高中数学专题训练—函数的奇偶性和周期性
高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)-word

高考数学一轮复习函数的奇偶性与周期性专题训练(含答案)若T为非零常数,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,下面是函数的奇偶性与周期性专题训练,请考生及时练习。
一、选择题1.设f(x)为定义在R上的奇函数.当x0时,f(x)=2x+2x+b(b 为常数),则f(-1)等于().A.3 B.1 C.-1 D.-3解析由f(-0)=-f(0),即f(0)=0.则b=-1,f(x)=2x+2x-1,f(-1)=-f(1)=-3.答案 D2.已知定义在R上的奇函数,f(x)满足f(x+2)=-f(x),则f(6)的值为 ().A.-1B.0C.1D.2(构造法)构造函数f(x)=sin x,则有f(x+2)=sin=-sinx=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3=0,故选B.答案 B3.定义在R上的函数f(x)满足f(x)=f(x+2),当x[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是().A.ffB.f(sin 1)f(sin 2)解析当x[-1,1]时,x+4[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,显然当x[-1,0]时,f(x)为增函数;当x[0,1]时,f(x)为减函数,cos=-,sin =,又f=ff,所以ff.答案 A4.已知函数f(x)=则该函数是().A.偶函数,且单调递增B.偶函数,且单调递减C.奇函数,且单调递增D.奇函数,且单调递减解析当x0时,f(-x)=2-x-1=-f(x);当x0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+)上为增函数,f(x)=2x-1在(-,0)上为增函数,又x0时1-2-x0,x0时2x-10,故f(x)为R上的增函数.答案 C.已知f(x)是定义在R上的周期为2的周期函数,当x[0,1)时,f(x)=4x-1,则f(-5.5)的值为()A.2B.-1C.-D.1解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案 .设函数D(x)=则下列结论错误的是().A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.若x是无理数,-x,x+1是无理数;若x是有理数,-x,x+1也是有理数.D(-x)=D(x),D(x+1)=D(x).则D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案 C二、填空题.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.解析由题意知,函数f(x)=x2-|x+a|为偶函数,则f(1)=f(-1),1-|1+a|=1-|-1+a|,a=0.答案 0.已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.解析因为y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.答案 -1.设奇函数f(x)的定义域为[-5,5],当x[0,5]时,函数y=f(x)的图象如图所示,则使函数值y0的x的取值集合为________.解析由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y0的x的取值集合为(-2,0)(2,5).答案 (-2,0)(2,5) 10. 设f(x)是偶函数,且当x0时是单调函数,则满足f(2x)=f的所有x之和为________.解析 f(x)是偶函数,f(2x)=f,f(|2x|)=f,又f(x)在(0,+)上为单调函数,|2x|=,即2x=或2x=-,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.则(x1+x2)+(x3+x4)=-+=-8.-8三、解答题.已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断函数f(x)的奇偶性.解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-,+)上的奇函数..已知函数f(x)对任意x,yR,都有f(x+y)=f(x)+f(y),且x0时,f(x)0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.已知函数f(x)是(-,+)上的奇函数,且f(x)的图象关于x=1对称,当x[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)++f(2019)的值.(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x[1,2]时,2-x[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x[1,2].(3)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.f(0)+f(1)+f(2)++f(2019)=f(2 012)+f(2 013)=f(0)+f(1)=1..已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当01时,f(x)=x,求使f(x)=-在[0,2 014]上的所有x的个数.(1)证明 f(x+2)=-f(x),f(x+4)=-f(x+2)=-[-f(x)]=f(x),f(x)是以4为周期的周期函数.(2)解当01时,f(x)=x,设-10,则01,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)=x.故f(x)=x(-11).函数的奇偶性与周期性专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优异的成绩。
高中数学函数的周期性练习

高中数学函数的周期性练习题型一:求周期问题【例1】 已知()f x 是定义在R 上的函数,(10)(10)f x f x +=-且(20)(20)f x f x -=-+,则()f x 是( )A . 周期为20的奇函数 B. 周期为20的偶函数C. 周期为40的奇函数D. 周期为40的偶函数【例2】 求函数tan cot y αα=- 的最小正周期【例3】 定义在R 上的函数()f x 满足(3)()0f x f x ++=,且函数32f x ⎛⎫- ⎪⎝⎭为奇函数.给出以下3个命题:①函数()f x 的周期是6;②函数()f x 的图象关于点302⎛⎫- ⎪⎝⎭,对称; ③函数()f x 的图象关于y 轴对称,其中,真命题的个数是( ).A .3B .2C .1D .0【例4】 若y =f (2x )的图像关于直线2a x =和()2b x b a =>对称,则f (x )的一个周期为( ) A .2a b + B .2()b a - C .2b a - D .4()b a -【例5】 已知函数()f x 对于任意,a b ∈R ,都有()()f a b f a b ++-2()()f a f b =⋅,且(0)0f ≠.⑴求证:()f x 为偶函数;⑵若存在正数m 使得()0f m =,求满足()()f x T f x +=的1个T 值(T ≠0).典例分析【例6】 设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称.且对任意121,[0,]2x x ∈,都有1212()()()f x x f x f x +=⋅,(1)0f a =>.⑴求1()2f 及1()4f ; ⑵证明()f x 是周期函数;题型二:求值问题【例7】 已知定义在R 上的函数()f x 的图象关于点304⎛⎫- ⎪⎝⎭,成中心对称图形,且满足3()2f x f x ⎛⎫=-+ ⎪⎝⎭,(1)1f -=,(0)2f =-.那么,(1)(2)(2006)f f f +++L 的值是( ) A .1 B .2 C .1- D .2-【例8】 (2005天津卷)设f (x )是定义在R 上的奇函数,且()y f x =的图象关于直线12x =对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_0_______________.【例9】 (2006年安徽卷理)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。
2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)

则 ,
所以 .
故选:C.
【点睛】本题考查函数奇偶性与对称性,周期性,解题关键是由奇函数的性质和对称性得出函数为周期函数.
12.奇函数 的定义域为R,若 为偶函数,且 ,则 =( )
A.﹣2B.﹣1C.0D.1
【答案】B
【解析】
【分析】根据题意和函数的奇偶性,得到函数 是周期为4的周期函数,进而利用函数的周期性,求得 的值,即可得到答案.
∴1=2- ,∴a=2.
(2)由(1)知f(x)=x- ,
定义域为(-∞,0)∪(0,+∞)关于原点对称.
f(-x)=-x- =-x+ =-(x- )=-f(x),
∴函数f(x)为奇函数.
【点睛】本题考查函数解析式中参数的求解,利用奇偶性的定义判断函数奇偶性,属综合基础题.
高频考点二:函数奇偶性的应用
对于选项 ,令 ,则 .
在 中,将 换为 ,得 ,
【点睛】本题考查利用函数周期性求函数值,涉及函数奇偶性的应用,属综合基础题.
14.已知定义在 上的奇函数 满足 ,当 时, ,则 ()
A.2019B.1C.0D.-1
【答案】C
【解析】
【分析】根据题意推导出函数 的对称性和周期性,可得出该函数的周期为 ,于是得出
可得出答案.
【详解】 函数 是 上的奇函数,则 ,
对于D选项,令 ,则 , , 且 ,
所以,函数 为非奇非偶函数.
故选:B.
【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.
【知识拓展】
(1)奇、偶函数定义域的特点.
由于f(x)和f(-x)须同时有意义,所以奇、偶函数的定义域关于原点对称.这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
专题33 三角函数的单调性、奇偶性、对称性与周期性题2021高中数学必做黄金100题(解析版

一.题源探究·黄金母题
(求函数 的单调递增区间.
【解析】设 ,函数 的单调递增区间为 .由 ,得 .易知 .
【试题来源】人教版A版必修4第39页例5.
【母题评析】本题考查三角函数单调区间的求法,是历年来高考的一个常考点.
【思路方法】限定区间上三角函数单调区间的求法:先用整体思想求
【技能方法】解决三角函数的单调性有关的问题,要结合函数的图象及其性质。
考向6已知三角函数的奇偶性、对称性或周期求参数的值
已知函数 ( , ),其图像与直线 相邻两个交点的距离为 ,若 对于任意的 恒成立,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】令 ,可得 ,
∵函数 ( , )的图像与直线 相邻两个交点的距离为 ,
∴函数 的图象与直线 相邻两个交点的距离为 ,
∴函数 的周期为 ,故 ,∴ .∴ .
由题意得“ 对于任意的 恒成立”等价于“ 对于任意的 恒成立”.∵ ,∴ ,
∴ ,∴ .
故结合所给选项可得C正确.选C.
【技能方法】本题难度较大,解题时根据题意得 在 上的取值范围是 的子集去处理,由此通过不等式可得 的范围,结合选项得解.
④将 的图象向右平移 个单位可得到图像 .
【答案】①②③
【解析】对于 ,
令 ,求得f(x)=−1,为函数的最小值,故它的图象C关于直线 对称故①正确.
令x= ,求得f(x)=0,可得它的图象C关于点( ,0)对称,故②正确.
令 ,可得 ,故函数f(x)在区间 是增函数,故③正确,
由 的图象向右平移 个单位长度可以得到 故排除④,
【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等.
高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
高考数学专题《函数的奇偶性、对称性、周期性》填选压轴题及答案

6.(多选题)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()
A.f(x)为奇函数B.f(x)为周期函数
C.f(x+3)为奇函数D.f(x+4)为偶函数
专题03函数的奇偶性、对称性、周期性
【方法点拨】
1.常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)= (a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
对于 , 是函数 的一条对称轴,且函数 是周期为4的周期函数,则 是函数 的一条对称轴,
又由函数为奇函数,则直线 是函数 图象的一条对称轴, 正确;
对于 ,函数 在 , 上有7个零点:分别为 , , ,0,2,4,6; 错误;
对于 , 在区间 , 上为增函数且其周期为4,函数 在 , 上为增函数,
又由 为函数 图象的一条对称轴,则函数 在 , 上为减函数, 正确;
2.函数奇偶性、对称性间关系:
(1)若函数y=f(x+a)是偶函数,即f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称;一般的,若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 对称.
(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0恒成立,则函数y=f(x)关于点(a,0)中心对称;一般的,若对于R上的任意x都有f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.
