变化规律?()A.压力表读数增大,真空表读数增大;B.压力表读数减小,真空表读数减小;C.压力表读数减小,真空表读数增大;D.压力表读数增大,真空表读数减小。
答案:A12. 某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,那一个是真正的原因_______。
A.水温太高B.真空计坏了C.吸入管路堵塞D.排出管路堵塞答案 d八、参考文献[1] 冷士良. 化工单元过程及操作. 北京:化学工业出版社,2002[2] 张金利等. 化工原理实验. 天津:天津大学出版社,2005[3] 杨祖荣. 化工原理实验. 北京:化学工业出版社,2004。