高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
高考数学专题训练 函数的奇偶性与周期性

函数的奇偶性与周期性注意事项:1.考察知识内容:函数的奇偶性与周期性 2.题目难度:中等难度题型3.题型方面:10道选择,4道填空,4道解答。
4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A 、x y sin =R x ∈B 、xy )21(=R x ∈C 、x y =R x ∈D 、3x y -=R x ∈2.设偶函数f(x)=log a |x +b|在(0,+∞)上单调递增,则f(b -2)与f(a +1)的大小关系为A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定3.定义在(-∞,+∞)上的奇函数f (x )和偶函数g (x )在区间(-∞,0]上的图像关于x轴对称,且f (x )为增函数,则下列各选项中能使不等式f (b )-f (-a )>g (a )-g (-b )成立的是( ) A .a>b >0B .a<b <0C .ab >0D .ab <04.如下四个函数,其中既是奇函数,又在(),0-∞是增函数的是A 、1y x =-+B 、3y x =-C 、1y x=-D 、3y =5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x x C.122-x D.122-x x6.下列函数为偶函数的是 ( ) A 、y x = B 、2y x = C 、3y x = D 、2xy =7.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x ) =1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2007)的值为() A .–2 B .–1 C .0 D .18.已知f (x )是定义在R 上的周期为2的偶函数,当时,f (x )=x 2,若直线与的图像恰好有两个公共点,则a =( )A .B . k,∈ZC .D .9.已知以4T =为周期的函数21,(1,1]()12,(1,3]x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。
高中数学复习:正余弦函数的周期性奇偶性单调性和最值练习及答案

高中数学复习:正余弦函数的周期性奇偶性单调性和最值练习1.如果函数y =sin (πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( ) A . B .C .D .3.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈[−π2,0)时,f (x )=sin x ,则f (−5π3)的值为( ) A .-12 B .12 C .-√32 D .√324.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2013)=________.5.下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin2x +cos2xD .y =sin x +cos x6.下列命题中正确的是( )A .y =-sin x 为奇函数B .y =|sin x |既不是奇函数也不是偶函数C .y =3sin x +1为偶函数D .y =sin x -1为奇函数7.设f (x )=12sin (2x +φ)(φ是常数).(1)求证:当φ=π2时,f (x )是偶函数;(2)求使f (x )为偶函数的所有φ值的集合.8.函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数.(1)求φ的值.(2)若f(x)图象上的点关于M(3π4,0)对称,①求ω满足的关系式;②若f(x)在区间[0,π2]上是单调函数,求ω的值.9.f(x)=2√3sin(3ωx+π3)(ω>0).(1)若f(x+θ)是周期为2π的偶函数,求ω及θ值;(2)在(1)的条件下求函数f(x)在[−π2,π3]的值域.10.函数y=sin(-2x+π3)在区间[0,π]上的单调递增区间为()A.[5π12,11π12] B.[0,5π12] C.[π6,2π3] D.[2π3,π]11.函数y=lgsin(π6−2x)的单调递减区间是()A.(kπ−π6,kπ+π3)(k∈Z)B.(kπ+π3,kπ+5π6)(k∈Z)C.(kπ−π6,kπ+π12)(k∈Z)D.(kπ−7π12,kπ+5π6)(k∈Z)12.设函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,则f (x )( )A .在(0,π2)单调递减B .在(π4,3π4)单调递减C .在(0,π2)单调递增D .在(π4,3π4)单调递增13.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°14.已知函数f (x )=2sin (2x -π3),x ∈R ,(1)求函数f (x )的最小正周期;(2)求函数f (x )的单调区间.15.已知函数f (x )=√2sin (2x +π4)-1,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )的单调递增区间;(3)求函数f (x )的最值.16.已知函数f(x)=sin(2x-π3).(1)求f(x)的单调增区间;(2)求f(x)取最大值时x值的集合;(3)函数y=f(x)-m在[0,π2]上有零点,求m的取值范围.17.下列函数中,与函数y=√x3定义域相同的函数为()A.y=1sinxB.y=lnxxC.y=x e xD.y=sinxx18.函数y=cos(x+π6),x∈[0,π2]的值域是()A.[−√32,12] B.[−12,√32] C.[√32,1] D.[12,1]19.已知函数f(x)=2sin(2x+π6)-1(x∈R),则f(x)在区间[0,π2]上的最大值与最小值分别是()A.1,-2 B.2,-1 C.1,-1 D.2,-220.函数y=sin x的定义域为[a,b],值域为[−1,12],则b-a的最大值和最小值之和等于()A.4π3B.8π3C.2π D.4π21.函数y=cosωx(ω>0)在区间[0,1)上至少出现2次最大值,至多出现3次最大值,则ω的取值范围是()A.2π≤ω≤4π B.2π<ω≤4π C.2π<ω≤6π D.2π<ω<6π22.设f(x)=2cos(π4x+π3),若对任意的x∈R,恒有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是()A.4 B.3 C.2 D.123.函数f(a)=cos2θ+a cosθ-a(a∈[1,2],θ∈[π6,π3])的最小值是()A.√3−23B.cos2θ+cosθ-1 C.3+(√3-1)a D.cos2θ+2cosθ-224.已知f(x)=-2a sin(2x+π6)+2a+b,x∈[π4,3π4],是否存在常数a,b∈Q,使得f(x)的值域为{y|-3≤y≤√3-1}?若存在,求出a,b的值;若不存在,请说明理由.25.已知函数f(x)=√2a sin(x-π4)+a+b.(1)当a=1时,求函数f(x)的单调递减区间;(2)当a<0时,f(x)在[0,π]上的值域为[2,3],求a,b的值.26.(1)求函数y=2-cos x3的最大值和最小值,并分别写出使这个函数取得最大值和最小值的x 的集合;(2)求函数y=cos2x-4cos x+1,x∈[π3,23π]的值域.27.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π6)|对x∈R恒成立,且f(π2)>f (π),求f (x )的单调递增区间.28.函数y =sin (-2x +π4)的单调递增区间是( )A .[2k π+38π,2k π+78π](k ∈Z )B .[k π+38π,k π+78π](k ∈Z )C .[k π-18π,k π+38π](k ∈Z )D .[k π-58π,k π-18π](k ∈Z )29.对于函数y =2sin (2x +π6),则下列结论正确的是( )A .函数的图象关于点(π3,0)对称B .函数在区间[-π3,π6]递增C .函数的图象关于直线x =-π12对称D .最小正周期是π230.已知函数f (x )=log 12cos πx 3,函数g (x )=a sin (π6·x )-2a +2(a >0),x ∈(0,1),若存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A .(12,43)B .(23,1)C .(43,32)D .[12,43]31.函数f (x )=M sin (ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值M ,可以取得最小值-MD.可以取得最大值M,没有最小值32.设f(x)=sin(2x+φ),若f(x)≤f(π6)对一切x∈R恒成立,则:①f(-π12)=0;②f(x)的图象关于点(5π12,0)对称;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是[kπ+π6,kπ+2π3](k∈Z).以上结论正确的是________(写出所有正确结论的编号).33.已知函数f(x)=√2cos(2x-π4),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x的值.34.设函数f(x)=√1-2sinx.(1)求函数f(x)的定义域;(2)求函数f(x)的值域及取最大值时x的值.答案1.如果函数y=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么()A.T=2,θ=π2B.T=1,θ=πC.T=2,θ=πD.T=1,θ=π2【答案】A【解析】由题意得sin (2π+θ)=1,又0<θ<2π,∴θ=π2,最小正周期T =2ππ=2.2.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( ) A .B .C .D .【答案】D【解析】对于D ,x ∈(-1,1)时的图象与其他区间图象不同,不是周期函数.3.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈[−π2,0)时,f (x )=sin x ,则f (−5π3)的值为( ) A .-12 B .12 C .-√32 D .√32【答案】D【解析】f (−5π3)=f (π3)=-f (−π3)=-sin (−π3)=sin π3=√32. 4.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2013)=________.【答案】√3【解析】∵f (x )=sin π3x 的周期T =2ππ3=6.∴f(1)+f(2)+f(3)+…+f(2013)=335[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(2011)+f(2012)+f(2013)=335·(sinπ3+sin23π+sinπ+sin43π+sin53π+sinπ)+f(335×6+1)+f(335×6+2)+f(335×6+3)=335×0+f(1)+f(2)+f(3)=sinπ3+sin23π+sinπ=√3.5.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+π2)B.y=cos(2x+π2)C.y=sin2x+cos2xD.y=sin x+cos x【答案】B【解析】由于函数y=sin(2x+π2)=cos2x为偶函数,故排除A;由于函数y=cos(2x+π2)=-sin2x为奇函数,且周期为2π2,故B满足条件;由于函数y=sin2x+cos2x=√2sin(2x+π4)为非奇非偶函数,故排除C;由于函数y=sin x+cos x=√2sin(x+π4)为非奇非偶函数,故排除D,故选B.6.下列命题中正确的是()A.y=-sin x为奇函数B.y=|sin x|既不是奇函数也不是偶函数C.y=3sin x+1为偶函数D.y=sin x-1为奇函数【答案】A【解析】y=|sin x|是偶函数,y=3sin x+1与y=sin x-1都是非奇非偶函数.7.设f(x)=12sin(2x+φ)(φ是常数).(1)求证:当φ=π2时,f (x )是偶函数;(2)求使f (x )为偶函数的所有φ值的集合.【答案】(1)证明 当φ=π2时,f (x )=12sin (2x +π2)=12cos2x ,f (-x )=f (x ),f (x )是偶函数.(2)解 由题意:f (-x )=f (x ),可得12sin (-2x +φ)=12sin (2x +φ)对一切实数x 成立,-2x +φ=2x +φ+2k π或-2x +φ=π-(2x +φ)+2k π,k ∈Z ,对一切实数x 成立, 所以φ=k π+π2,k ∈Z ,f (x )为偶函数的φ值的集合是{φ|φ=k π+π2,k ∈Z }.8.函数f (x )=sin (ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数.(1)求φ的值.(2)若f (x )图象上的点关于M (3π4,0)对称,①求ω满足的关系式;②若f (x )在区间[0,π2]上是单调函数,求ω的值.【答案】(1)由f (x )是偶函数,可得f (0)=±1,故sin φ=±1,即φ=k π+π2,结合题设0≤φ≤π,解得φ=π2.(2)由(1)知f (x )=sin (ωx +π2)=cos ωx ,∵f (x )图象上的点关于M (34π,0)对称,∴f (34π)=cos 34ωπ=0,故34ωπ=k π+π2(k ∈Z ),即w =23(2k +1),k =0,1,2,…∵f (x )在区间[0,π2]上是单调函数,可得π2≤12·2πω,即ω≤2,又∵ω=23(2k +1),k =0,1,2,…∴综合以上条件,可得ω=23或ω=2. 9.f (x )=2√3sin (3ωx +π3)(ω>0).(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值; (2)在(1)的条件下求函数f (x )在[−π2,π3]的值域. 【答案】(1)由于f (x )=2√3sin (3ωx +π3),可得f (x +θ)=2√3sin[3ω(x +θ)+π3]=2√3sin (3ωx +3ωθ+π3), 再根据f (x +θ)是周期为2π的偶函数,可得2π3ω=2π,3ωθ+π3=k π+π2,k ∈Z . 求得ω=13,θ=k π+π6,f (x )=2√3sin (x +π3). (2)由x ∈[−π2,π3],可得x +π3∈[-π6,2π3],故当x +π3=-π6时,f (x )取得最小值为-√3,当x +π3=π2时,f (x )取得最大值为2, 故函数f (x )的值域为[-√3,2√3].10.函数y =sin (-2x +π3)在区间[0,π]上的单调递增区间为( ) A .[5π12,11π12] B .[0,5π12] C .[π6,2π3] D .[2π3,π]【答案】A【解析】y =sin (-2x +π3)=-sin (2x -π3), 当2k π+π2≤2x -π3≤2k π+3π2,即k π+5π12≤x ≤k π+11π2时,k ∈Z ,函数单调递增,∴函数在区间[0,π]上的单调递增区间为[5π12,11π12].11.函数y =lgsin (π6−2x)的单调递减区间是( ) A .(k π−π6,k π+π3)(k ∈Z )B .(k π+π3,k π+5π6)(k ∈Z )C .(k π−π6,k π+π12)(k ∈Z ) D .(k π−7π12,k π+5π6)(k ∈Z )【答案】C【解析】令sin (π6−2x)>0,即sin (2x −π6)<0,由此得2k π-π<2x -π6<2k π,k ∈Z , 解得k π-5π12<x <k π+π12,k ∈Z ,由复合函数的单调性知,求函数y =lgsin (π6−2x)的单调递减区间即是求t =sin (π6−2x)=-sin (2x −π6)单调递减区间,令2k π-π2<2x -π6<2k π+π2,解得k π-π6<x <k π+π3,k ∈Z , {x |k π-π6<x <k π+π3,k ∈Z }∩{x |k π-5π12<x <k π+π12,k ∈Z }=(k π−π6,k π+π12)(k ∈Z ).12.设函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,则f (x )( ) A .在(0,π2)单调递减 B .在(π4,3π4)单调递减C .在(0,π2)单调递增 D .在(π4,3π4)单调递增【答案】A【解析】∵函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,∴π=2πω,ω=2. ∴f (x )=sin (2x +π2), 由2k π+π2≤2x +π2≤2k π+3π2,k ∈Z ,可得k π≤x ≤k π+π2,k ∈Z ,当k =0时,函数f (x )=sin (2x +π2)在(0,π2)单调递减. 13.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 【答案】C【解析】∵sin168°=sin (180°-12°)=sin12°,cos10°=sin (90°-10°)=sin80°. 由正弦函数的单调性得sin11°<sin12°<sin80°, 即sin11°<sin168°<cos10°.14.已知函数f (x )=2sin (2x -π3),x ∈R , (1)求函数f (x )的最小正周期; (2)求函数f (x )的单调区间.【答案】(1)根据三角函数的周期公式可得周期T =2π2=π.(2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z ,故函数的单调递增区间为[k π-π12,k π+5π12],k ∈Z , 由π2+2k π≤2x -π3≤3π2+2k π,解得k π+5π12≤x ≤k π+11π12,k ∈Z ,故函数的单调递减区间为[k π+5π12,k π+11π12],k ∈Z .15.已知函数f (x )=√2sin (2x +π4)-1,x ∈R .(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调递增区间; (3)求函数f (x )的最值.【答案】(1)由周期公式T =2πω,得T =2π2=π,∴函数f (x )的最小正周期为π;(2)令-12π+2k π≤2x +π4≤12π+2k π,k ∈Z , ∴k π-38π≤x ≤k π+18π,k ∈Z ,∴函数的单调递增区间为[k π-38π,k π+18π](k ∈Z ). (3)根据正弦函数的性质可知,-1≤sin (2x +π4)≤1, ∴-√2≤√2sin (2x +π4)≤√2,∴-√2-1≤√2sin (2x +π4)-1≤√2-1, ∴函数的最大值为√2-1,最小值为-√2-1. 16.已知函数f (x )=sin (2x -π3). (1)求f (x )的单调增区间; (2)求f (x )取最大值时x 值的集合;(3)函数y =f (x )-m 在[0,π2]上有零点,求m 的取值范围. 【答案】(1)∵函数f (x )=sin (2x -π3), 令-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z ,∴函数f (x )的增区间为[-π12+k π,5π12+k π],k ∈Z .(2)令2x -π3=π2+2k π,k ∈Z , 解得x =5π12+k π,k ∈Z , 此时f (x )=1.∴f (x )取得最大值时x 的集合是{x |x =5π12+k π,k ∈Z }. (3)当x ∈[0,π2]时,2x -π3∈[-π3,2π3],∴-√32≤sin (2x -π3)≤1,∴函数y =f (x )在x ∈[0,π2]上的值域是[-√32,1],若函数y =f (x )-m 在x ∈[0,π2]上有零点,则m 的取值范围是-√32≤m ≤1.17.下列函数中,与函数y =√x 3定义域相同的函数为( )A .y =1sinx B .y =lnx xC .y =x e xD .y =sinx x【答案】D【解析】∵函数y =√x 3的定义域为{x ∈R |x ≠0},∴对于A ,其定义域为{x |x ≠k π}(k ∈Z ),故A 不满足; 对于B ,其定义域为{x |x >0},故B 不满足; 对于C ,其定义域为{x |x ∈R },故C 不满足; 对于D ,其定义域为{x |x ≠0},故D 满足.18.函数y =cos (x +π6),x ∈[0,π2]的值域是( )A .[−√32,12]B .[−12,√32]C .[√32,1] D .[12,1]【答案】B【解析】∵0≤x ≤π2,∴π6≤x +π6≤2π3.∴cos2π3≤cos (x +π6)≤cos π6,∴-12≤y ≤√32,故选B.19.已知函数f (x )=2sin (2x +π6)-1(x ∈R ),则f (x )在区间[0,π2]上的最大值与最小值分别是( ) A .1,-2 B .2,-1 C .1,-1 D .2,-2 【答案】A【解析】∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴当2x +π6=π2时,即sin (2x +π6)=1时,函数取得最大值为2-1=1, 当2x +π6=7π6时,即sin (2x +π6)=-12时,函数取得最小值为-12×2-1=-2.20.函数y =sin x 的定义域为[a ,b ],值域为[−1,12],则b -a 的最大值和最小值之和等于( ) A .4π3B .8π3C .2πD .4π 【答案】C【解析】利用函数y =sin x 的图象知(b -a )min =2π3,(b -a )max =4π3,故b -a 的最大值与最小值之和等于2π.21.函数y =cos ωx (ω>0)在区间[0,1)上至少出现2次最大值,至多出现3次最大值,则ω的取值范围是( ) A .2π≤ω≤4π B .2π<ω≤4π C .2π<ω≤6π D .2π<ω<6π 【答案】C【解析】∵函数y =cos ωx (ω>0)的周期为T =2πω, 且在区间[0,1)上至少出现2次最大值,至多出现3次最大值, ∴13≤T <1,即13≤2πω<1, 解得2π<ω≤6π.22.设f (x )=2cos (π4x +π3),若对任意的x ∈R ,恒有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值是( )A .4B .3C .2D .1 【答案】A【解析】∵f (x 1)≤f (x )≤f (x 2),∴x 1、x 2是函数f (x )取最大、最小值时对应的x 的值,故|x 1-x 2|一定是T2的整数倍,∵f (x )=2cos (π4x +π3)的最小正周期T =2ππ4=8,∴|x 1-x 2|=n ×T2=4n (n >0,且n ∈Z ), ∴|x 1-x 2|的最小值为4.23.函数f (a )=cos 2θ+a cos θ-a (a ∈[1,2],θ∈[π6,π3])的最小值是( ) A .√3−23B .cos 2θ+cos θ-1C .3+(√3-1)aD .cos 2θ+2cos θ-2 【答案】D【解析】∵θ∈[π6,π3],∴cos θ-1<0,∴f (a )=cos 2θ+a cos θ-a =(cos θ-1)a +cos 2θ在[1,2]上单调递减, ∴f (a )的最小值为f (2)=cos 2θ+2cos θ-2. 24.已知f (x )=-2a sin (2x +π6)+2a +b ,x ∈[π4,3π4],是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤√3-1}?若存在,求出a ,b 的值;若不存在,请说明理由. 【答案】∵π4≤x ≤3π4,∴2π3≤2x +π6≤5π3,∴-1≤sin (2x +π6)≤√32.假设存在这样的有理数a ,b ,则当a >0时,{−√3a +2a +b =−3,2a +2a +b =√3−1,解得{a =1,b =√3−5,(不合题意,舍去)当a <0时,{2a +2a +b =−3,−√3a +2a +b =√3−1,解得{a =−1,b =1,故a,b存在,且a=-1,b=1.25.已知函数f(x)=√2a sin(x-π4)+a+b.(1)当a=1时,求函数f(x)的单调递减区间;(2)当a<0时,f(x)在[0,π]上的值域为[2,3],求a,b的值. 【答案】(1)∵当a=1时,f(x)=√2sin(x-π4)+1+b,∴当x-π4∈[π2+2kπ,3π2+2kπ],k∈Z时,函数f(x)的单调递减区间是[3π4+2kπ,7π4+2kπ],k∈Z.(2)∵f(x)在[0,π]上的值域为[2,3],∴不妨设t=x-π4,x∈[0,π],t∈[-π4,3π4],∴f(x)=g(t)=√2a sin t+a+b,∴f(x)max=g(-π4)=-a+a+b=3,①f(x)min=g(π2)=√2a+a+b=2,②∴由①②解得,a=1-√2,b=3.26.(1)求函数y=2-cos x3的最大值和最小值,并分别写出使这个函数取得最大值和最小值的x 的集合;(2)求函数y=cos2x-4cos x+1,x∈[π3,23π]的值域.【答案】(1)令z=x3,∵-1≤cos z≤1,∴1≤2-cos z≤3,∴y=2-cos x3的最大值为3,最小值为1.当z=2kπ,k∈Z时,cos z取得最大值,2-cos z取得最小值,又z=x3,故x=6kπ,k∈Z.∴使函数y=2-cos x3取得最小值的x的集合为{x|x=6kπ,k∈Z};同理,使函数y=2-cos x3取得最大值的x 的集合为{x |x =6k π+3π,k ∈Z }. (2)∵x ∈[π3,23π],∴-12≤cos x ≤12. ∵y =cos 2x -4cos x +1=(cos x -2)2-3, ∴当cos x =-12时,y max =134; 当cos x =12时,y min =-34,∴y =cos 2x -4cos x +1的值域为[−34,134].27.已知函数f (x )=sin (2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),求f (x )的单调递增区间.【答案】由f (x )≤|f (π6)|对x ∈R 恒成立知,2×π6+φ=2k π±π2(k ∈Z ), 得到φ=2k π+π6或φ=2k π-5π6,k ∈Z .代入f (x )并由f (π2)>f (π)检验,得φ的取值为-5π6,由2k π-π2≤2x -5π6≤2k π+π2,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z , 所以单调递增区间是[k π+π6,k π+2π3](k ∈Z ).28.函数y =sin (-2x +π4)的单调递增区间是( ) A .[2k π+38π,2k π+78π](k ∈Z ) B .[k π+38π,k π+78π](k ∈Z ) C .[k π-18π,k π+38π](k ∈Z ) D .[k π-58π,k π-18π](k ∈Z ) 【答案】B【解析】由于函数y =sin (-2x +π4)=-sin (2x -π4),故函数y =sin (-2x +π4)的单调递增区间为函数y =sin (2x -π4)的减区间.令2k π+π2≤2x -π4≤2k π+3π2,k ∈Z , 求得k π+3π8≤x ≤k π+7π8,k ∈Z ,故所求的函数y =sin (-2x +π4)的单调递增区间是[k π+38π,k π+78π](k ∈Z ).29.对于函数y =2sin (2x +π6),则下列结论正确的是( )A .函数的图象关于点(π3,0)对称B .函数在区间[-π3,π6]递增C .函数的图象关于直线x =-π12对称D .最小正周期是π2【答案】B【解析】由于点(π3,0)不在函数y =2sin (2x +π6)的图象上,故函数图象不关于点(π3,0)对称,故排除A.令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,故函数的增区间为[-π3,π6],故B 正确.当x =-π12时,函数值y =0,不是最值,故函数的图象不关于x =-π12对称,故排除C.由函数的解析式可得,最小正周期等于T =2π2=π,故D 不正确. 综上可得,只有B 正确.30.已知函数f (x )=log 12cos πx 3,函数g (x )=a sin (π6·x )-2a +2(a >0),x ∈(0,1),若存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A .(12,43)B .(23,1)C .(43,32)D .[12,43]【答案】A【解析】由于x ∈(0,1),可得f (x )的值域为(0,1),函数g (x )=a ·sin (π6x)-2a +2(a >0)的值域为(2-2a,2-3a 2),由于存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,故(0,1)∩(2-2a,2-3a 2)≠∅,若(0,1)∩(2-2a,2-3a 2)=∅,则有2-2a ≥1或2-3a 2≤0.解得a ≤12或a ≥43,故a 的范围为(12,43).31.函数f (x )=M sin (ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值M ,可以取得最小值-MD .可以取得最大值M ,没有最小值【答案】C【解析】∵函数f (x )在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M .采用特殊值法,令ω=1,φ=0,则f (x )=M sin x ,设区间为[-π2,π2].∵M >0,g (x )=M cos x 在[-π2,π2]上不具备单调性,但有最大值M .32.设f (x )=sin (2x +φ),若f (x )≤f (π6)对一切x ∈R 恒成立,则:①f (-π12)=0;②f (x )的图象关于点(5π12,0)对称;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).以上结论正确的是________(写出所有正确结论的编号).【答案】①②③【解析】∵f (x )≤f (π6)对一切x ∈R 恒成立,∴f (x )=sin (2x +φ)在x =π6时取得最大值,即2×π6+φ=π2+2k π,k ∈Z ,得φ=π6+2k π,k ∈Z ,因此函数表达式为f (x )=sin (2x +π6+2k π),∵f (-π12)=sin[2×(-π12)+π6+2k π]=sin2k π=0,故①是真命题;∵f (5π12)=sin (2×5π12+π6+2k π)=sin (π+2k π)=0,∴x =5π12是函数y =f (x )的零点,得点(5π12,0)是函数f (x )图象的对称中心,故②是真命题; ∵函数y =f (x )的图象既不关于y 轴对称,也不关于原点对称,∴f (x )既不是奇函数也不是偶函数,故③是真命题;令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,∴f (x )的单调递增区间是[-π3+k π,π6+k π](k ∈Z ),故④是假命题.由以上的讨论,可得正确命题为①②③,共3个,故答案为①②③.33.已知函数f (x )=√2cos (2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递减区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.【答案】(1)f (x )的最小正周期T =2π|ω|=2π2=π. 当2k π≤2x -π4≤2k π+π,即k π+π8≤x ≤k π+5π8,k ∈Z 时,f (x )单调递减,∴f(x)的单调递减区间是[kπ+π8,kπ+5π8],k∈Z.(2)∵x∈[-π8,π2],则2x-π4∈[-3π4,3π4],故cos(2x-π4)∈[-√22,1],∴f(x)max=√2,此时2x-π4=0,即x=π8;f(x)min=-1,此时2x-π4=-3π4,即x=-π4.34.设函数f(x)=√1-2sinx.(1)求函数f(x)的定义域;(2)求函数f(x)的值域及取最大值时x的值.【答案】(1)由1-2sin x≥0,根据正弦函数图象知,定义域为{x|2kπ+5π6≤x≤2kπ+13π6,k∈Z}.(2)∵-1≤sin x≤1,∴-1≤1-2sin x≤3,∵1-2sin x≥0,∴0≤1-2sin x≤3,∴f(x)的值域为[0,√3],当x=2kπ+3π2,k∈Z时,f(x)取得最大值.。
高三数学专项复习函数的奇偶性与周期性专项练习题答案

高三数学专项复习 函数的奇偶性与周期性一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,f (1)=2,则f (99)=( )A .13B .2C.132D.213解析:由f (x )·f (x +2)=13,知f (x +2)·f (x +4)=13,所以f (x +4)=f (x ),即f (x )是周期函数,周期为4.所以f (99)=f (3+4×24)=f (3)=13f (1)=132. 答案:C2.(2010·郑州)定义在R 上的函数f (x )满足:对于任意α,β∈R ,总有f (α+β)-[f (α)+f (β)]=2010,则下列说法正确的是( )A .f (x )-1是奇函数B .f (x )+1是奇函数C .f (x )-2010是奇函数D .f (x )+2010是奇函数解析:依题意,取α=β=0,得f (0)=-2010;取α=x ,β=-x ,得f (0)-f (x )-f (-x )=2010,f (-x )+2010=-[f (x )-f (0)]=-[f (x )+2010],因此函数f (x )+2010是奇函数,选D.答案:D3.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0解析:由题意得当x ∈(1,2)时,0<2-x <1,0<x -1<1,f (x )=f (-x )=f (2-x )=log 12[1-(2-x )]=log 12(x -1)>0,则可知当x ∈(1,2)时,f (x )是减函数,选D.答案:D4.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝⎛⎭⎪⎫x +3x +4的所有x 之和为( ) A .-3 B .3C .-8D .8 解析:因为f (x )是连续的偶函数,且x >0时是单调函数,由偶函数的性质可知若f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4,只有两种情况:①x =x +3x +4;②x +x +3x +4=0.由①知x 2+3x -3=0,故两根之和为x 1+x 2=-3.由②知x 2+5x +3=0,故其两根之和为x 3+x 4=-5.因此满足条件的所有x 之和为-8.答案:C5.已知奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么函数f (x )在区间[-7,-3]上() A .是增函数且最小值为-5B .是增函数且最大值为-5C .是减函数且最小值为-5D .是减函数且最大值为-5解析:∵f (x )为奇函数,∴f (x )的图象关于原点对称.∵f (x )在[3,7]上是增函数,∴f (x )在[-7,-3]上也是增函数.∵f (x )在[3,7]上的最小值为5,∴由图可知函数f (x )在[-7,-3]上有最大值-5.答案:B评析:本题既涉及到函数的奇偶性,又涉及到函数的单调性,还涉及到函数的最值,是一道综合性较强的题目,由于所给的函数没有具体的解析式,因此我们画出函数f (x )在区间[3,7]上的示意图,由图形易得结论.6.(2010·新课标全国)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8,又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0-x 3-8,x <0. ∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2-(x -2)3-8,x <2, ⎩⎨⎧ x ≥2(x -2)3-8>0或⎩⎨⎧x <2-(x -2)3-8>0, 解得x >4或x <0.故选B.答案:B二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2010·江苏)设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 解析:设g (x )=x ,h (x )=e x +a e -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +a e -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.答案:-18.已知函数f (x +1)是奇函数,f (x -1)是偶函数,且f (0)=2,则f (4)=________.解析:依题意有f (-x +1)=-f (x +1),f (-x -1)=f (x -1),所以f (4)=f (-(-3)+1)=-f (-2)=-f (-1-1)=-f (0)=-2.答案:-29.(2010·湖北八校)设函数f (x )的定义域、值域分别为A 、B ,且A ∩B 是单元集,下列命题①若A ∩B ={a },则f (a )=a ;②若B 不是单元集,则满足f [f (x )]=f (x )的x 值可能不存在;③若f (x )具有奇偶性,则f (x )可能为偶函数;④若f (x )不是常数函数,则f (x )不可能为周期函数.其中,正确命题的序号为________.解析:如f (x )=x +1,A =[-1,0],B =[0,1]满足A ∩B ={0},但f (0)≠0,且满足f [f (x )]=f (x )的x 可能不存在,①错,②正确;如,f (x )=1,A =R ,B ={1},则f (x )=1,A =R 是偶函数,③正确;如f (x )=x -2k +1,A =[2k -1,2k ],B =[0,1],k ∈Z ,f (x )是周期函数,但不是常数函数,所以④错误.答案:②③10.对于定义在R 上的函数f (x ),有下述四个命题,其中正确命题的序号为________.①若f (x )是奇函数,则f (x -1)的图象关于点A (1,0)对称;②若对x ∈R ,有f (x +1)=f (x -1),则y =f (x )的图象关于直线x =1对称;③若函数f (x -1)的图象关于直线x =1对称,则f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称.解析:f (x -1)的图象是由f (x )的图象向右平移一个单位而得到,又f (x )是奇函数,其图象关于原点对称,所以f (x -1)的图象关于点A (1,0)对称,故①正确;由f (x +1)=f (x -1)可知f (x )的周期为2,无法判断其对称轴,故②错误;f (x -1)的图象关于直线x =1对称,则f (x )关于y 轴对称,故f (x )为偶函数,③正确;y =f (1+x )的图象是由y =f (x )的图象向左平移一个单位后得到,y =f (1-x )是由y =f (x )的图象关于y 轴对称后再向右平移一个单位而得到,两者图象关于y 轴对称,故④错误.答案:①③三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a 、b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.分析:(1)由f (0)=0可求得b ,再由特殊值或奇函数定义求得a ;(2)先分析函数f (x )的单调性,根据单调性去掉函数符号f ,然后用判别式解决恒成立问题.解:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即b -1a +2=0⇒b =1, 所以f (x )=1-2xa +2x +1, 又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2. (2)由(1)知f (x )=1-2x2+2x +1=-12+12x +1, 易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2,即对t ∈R 有:3t 2-2t -k >0,从而Δ=4+12k <0⇒k <-13. 12.设函数f (x )的定义域为R ,对于任意的实数x ,y ,都有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,求证:(1)f (x )为奇函数;(2)f (x )在(-∞,+∞)上是减函数.证明:(1)令x =y =0,得f (0)=f (0)+f (0),∴f (0)=0.再令y =-x ,得f (0)=f (x )+f (-x ),∴f (-x )=-f (x ),∴f (x )为奇函数.(2)设x 1、x 2∈(-∞,+∞)且x 1<x 2,则x 2-x 1>0,∵当x >0时,f (x )<0,∴f (x 2-x 1)<0.又∵对于任意的实数x ,y 都有f (x +y )=f (x )+f (y )且f (x )为奇函数, ∴f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∴f (x 2)-f (x 1)<0,∴f (x )在(-∞,+∞)上是减函数.13.设函数f (x )的定义域关于原点对称,且满足①f (x 1-x 2)=f (x 1)f (x 2)+1f (x 2)-f (x 1); ②存在正常数a ,使f (a )=1.求证:(1)f (x )是奇函数;(2)f (x )是周期函数,并且有一个周期为4a .证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=f (x 2)f (x 1)+1f (x 1)-f (x 2)=-f (x 1)f (x 2)+1f (x 2)-f (x 1)=-f (x 1-x 2) =-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ),∵f (x +a )=f [x -(-a )]=f (-a )f (x )+1f (-a )-f (x )=-f (a )f (x )+1-f (a )-f (x )=f (x )-1f (x )+1,(f (a )=1).∴f(x+2a)=f[(x+a)+a]=f(x+a)-1f(x+a)+1=f(x)-1f(x)+1-1f(x)-1f(x)+1+1=-1f(x).∴f(x+4a)=f[(x+2a)+2a]=1-f(x+2a)=f(x)故f(x)是以4a为周期的周期函数.。
专题51 高中数学正、余弦函数的周期性与奇偶性(解析版)

专题51 正、余弦函数的周期性与奇偶性知识点一 函数的周期性(1)一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. (3)记f (x )=sin x ,则由sin(2k π+x )=sin x (k ∈Z),得f (x +2k π)=f (x )(k ∈Z)对于每一个非零常数2k π(k ∈Z)都成立,余弦函数同理也是这样,所以正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,最小正周期都为2π.2.正弦函数、余弦函数的周期性和奇偶性(1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z); (2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z);(3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z);(4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z).题型一 三角函数的周期问题及简单应用1.下列函数中,周期为π2的是( )A .y =sin xB .y =sin2xC .y =cos x2 D .y =cos4x[解析]∵T =π2=2π|ω|,∴|ω|=4,而ω>0,∴ω=42.利用周期函数的定义求下列函数的周期.(1)y =cos 2x ,x ∈R ;(2)y =sin ⎝⎛⎭⎫13x -π4,x ∈R.[解析] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4=sin ⎝⎛⎭⎫13x -π4, 由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π. 3.求下列函数的最小正周期.(1)y =sin ⎝⎛⎭⎫2x +π3;(2)f (x )=2sin ⎝⎛⎭⎫x 2-π6;(3)f (x )=cos ⎝⎛⎭⎫-2x +π3;(4)f (x )=|sin x |. [解析] (1)∵sin ⎝⎛⎭⎫2x +π3+2π=sin ⎝⎛⎭⎫2x +π3,∴sin ⎣⎡⎦⎤2(x +π)+π3=sin ⎝⎛⎭⎫2x +π3,∴y =sin ⎝⎛⎭⎫2x +π3的周期是π. (2)解法一:∵2sin ⎝⎛⎭⎫x 2-π6+2π=2sin ⎣⎡⎦⎤12(x +4π)-π6=2sin ⎝⎛⎭⎫x 2-π6,∴f (x +4π)=f (x ), ∴f (x )=2sin ⎝⎛⎭⎫x 2-π6的周期是4π. 解法二:∵ω=12,∴T =2π12=4π.(3)f (x )=cos ⎝⎛⎭⎫-2x +π3=cos ⎝⎛⎭⎫2x -π3. ∵cos ⎝⎛⎭⎫2x -π3+2π=cos ⎣⎡⎦⎤2(x +π)-π3=cos ⎝⎛⎭⎫2x -π3,∴f (x +π)=f (x ),∴T =π. (4)f (x )=|sin x |的图象如图所示.∴周期T =π.4.求下列函数的周期.(1)y =3sin ⎝⎛⎭⎫π2x +3;(2)y =|cos x |;(3)y =3cos ⎝⎛⎭⎫π6-3x ;(4)y =sin ⎝⎛⎭⎫2x -π4. [解析] (1)解法一:y =3sin ⎝⎛⎭⎫π2x +3+2π=3sin ⎣⎡⎦⎤π2(x +4)+3=3sin ⎝⎛⎭⎫π2x +3, 令y =f (x ),则f (x +4)=f (x ),∴y =3sin ⎝⎛⎭⎫π2x +3的周期为4. 解法二:ω=π2,∴T =2πω=2ππ2=4.(2)y =|cos x |的图象如下图所示.∴周期T =π.(3)解法一:y =3cos ⎝⎛⎭⎫π6-3x =3cos ⎝⎛⎭⎫3x -π6. ∵3cos ⎝⎛⎭⎫3x -π6+2π=3cos ⎣⎡⎦⎤3⎝⎛⎭⎫x +2π3-π6=3cos ⎝⎛⎭⎫3x -π6, 令y =f (x ),则f ⎝⎛⎭⎫x +2π3=f (x ),∴y =3cos ⎝⎛⎭⎫π6-3x 的周期为2π3. 解法二:∵|ω|=3,∴T =2π|ω|=2π3.(4)解法一:y =sin ⎝⎛⎭⎫2x -π4=sin ⎝⎛⎭⎫2x -π4+2π=sin ⎣⎡⎦⎤2(x +π)-π4,令y =f (x ),则f (x +π)=f (x ), ∴y =sin ⎝⎛⎭⎫2x -π4的周期为π. 解法二:∵ω=2,∴T =2πω=2π2=π.5.函数y =|cos x |-1的最小正周期为[解析]因为函数y =|cos x |-1的周期同函数y =|cos x |的周期一致,由函数y =|cos x |的图象(略)知其最小正周期为π,所以y =|cos x |-1的最小正周期也为π. 6.函数y =⎪⎪⎪⎪sin x2的最小正周期是 [解析]∵y =sin x2的周期为4π,∴y =⎪⎪⎪⎪sin x 2的周期为2π 7.如图所示的是定义在R 上的四个函数的图象,其中不是周期函数的图象的是( )[解析]观察图象易知,只有D 选项中的图象不是周期函数的图象. 8.设a >0,若函数y =sin(ax +π)的最小正周期是π,则a =________. [解析]由题意知T =2πa=π,所以a =2.9.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于[解析] 由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.10.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________. [解析]T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.11.函数y =cos ⎝⎛⎭⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是________. [解析] 由题意得2πk 4=8πk ≤2,∴k ≥4π.∴正整数k 的最小值为4π.12.函数y =cos(sin x )的最小正周期是[解析] ∵y =cos[sin(x +π)]=cos(-sin x )=cos(sin x ),∴函数y =cos(sin x )的最小正周期为π.13.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期是________. [解析]∵函数y =sin2x 的最小正周期T =π,∴函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期为π2. 14.若函数f (x )的定义域为R ,最小正周期为3π2,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x <0sin x ,0≤x <π,则f ⎝⎛⎭⎫-15π4=________. [解析]∵T =3π2,∴f ⎝⎛⎭⎫-15π4=f ⎝⎛⎭⎫-15π4+3π2×3=f ⎝⎛⎭⎫3π4=sin 3π4=22. 15.设函数f (x )=3sin ⎝⎛⎭⎫ωx +π6,ω>0,x ∈R ,且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为_____.[解析]因为f (x )的最小正周期为π2,ω>0,所以ω=2ππ2=4.所以f (x )=3sin ⎝⎛⎭⎫4x +π6. 因为f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95,所以cos α=35.所以sin α=±1-cos 2α=±45. 16.已知f (n )=sin n π4(n ∈Z),则f (1)+f (2)+…+f (100)=________.[解析]f (1)+f (2)+…+f (8)=0,f (9)+f (10)+…+f (16)=0,依此循环, f (1)+f (2)+…+f (100)=0+f (97)+f (98)+f (99)+f (100)=2+1. 17.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 019)=[解析]∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 019)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018)+f (2 019)=336sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)+f (336×6+3)=336×0+f (1)+f (2)=sin π3+sin 23π+sin 33π= 3.18.已知f (x )是R 上的奇函数,且f (x +2)=-f (x ).(1)求证:f (x )是以4为周期的函数; (2)当0≤x ≤1时,f (x )=x ,求f (7.5)的值.[解析] (1)证明:f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以f (x )是以4为周期的函数.(2)由(1)可知f (x +4)=f (x ),所以f (7.5)=f (3.5+4)=f (3.5)=f (-0.5+4)=f (-0.5)=-f (0.5)=-0.5. 19.已知f (x )=sin ax (a >0)的最小正周期为12.(1)求a 的值;(2)求f (1)+f (2)+f (3)+…+f (2019). [解析] (1)由2πa =12,得a =π6.(2)∵f (x )=sin π6x 的最小正周期为12,且f (1)+f (2)+…+f (12)=0,所以f (1)+f (2)+f (3)+…+f (2019)=f (1)+f (2)+f (3)+…+f (2017)+f (2018)+f (2019) =0+f (2017)+f (2018)+f (2019)=0+f (1)+f (2)+f (3)=0+sin π6+sin π3+sin π2=3+32.20.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期.[解析](1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π. 21.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.[解析] (1)y =12cos x +12|cos x |=⎩⎨⎧cos x ,x ∈⎝⎛⎦⎤2k π-π2,2k π+π2(k ∈Z )0,x ∈⎝⎛⎦⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.22.已知函数f (x )=cos ⎝⎛⎭⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x2,求关于x 的方程g (x )=32的解集. [解析]当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x 2=cos ⎝⎛⎭⎫x +π3.因为x +π3∈⎣⎡⎦⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6.又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π2或x =k π-π6,k ∈Z . 题型二 三角函数奇偶性的判断1.判断下列函数的奇偶性:(1)f (x )=sin ⎝⎛⎭⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x 1+sin x;(4)f (x )=x sin ⎝⎛⎭⎫π2+x ;(5)f (x )=2sin ⎝⎛⎭⎫2x +3π2. [解析] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ),∴f (x )是偶函数. (2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z , ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg [1-s i n (-x )]-lg [1+s i n (-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ),∴f (x )为奇函数. (3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z.∵定义域不关于原点对称,∴该函数是非奇非偶函数.(4)函数f (x )=x sin ⎝⎛⎭⎫π2+x 的定义域为R.∵f (x )=x sin ⎝⎛⎭⎫π2+x =x cos x , ∴f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),∴f (x )是奇函数. (5)f (x )=2sin ⎝⎛⎭⎫2x +3π2=-2cos2x ,定义域为R. ∵f (-x )=-2cos(-2x )=-2cos2x =f (x ),∴f (x )是偶函数. 2.判断下列函数的奇偶性.(1)f (x )=3cos2x ;(2)f (x )=sin ⎝⎛⎭⎫2x 3+π2+2;(3)f (x )=x ·cos x . [解析] (1)因为x ∈R ,f (-x )=3cos(-2x )=3cos2x =f (x ), 所以f (x )=3cos2x 是偶函数.(2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎫2x 3+π2+2=cos 2x 3+2,所以f (-x )=cos 2(-x )3+2=cos 2x3+2=f (x ), 所以函数f (x )=sin ⎝⎛⎭⎫2x 3+π2+2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ),所以f (x )=x cos x 是奇函数. 3.判断下列函数的奇偶性.(1)f (x )=sin ⎝⎛⎭⎫3x 4+3π2;(2)f (x )=sin|x |;(3)f (x )=1-cos x +cos x -1. [解析] (1)因为函数的定义域为R ,f (x )=sin ⎝⎛⎭⎫3x 4+3π2=-cos 3x4, 所以f (-x )=-cos ⎝⎛⎭⎫-3x 4=-cos 3x4=f (x ),所以函数f (x )=sin ⎝⎛⎭⎫3x 4+3π2是偶函数. (2)因为函数的定义域为R ,f (-x )=sin|-x |=sin|x |=f (x ),所以函数f (x )=sin|x |是偶函数.(3)由⎩⎪⎨⎪⎧1-cos x ≥0,cos x -1≥0,得cos x =1,所以x =2k π(k ∈Z),此时f (x )=0,故该函数既是奇函数又是偶函数. 4.判断下列函数的奇偶性:(1)f (x )=-2cos 3x ;(2)f (x )=x sin(x +π);(3)f (x )=|sin x |+cos x ;(4)f (x )=cos(2π-x )-x 3·sin x . [解析] (1)f (-x )=-2cos 3(-x )=-2cos 3x =f (x ),x ∈R ,所以f (x )=-2cos 3x 为偶函数.(2)f (x )=x sin(x +π)=-x sin x ,x ∈R ,所以f (-x )=x sin(-x )=-x sin x =f (x ),故函数f (x )为偶函数. (3)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (4)函数的定义域为R ,关于原点对称,因为f (x )=cos x -x 3·sin x ,所以f (-x )=cos(-x )-(-x )3·sin(-x )=cos x -x 3·sin x =f (x ),所以f (x )为偶函数.5.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.[解析]∵f (-x )=lg[sin(-x )+1+sin 2(-x )]=lg(1+sin 2x -sin x )=lg (1+sin 2x )-sin 2x 1+sin 2x +sin x=lg(sin x +1+sin 2x )-1=-lg(sin x +1+sin 2x )=-f (x ). 又当x ∈R 时,均有sin x +1+sin 2x >0,∴f (x )是奇函数. 6.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.[解析]x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 7.函数y =cos ⎝⎛⎭⎫-12x +π2的奇偶性为( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数 [解析]函数的定义域为R ,且y =cos ⎝⎛⎭⎫-12x +π2=sin 12x ,故所给函数是奇函数. 8.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .非奇非偶函数[解析]由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x =|sin x |,所以函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≠2k π+π2,k ∈Z ,由于定义域不关于原点对称,所以该函数是非奇非偶函数.9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是________. [解析]当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ), ∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R.10.若f (x )为奇函数,当x >0时,f (x )=cos x -sin x ,当x <0时,f (x )的解析式为________. [解析]f (x )=-cos x -sin x [x <0时,-x >0,f (-x )=cos(-x )-sin(-x )=cos x +sin x ,因为f (x )为奇函数,所以f (x )=-f (-x )=-cos x -sin x ,即x <0时,f (x )=-cos x -sin x . 11.若函数f (x )=sin ⎝⎛⎭⎫12x -φ是偶函数,则φ的一个取值为( ) A .2010π B .-π8 C .-π4D .-π2[解析]当φ=-π2时,f (x )=sin ⎝⎛⎭⎫12x +π2=cos 12x 为偶函数,故选D. 12.函数f (x )=sin(2x +φ)为R 上的奇函数,则φ的值可以是( )A.π4B.π2 C .π D.3π2[解析]要使函数f (x )=sin(2x +φ)为R 上的奇函数,需φ=k π,k ∈Z.故选C. 13.已知函数f (x )=2sin ⎝⎛⎭⎫x +π4+φ是奇函数,则φ的值可以是( ) A .0 B .-π4 C .π2D .π[解析]法一:f (x )=2sin ⎝⎛⎭⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z . 显然当k =0时,φ=-π4满足题意.法二:因为f (x )是奇函数,所以f (0)=0,即2sin ⎝⎛⎭⎫π4+φ=0,所以φ+π4=k π(k ∈Z ), 即φ=k π-π4,令k =0,则φ=-π4.14.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为________.[解析]要使g (x )=sin(2x +π4+α)为偶函数,则须π4+α=k π+π2,k ∈Z.所以α=k π+π4,k ∈Z.因为0<α<π2,所以α=π4.15.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于________. [解析]因为f (x )=sin x -|a |,x ∈R 为奇函数,所以f (0)=sin 0-|a |=0,所以a =0. 16.已知f (x )=a sin x +bx 3c cos x,若f (5)=-2,则f (-5)=________.[解析]f (x )=a sin x +bx 3c cos x ,则f (-x )=a sin (-x )+b (-x )3c cos (-x )=-a sin x +bx 3c cos x =-f (x ),所以f (x )是奇函数.所以f (-5)=-f (5)=2.题型三 三角函数的奇偶性与周期性的综合应用1.下列函数中是奇函数,且最小正周期是π的函数是( )A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝⎛⎭⎫π2+2x D .y =cos ⎝⎛⎭⎫3π2-2x [解析]y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝⎛⎭⎫π2+2x =cos 2x 是偶函数, y =cos ⎝⎛⎭⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π. 2.已知函数f (x )=sin ⎝⎛⎭⎫πx -π2-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数 B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [解析]∵f (x )=sin ⎝⎛⎭⎫πx -π2-1=-sin ⎝⎛⎭⎫π2-πx -1=-cos(πx )-1 ∴T =2ππ=2,而f (-x )=f (x ),∴f (x )为偶函数.3.函数f (x )=3sin ⎝⎛⎭⎫23x +15π2是( )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数[解析]∵f (x )=3sin ⎝⎛⎭⎫23x +6π+π+π2=3sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2+2x 3=-3sin ⎝⎛⎭⎫π2+23x =-3cos 23x ∴T =2π23=3π,而f (-x )=f (x ),则f (x )为偶函数.4.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,则f ⎝⎛⎭⎫5π3等于[解析]f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-π=f ⎝⎛⎭⎫2π3=f ⎝⎛⎭⎫2π3-π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝⎛⎭⎫π4=1,则f ⎝⎛⎭⎫3π4的值为 [解析]由已知得f (x +π)=f (x ),f (-x )=-f (x ),所以f ⎝⎛⎭⎫3π4=f ⎝⎛⎭⎫3π4-π=f ⎝⎛⎭⎫-π4=-f ⎝⎛⎭⎫π4=-1. 6.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13.若f (1)=2,则f (99)=________. [解析]因为f (x )·f (x +2)=13,所以f (x +2)=13f (x ),所以f (x +4)=13f (x +2)=1313f (x )=f (x ), 所以函数f (x )是周期为4的周期函数,所以f (99)=f (3+4×24)=f (3)=13f (1)=132.7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)= [解析]因为f (x +4)=f (x ),所以函数的周期是4.因为f (x )在R 上是奇函数,且当x ∈(0,2)时,f (x )=2x 2, 所以f (7)=f (7-8)=f (-1)=-f (1)=-2.8.函数f (x )是以4为周期的奇函数,且f (-1)=1,则sin ⎣⎡⎦⎤πf (5)+π2=________. [解析] ∵函数f (x )是以4为周期的奇函数,且f (-1)=1,∴f (5)=f (4+1)=f (1)=-f (-1)=-1,则原式=sin ⎝⎛⎭⎫-π+π2=-sin π2=-1.9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值.[解析]∵f (x )的最小正周期是π,∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32.∴f ⎝⎛⎭⎫5π3=32. 10.设函数f (x )(x ∈R)满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )[解析]由f (-x )=f (x ),则f (x )是偶函数,图象关于y 轴对称.由f (x +2)=f (x ),则f (x )的周期为2.11.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,当x ∈⎣⎡⎦⎤5π2,3π时,求f (x )的解析式. [解析] x ∈⎣⎡⎦⎤5π2,3π时,3π-x ∈⎣⎡⎦⎤0,π2,因为x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤5π2,3π.12.关于x 的函数f (x )=sin(x +φ)有以下说法:①对任意的φ,f (x )都是非奇非偶函数;②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数.其中错误的是________(填序号).[解析]答案为①④,φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数. 13.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是______________________.[解析]∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cos x 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3 14.设函数f (x )=sin ⎝⎛⎭⎫2k +13πx +π4(k ∈N *),若在区间[a ,a +3](a 为实数)上存在有不少于4个且不多于8个不同的x 0,使f (x 0)=12,求k 的值. [解析]∵f (x )在一个周期内有且只有2个不同的x 0,使f (x 0)=12,∴f (x )在区间[a ,a +3]上至少有2个周期,至多有4个周期.而这个区间的长度为3个单位,∴⎩⎪⎨⎪⎧2T ≤3,4T ≥3,即34≤T ≤32,即34≤62k +1≤32,解得32≤k ≤72,因为k ∈N *,∴k =2或k =3.。
高中数学函数的奇偶性与周期性应用题解析

高中数学函数的奇偶性与周期性应用题解析在高中数学中,函数的奇偶性与周期性是重要的概念,对于解题具有很大的指导作用。
本文将通过具体的题目举例,分析奇偶性与周期性的应用,帮助高中学生更好地理解和运用这些概念。
一、奇偶函数的性质与应用奇函数和偶函数是函数的一种特殊性质,它们在数学中有着重要的应用。
首先,我们来看一个例子:例题1:已知函数$f(x)=x^3-2x$,求证$f(x)$是奇函数。
解析:要证明$f(x)$是奇函数,需要证明对于任意的$x$,有$f(-x)=-f(x)$成立。
我们将$f(-x)$代入并化简,得到$f(-x)=(-x)^3-2(-x)=-x^3+2x$。
然后,我们将$-f(x)$化简,得到$-f(x)=-(x^3-2x)=-x^3+2x$。
可以看出,$f(-x)$和$-f(x)$的结果是相等的,因此$f(x)$是奇函数。
这个例题中,我们通过代入$x$和$-x$,并对函数进行化简,证明了函数$f(x)$是奇函数。
奇函数的一个重要性质是,当自变量$x$取正值和负值时,函数值的符号相反。
在解题中,我们可以利用奇函数的性质进行简化计算,例如可以通过奇偶性关系得到一些特殊点的函数值。
二、周期函数的性质与应用周期函数是指函数在一定区间内满足$f(x+T)=f(x)$的函数,其中$T$为函数的周期。
周期函数在数学中有着广泛的应用。
接下来,我们来看一个例子:例题2:已知函数$f(x)=\sin(2x)$,求证$f(x)$是周期函数,并求出它的最小正周期。
解析:要证明$f(x)$是周期函数,需要证明对于任意的$x$,有$f(x+T)=f(x)$成立。
我们将$f(x+T)$代入并化简,得到$f(x+T)=\sin(2(x+T))=\sin(2x+2T)$。
然后,我们将$f(x)$化简,得到$f(x)=\sin(2x)$。
要使得$f(x+T)=f(x)$成立,必须满足$\sin(2x+2T)=\sin(2x)$。
高中数学函数奇偶性与周期性练习题

函数的奇偶性与周期性1.下列函数中,既是奇函数,又是增函数的为( )A .1+=x yB .2x y -=C .xy 1= D .x x y = 2.设函数)(x f 为偶函数,当),0(+∞∈x 时,x x f 2log (=),则=-)2(f ( ) A .21- B .21 C .2 D .2- 3.函数)(x f 满足)()1(x f x f -=+,且当10≤≤x 时, )1(2)(x x x f -=,则)25(f 的值为( )A .21 B .41 C .41- D .21- 4.已知x x a x f 22)(+=为奇函数,)14(log )(2+-=x bx x g 为偶函数,则=)(ab f ( ) A .417 B .25 C .415- D .23- 5.定义在R 上的偶函数)(x f 满足:对任意的))(0[2121x x x x ≠∞+∈,,,有0)()(1212<--x x x f x f ,则( ) A .)1()2()3(f f f <-< B .)3()2()1(f f f <-<C .)3()1()2(f f f <<-D .)2()1()3(-<<f f f6.已知)(x f 是定义在R 上的周期为2的奇函数,当)1,0(∈x 时,13)(-=x x f ,则=)22019(f ( ) A .13+ B .13- C .13-- D .13+-7.已知函数t x x b x a x f ++-+=11lnsin (),若6)21()21(=-+f f ,则实数=t ( ) A .2- B . 1- C . 1 D .3 8.已知)(x f 是定义域为)11(,-的奇函数,而且)(x f 是减函数, 如果0)32()2(>-+-m f m f 那么实数m 的取值范围是( )A .)351(, B .)35(,-∞ C .)31(, D .)35(∞+,9.若函数ax e x f x ++=)1ln()(为偶函数,则实数a =10.设定义在R 上的函数同时满足以下条件:0)()(=-+x f x f ①)2()(+=x f x f ②12)(,10-=<≤x x f x 时③当, 则)25()2()23()1()21(f f f f f ++++=1.已知函数1222)(31+++=+x x x x f 的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .82.设函数211)1ln()(x x x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围为3.已知函数⎪⎩⎪⎨⎧<+=>+-=00002)(22x mx x x x x x x f ,,,是奇函数(1)求实数m 的值(2)若函数)(x f 在区间]21[--a ,上单调递增,求实数a 的取值范围4.奇函数)(x f 的定义域为R ,若)2(+x f 为偶函数,且1)1(=f ,则)9()8(f f +=()A .-2B .-1C .0D .15.已知定义在R 上的奇函数)(x f 满足)()4(x f x f -=-,且在区间]20[,上是增函数,则( )A .)80()11()25(f f f <<-B .)25()11()80(-<<f f fC .)25()80()11(-<<f f fD .)11()80()25(f f f <<-6.定义在R 上的函数)(x f ,满足)()5(x f x f =+,当]03(,-∈x 时,1)(--=x x f , 当]20(,∈x 时,x x f 2log )(=,则)2019()3()2()1(f f f f +⋅⋅⋅+++的值等于() A .403 B .405 C .806 D809.7.设函数)(x f 是R 上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)((1)求)(πf 的值(2)当44≤≤-x 时,求函数)x f (的图像与x 轴所围成图形的面积。
高一数学必修1函数奇偶性专项练习、题型分析

奇偶性概念考察1.下面四个结论中, 正确命题的个数是( )①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称④既是奇函数, 又是偶函数的函数一定是f(x)=0(x ∈R) A. 1 B. 2 C. 3 D. 42.下列判断正确的是( )A.定义在R 上的函数f(x), 若f(-1)=f(1),且f(-2)=f(2), 则f(x)是偶函数;B.定义在R 上的函数f(x)满足f(2)>f(1), 则f(x)在R 上不是减函数;C.定义在R 上的函数f(x)在区间 上是减函数, 在区间 上也是减函数, 则f(x)在R 上是减函数;D.既是奇函数又是偶函数的函数有且只有一个。
3.对于定义域为R 的任意奇函数f(x)一定有( ) A. f(x)-f(-x)>0 B. f(x)-f(-x)≤0 C. f(x)·f(-x)<0D. f(x)·f(-x)≤04、 是定义在R 上的奇函数, 下列结论中, 不正确的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=--(C ))(x f ·)(x f -≤0 (D )1)()(-=-x f x f判断函数奇偶性1. 下列函数中:①y =x2(x ∈[-1, 1]); ②y =|x |; ④y =x3(x ∈R), 奇函数的个数是( ) A. 1个 B. 2个 C. 3个D. 4个. 2.下列函数中是偶函数的是... )A.y=x4 (x<0) B 、y=|x+1| C 、y= D 、y=3x-13. 判断下列函数的奇偶性: (1)x x x f -+-=11)( (2)2211)(x x x f -+-=(3)x x y 2112-+-= (4)⎪⎩⎪⎨⎧<--=>+=)0(2)0(0)0(222x x x x x y(5)y =(6)⎩⎨⎧<+≥-=)0(1)0(1)(x x x x x f(7)122)(2++=x xx x f ; (8) a x f =)( (R x ∈)(9)⎩⎨⎧+-=)1()1()(x x x x x f .0,0<≥x x (10)()f x =(11) (12)22x (0)f(x)=x (0)x x x x ⎧+<⎪⎨->⎪⎩(13)|1||1|y x x =-++若f(x)是偶函数, 则 ______.5.下列给出的函数中, 既不是奇函数也不是偶函数的是 (A )2xy =(B )2y x x =-(C )2y x =(D )3y x =已知函数 的图象关于原点对称, 则 ________________奇偶函数四则运算性质1.判断下列函数的奇偶性(1)2413)(x x x f += (2)xx y 13+= (3)x x y +=4(4) x x x f 2)(3-=;(5)2||1y x x =-+ (6)y = 2.函数 , 是( )A. 偶函数B. 奇函数C. 不具有奇偶函数D. 与 有关已知函数 是 上的偶函数, 则实数 _____;不等式 的解集为_____.若 是偶函数, 讨论函数 的单调区间?已知函数 是偶函数, 判 的奇偶性。
高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
高中数学_函数的周期性练习题含答案

高中数学 函数的周期性练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 定义在R 上的偶函数f(x)满足f(1−x)=f(1+x),f(0)=2,则f(10)=( ) A.−4 B.−2 C.2 D.42. 若f(x)是R 上周期为3的偶函数,且当0<x ≤32时,f(x)=log 4x ,则f(−132)=( ) A.−2 B.2 C.−12D.123. 已知函数f (x )满足f (1+x )=f (1−x ),且f (−x )=f (x ),当1≤x ≤2时,f (x )=2x −1,则f (2021)的值为( ) A.2 B.1 C.0 D.−14. 已知函数f(x)满足f(1+x)+f(1−x)=0,且f(−x)=f(x),当1≤x ≤2时,f(x)=2x −1,求f(2017)=( ) A.−1 B.0 C.1 D.25. 定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0, 1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ) A.3 B.4 C.5 D.66. 已知函数y =f (x )对任意x ∈R 都有f (x +2)=f (−x )且f (4−x )+f (x )=0成立,若f (0)=1,则f (2019)+f (2020)+f (2021)的值为( ) A.1 B.2 C.0 D.−27. 定义在R 上的偶函数f (x )满足f (1−x )=f (1+x ),当x ∈(−1,0]时,f (x )=tan πx 3,则f (194)=( )A.−1B.−2C.0D.18. 已知f (x )是R 上的偶函数且满足f (x +3)=−f (x ),若f (1)>7,f (2021)=4+3a ,则实数a 的取值范围为( ) A.(0,+∞)B.(1,+∞)C.(−∞,0)D.(−∞,1)9. 已知函数f (x )满足:对任意x ∈R ,f (−x )=−f (x ),f (2−x )=f (2+x ),且在区间[0,2]上,f (x )=x 22+cos x −1 ,m =f(√3),n =f (7),t =f (10),则( )A.m <n <tB.n <m <tC.m <t <nD.n <t <m10. 定义在R 上的偶函数f (x )满足f (2−x )=f (2+x ),且当x ∈[0,2]时,f (x )={e x −1,0≤x ≤1,x 2−4x +4,1<x ≤2. 若关于x 的不等式m|x|≤f (x )的整数解有且仅有9个,则实数m 的取值范围为( ) A.(e−17,e−15] B.[e−17,e−15] C.(e−19,e−17] D.[e−19,e−17]11. 定义在R 上的函数f (x )满足f (x )=f (x +5),当x ∈[−2,0)时,f (x )=−(x +2)2,当x ∈[0,3)时,f (x )=x ,则f (1)+f (2)+⋯+f (2021)=( ) A.809 B.811 C.1011 D.101312. 设f(x)是周期为4的奇函数,当0≤x ≤1时,f(x)=x ⋅(1+x),则f(−92)=________.13. 已知f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=−f (x ),则f (2016)=________.14. 已知函数f(x)的定义域为R ,且f(x)=−f(x +2),若当x ∈[0, 2)时,f(x)=3x ,则f(2019)=________15. 已知定义在R 上的函数f (x ),对任意实数x 均有f (x +4)=−f (x )+2√2,若函数f (x −2)的图象关于直线x =2对称,则f (2018)=________.16. 已知函数f (x )为R 上的奇函数,且f (−x )=f (2+x ),当x ∈[0,1]时,f (x )=2x +a 2x,则f (101)+f (105)的值为________.17. 定义在R 上的函数f (x )满足f (x +6)=f (x ).当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,−1≤x <3,则f (4)=________;f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=________.18. 定义在R上的奇函数f(x)满足f(x+2)=f(−x),当x∈[−1,0]时,f(x)=x2+2x,则f(2021)=________.19. 已知函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=−x2+kx+2.(1)求f(x)的解析式;(2)求f(x)在[2,4]上的最大值..20. 已知定义在R上的奇函数f(x)有最小正周期4,且x∈(0, 2)时,f(x)=e xx(1)求f(x)在[−2, 2]上的解析式;(2)若|f(x)|≥λ对任意x∈R恒成立,求实数λ的取值范围.21. 已知函数f(x)在R上满足f(2−x)=f(2+x),f(7−x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0.试判断函数y=f(x)的奇偶性;试求方程f(x)=0在闭区间[−2011,2011]上根的个数,并证明你的结论.22. 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=−f(x).当x∈[0,2]时,f(x)=2x−x2.求证:f(x)是周期函数;当x∈[2,4]时,求f(x)的解析式;计算f(0)+f(1)+f(2)+⋯+f(2013).23. 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0, 1)时,f(x)=2x.4x+1(1)证明f(x)在(0, 1)上为减函数;(2)求函数f(x)在[−1, 1]上的解析式;(3)当λ取何值时,方程f(x)=λ在R上有实数解.参考答案与试题解析高中数学 函数的周期性练习题含答案一、 选择题 (本题共计 11 小题 ,每题 3 分 ,共计33分 ) 1.【答案】 C【考点】 函数的求值函数奇偶性的性质 函数的周期性【解析】根据题意,分析可得f(x)是周期为2的周期函数,则有f(10)=f(0),即可得答案. 【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x), 又由f(x)为偶函数,则有f(−x)=f(x), 即f(x −1)=f(1−x)=f(1+x), 所以f(x)=f(2+x),则函数f(x)是周期为2的周期函数, 故f(10)=f(0)=2. 故选C . 2.【答案】 C【考点】 函数的周期性 偶函数 【解析】根据题意,由函数的奇偶性与周期性可得f(−132)=f(−12)=f(12),结合函数的解析式分析可得答案. 【解答】解:由题意得f(x)是R 上周期为3的偶函数, 则f(−132)=f(−12)=f(12).因为当0<x ≤32时,f(x)=log 4x ,所以f(12)=log 412=−12, 所以f(−132)=−12. 故选C .3. 【答案】 B【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1).从而得到|f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2021)的值.【解答】解:∵f(1+x)=f(1−x),且f(−x)=f(x),则f[1+(1+x)]=f[1−(1+x)],即f(2+x)=f(−x)=f(x).∵ f(x)是以2为周期的周期函数,当1≤x≤2时,f(x)=2x−1∴f(2021)=f(2×1010+1)=f(1)=21−1=1.故选B.4.【答案】C【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1),从而得到f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2017)的值.【解答】解:∵f(1+x)+f(1−x)=0,且f(−x)=f(x),∴f(1+x)=−f(1−x)=−f(x−1).令x−1=t,得f(t+2)=−f(t),∴f(x+4)=−f(x+2)=f(x),∴f(x)以4为周期的周期函数.∵当1≤x≤2时,f(x)=2x−1,∴f(2017)=f(4×504+1)=f(1)=21−1=1.故选C.5.【答案】B【考点】函数的周期性函数奇偶性的性质【解析】此题暂无解析【解答】解:因为f(1+x)=f(1−x),且f(x)为定义在R上的偶函数,所以有f(1+x)=f(1−x)=f(x−1),即f(x+2)=f(x),函数f(x)为周期为2的偶函数,且关于x=1对称.又因为g(x)=e−|x−1|(−1<x<3)关于x=1对称,所以f(x)与g(x)的图象一共有四个交点,交点的横坐标之和为2+2=4.故选B.6.【答案】A【考点】函数的求值函数的周期性【解析】由题意,根据f(x+2)=f(−x)以及f(4−x)=−f(x)可推导y=f(x)是周期为4的周期函数,可得f(2019)=f(3),f(2021)=f(1),代入f(4−x)=−f(x)可计算结果,又f(2020)=f(0)=0,代入计算即可.【解答】解:已知f(x+2)=f(−x),则f(2−x)=f(x).又f(4−x)=−f(x),可得f(4−x)+f(2−x)=0,所以f(x+2)=−f(x),即f(x+4)=f[(x+2)+2]=−f(x+2)=f(x),可得函数y=f(x)是周期为4的周期函数,则f(2019)=f(3),f(2020)=f(0),f(2021)=f(1).因为f(4−x)+f(x)=0,所以f(4−1)+f(1)=0,即f(3)+f(1)=0,可得f(2019)+f(2020)+f(2021)=0+1=1.故选A.7.【答案】A【考点】函数奇偶性的性质函数的周期性函数的求值【解析】此题暂无解析【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x),则f(−x)=f(2+x),又由f(x)为偶函数,则有f(−x)=f(x),则f(x+2)=f(x),函数f(x)是周期为2的偶函数,故f(194)=f(34)=f(−34)=tan[π3×(−34)]=−1.故选A.8.【答案】B函数奇偶性的性质函数的周期性【解析】【解答】解:因为f(x+3)=−f(x),所以f(x+6)=−f(x+3)=f(x),所以f(x)是周期为6的周期函数,所以f(2021)=f(6×337−1)=f(−1)=f(1).因为f(1)>7,所以f(2021)=4+3a>7,解得a>1.故选B.9.【答案】B【考点】函数的周期性利用导数研究函数的单调性奇偶性与单调性的综合【解析】由f(−x)=−f(x),f(2−x)=f(2+x)判断出该函数的奇偶性及对称性、周期性.再将自变量转变到同一周期内利用单调性进行比大小.【解答】解:∵f(−x)=−f(x),f(2−x)=f(2+x),∴f(x)为奇函数,∴f[2−(x+2)]=f(2+x+2),即f(−x)=f(x+4)=−f(x),∴f(x+8)=−f(x+4)=f(x),即f(x)的最小正周期为8,∴f(7)=f(8−1)=f(−1)=−f(1),f(10)=f(8+2)=f(2),当x∈[0,2]时,f(x)=x 22+cos x−1,f′(x)=x−sin x,f′′(x)=1−cos x≥0,∴f′(x)=x−sin x为单调递增函数,f′(x)≥f′(0)=0,∴f(x)=x22+cos x−1为单调递增函数,即当x∈[0,2]时,f(x)≥f(0)=0,∴−f(1)<0,0<f(1)<f(√3)<f(2),∴f(7)<f(√3)<f(10),即n<m<t.故选B.10.C【考点】 函数的周期性 函数奇偶性的性质 分段函数的应用根的存在性及根的个数判断【解析】本题考查函数的图象与性质及不等式与函数的结合. 【解答】解:∵ f (−x )=f (x ),f (2−x )=f (2+x ),∴ f(2+x)=f(−x −2)=f(−x +2),∴ f (x +4)=f (x ),即f (x )是以4为周期的函数,作出函数f (x )的图象如图所示.令g (x )=m|x|,将g (x )的图象绕坐标原点旋转可得 {7m ≤e −1,9m >e −1,即{m ≤e−17,m >e−19 则实数m 的取值范围为(e−19,e−17].故选C . 11.【答案】 A【考点】 函数的周期性 函数的求值【解析】【解答】解:由f (x )=f (x +5)可知f (x )周期为5, 因为当x ∈[−2,0)时,f (x )=−(x +2)2; 当x ∈[0,3)时,f (x )=x ,所以f (−2)+f (−1)+f (0)+f (1)+f (2)=2. 又因为f (x )周期为5,所以f (x )+f (x +1)+f (x +2)+f (x +3)+f (x +4)=2, 因此f (1)+f (2)+⋯+f (2021)=f (1)+[f (2)+f (3)+f (4)+f (5)+f (6)]+⋯+f (2021) =f (1)+2×404 =809. 故选A .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.−34【考点】 函数的周期性 函数奇偶性的性质 函数的求值 【解析】由奇函数的性质可得,f(−92)=−f(92),由周期性可得f(92)=f(92−4)=f(12),进而得解. 【解答】解:由题意可得,f(−92)=−f(92)=−f(92−4)=−f(12)=−12×(1+12)=−12×32=−34. 故答案为:−34. 13.【答案】 0【考点】 函数的求值 函数的周期性 函数奇偶性的性质【解析】由f (x +2)=−f (x )可得f (x )是周期为4的函数,把f (2016)转化成f (0))求解即可. 【解答】解:对任意实数x ,恒有f (x +2)=−f (x ),则f(x +4)=f(x +2+2)=−f(x +2)=f(x), 所以f (x )是周期为4的函数, 所以f (2016)=f (0),又f (x )是定义在R 上的奇函数, 所以f (0)=0, 所以f (2016)=0. 故答案为:0. 14.【答案】 −3【考点】 求函数的值 函数的周期性 函数的求值【解析】推导出f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,从而f(2019)=f(3)=−f(1),由此能求出结果.【解答】∵函数f(x)的定义域为R,且f(x)=−f(x+2),∴f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,∴f(2019)=f(3)=−f(1)=−(3)故答案为:−(3)15.【答案】√2【考点】函数奇偶性的性质函数的周期性【解析】由已知条件推导出f(−x)=f(x),故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),由此能求出结果.【解答】解:由函数f(x−2)的图象关于直线x=2对称可知,函数f(x)的图象关于y轴对称,故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),又f(2)=−f(−2)+2√2,f(−2)=f(2),所以f(2)=√2.故答案为:√2.16.【答案】3【考点】函数奇偶性的性质函数的周期性函数的求值【解析】暂无【解答】解:因为f(x)为R上的奇函数,所以f(0)=1+a=0,所以a=−1,(0≤x≤1),所以f(x)=2x−12x.则f(1)=32又因为f (x )为奇函数,所以f (−x )=f (2+x )=−f (x ),则f (x +4)=f (x ),所以f (x )的周期为4,所以f (101)+f (105)=2f (1)=32×2=3. 故答案为:3.17.【答案】0,337【考点】函数的求值函数的周期性【解析】先由f (x +6)=f (x )判断周期为6,直接计算f (4);然后计算2017=6×36+1,把f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)转化为=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017) ,即可求解.【解答】解:因为f (x +6)=f (x ),所以函数f (x )的周期为6的周期函数,当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,x −1≤x <3,所以f (4)=f (−2)=−(−2+2)2=0,因为2017=6×336+1,f (1)=1,f (2)=2,f (3)=f (−3)=−(−3+2)2=−1, f (4)=0,f (5)=f (−1)=−1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017)=36×(1+2−1+0−1+0)+1=337.故答案为:0;337.18.【答案】1【考点】函数奇偶性的性质函数的周期性【解析】无【解答】解:因为f (x )是奇函数,所以f (x +2)=f (−x )=−f (x ),所以f (x +4)=f(x +2+2)=−f(x +2)=f (x ),所以f (x )的周期为4.所以f (x +4)=f (x ),故f (x )是以4为周期的周期函数,则f (2021)=f (4×505+1)=f (1)=−f (−1)=−[(−1)2−2]=1.故答案为:1.三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )19.【答案】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f (x )max =f (4)=2;当8−k 2≤2,即k ≥4时,f (x )在[2,4]上单调递减,则f (x )max =f (2)=2k −2;当2<8−k 2<4,即0<k <4时,f (x )max =f (8−k 2)=k 2+84. 综上所述,f (x )max ={ 2,k ≤0,k 2+84,0<k <4,2k −2,k ≥4.【考点】函数的周期性二次函数在闭区间上的最值分段函数的应用函数解析式的求解及常用方法【解析】【解答】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f(x)max=f(4)=2;当8−k2≤2,即k≥4时,f(x)在[2,4]上单调递减,则f(x)max=f(2)=2k−2;当2<8−k2<4,即0<k<4时,f(x)max=f(8−k2)=k2+84.综上所述,f(x)max={2,k≤0,k2+84,0<k<4,2k−2,k≥4.20.【答案】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.【考点】函数恒成立问题函数的周期性奇函数【解析】(1)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为4,得到②和f(−2)的值.然后求(−2, 0)上的解析式,通过在(−2, 0)上取变量,转化到(0, 2)上,即可得到结论.(2)|f(x)|≥λ等价于|f(x)|min≥λ,由f(x)的最小正周期为4得,问题转化为求x∈[−2, 2]时的|f(x)|min,由(1)易求;【解答】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.21.【答案】函数f(x)既不是奇函数也不是偶函数.∵f(x)=f[2+(x−2)]=f[2−(x−2)]=f(4−x),f(x)=f[7+(x−7)]=f(7−(x−7))=f(14−x),∴f(14−x)=f(4−x),即f[10+(4−x)]=f(4−x),∴f(x+10)=f(x),即函数f(x)的周期为10.又∵f(1)=f(3)=0,∴f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即x=1+10n和x=3+10n(n∈Z)均是方程f(x)=0的根.由−2011≤1+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±201,共403个;由−2011≤3+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±200,−201,共402个;所以方程f(x)=0在闭区间[−2011,2011]上的根共有805个.【考点】函数的周期性抽象函数及其应用函数的图象与图象变化【解析】此题暂无解析【解答】若y=f(x)为偶函数,则f(−x)=f(2−(x+2))=f(2+(x+2))=f(4+x)=f(x),∴f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(−0)=−f(0),∴f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.略22.【答案】证明∵f(x+2)=−f(x),∴f(x+4)=−f(x+2)=f(x).∴f(x)是周期为4的周期函数.f(x)=x2−6x+8,x∈[2,4].1【考点】函数的周期性奇偶性与单调性的综合【解析】此题暂无解析【解答】思维启迪:只需证明f(x+T)=f(x),即可说明f(x)是周期函数;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵x∈[2,4],∴−x∈[−4,−2],∴4−x∈[0,2],∴f(4−x)=2(4−x)−(4−x)2=−x2+6x−8,又f(4−x)=f(−x)=−f(x),∴−f(x)=−x2+6x−8,即f(x)=x2−6x+8,x∈[2,4].思维启迪:由f(x)在[0,2]上的解析式求得f(x)在[−2,0]上的解析式,进而求f(x)在[2,4]上的解析式;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵f(0)=0,f(2)=0,f(1)=1,f(3)=−1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=⋯=f(2008)+f(2009)+f(2010)+f(2011)=0.∴f(0)+f(1)+f(2)+⋯+f(2013)=f(0)+f(1)=1.思维启迪:由周期性求和.探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.23.【答案】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分【考点】函数的周期性函数奇偶性的性质与判断【解析】(1)利用函数单调性的定义证明.(2)利用函数的周期性和奇偶性求对应的解析式.(3)利用函数的性质求函数f(x)的值域即可.【解答】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题训练(教师版)—函数的奇偶性和周期性一、选择题1.下列函数中,不具有奇偶性的函数是( )A .y =e x -e -xB .y =lg 1+x 1-xC .y =cos2xD .y =sin x +cos x答案 D2.(2011·山东临沂)设f (x )是R 上的任意函数,则下列叙述正确的是( )A .f (x )f (-x )是奇函数B .f (x )|f (-x )|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数答案 D3.已知f (x )为奇函数,当x >0,f (x )=x (1+x ),那么x <0,f (x )等于( )A .-x (1-x )B .x (1-x )C .-x (1+x )D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ).4.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 由f (x )是偶函数知b =0,∴g (x )=ax 3+cx 是奇函数.5.(2010·山东卷)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3答案 D解析 令x ≤0,则-x ≥0,所以f (-x )=2-x -2x +b ,又因为f (x )在R 上是奇函数,所以f (-x )=-f (x )且f (0)=0,即b =-1,f (x )=-2-x +2x +1,所以f (-1)=-2-2+1=-3,故选D.6.(2011·北京海淀区)定义在R 上的函数f (x )为奇函数,且f (x +5)=f (x ),若f (2)>1,f (3)=a ,则( )A .a <-3B .a >3C .a <-1D .a >1答案 C解析 ∵f (x +5)=f (x ),∴f (3)=f (-2+5)=f (-2),又∵f (x )为奇函数,∴f (-2)=-f (2),又f (2)>1,∴a <-1,选择C.7.(2010·新课标全国卷)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8,又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0-x 3-8,x <0. ∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥0-(x -2)3-8,x <0, ⎩⎨⎧ x ≥0(x -2)3-8>0或⎩⎨⎧x <0-(x -2)3-8>0, 解得x >4或x <0.故选B.二、填空题8.设函数f (x )=(x +1)(x +a )为偶函数,则a =________.答案 -1解析 f (x )=x 2+(a +1)x +a .∵f (x )为偶函数,∴a +1=0,∴a =-1.9.设f (x )=ax 5+bx 3+cx +7(其中a ,b ,c 为常数,x ∈R ),若f (-2011)=-17,则f (2011)=________.答案 31解析 f (2011)=a ·20115+b ·20113+c ·2011+7f (-2011)=a (-2011)5+b (-2011)3+c (-2011)+7∴f (2011)+f (-2011)=14,∴f (2011)=14+17=31.10.函数f (x )=x 3+sin x +1的图象关于________点对称.答案(0,1)解析 f (x )的图象是由y =x 3+sin x 的图象向上平移一个单位得到的.11.已知f (x )是定义在R 上的偶函数,且对任意的x ∈R ,总有f (x +2)=-f (x )成立,则f (19)=________.答案 0解析 依题意得f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的函数,因此有f (19)=f (4×5-1)=f (-1)=f (1),且f (-1+2)=-f (-1),即f (1)=-f (1),f (1)=0,因此f (19)=0.12.定义在(-∞,+∞)上的函数y =f (x )在(-∞,2)上是增函数,且函数y =f (x +2)为偶函数,则f (-1),f (4),f (512)的大小关系是__________.答案 f (512)<f (-1)<f (4) 解析 ∵y =f (x +2)为偶函数∴y =f (x )关于x =2对称又y =f (x )在(-∞,2)上为增函数∴y =f (x )在(2,+∞)上为减函数,而f (-1)=f (5)∴f (512)<f (-1)<f (4). 13.(2011·山东潍坊)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0),其中正确的序号是________.答案 ①②⑤解析 由f (x +1)=-f (x )得f (x +2)=-f (x +1)=f (x ),∴f (x )是周期为2的函数,①正确,f (x )关于直线x =1对称,②正确,f (x )为偶函数,在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确.三、解答题14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x )、g (x )的解析式.答案 f (x )=x 2-2,g (x )=x解析 ∵f (x )+g (x )=x 2+x -2.①∴f (-x )+g (-x )=(-x )2+(-x )-2.又∵f (x )为偶函数,g (x )为奇函数,∴f (x )-g (x )=x 2-x -2.②由①②解得f (x )=x 2-2,g (x )=x .15.已知f (x )是定义在R 上的奇函数,且函数f (x )在[0,1)上单调递减,并满足f (2-x )=f (x ),若方程f (x )=-1在[0,1)上有实数根,求该方程在区间[-1,3]上的所有实根之和.答案 2解析 由f (2-x )=f (x )可知函数f (x )的图象关于直线x =1对称,又因为函数f (x )是奇函数,则f (x )在(-1,1)上单调递减,根据函数f (x )的单调性,方程f (x )=-1在(-1,1)上有唯一的实根,根据函数f (x )的对称性,方程f (x )=-1在(1,3)上有唯一的实根,这两个实根关于直线x =1对称,故两根之和等于2.16.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案 (1)a =2,b =1 (2)k <-13解析 (Ⅰ)因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1 ∴f (x )=1-2x a +2x +1 又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2. (Ⅱ)解法一 由(Ⅰ)知f (x )=1-2x 2+2x +1,易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13解法二 由(Ⅰ)知f (x )=1-2x 2+2x +1.又由题设条件得: 1-2t 2-2t 2+2t 2-2t +1+1-22t 2-k2+22t 2-k +1<0, 即:(22t 2-k +1+2)(1-2t 2-2t )+(2t 2-2t +1+2)(1-22t 2-k )<0,整理得23t 2-2t -k >1,因底数2>1,故:3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0⇒k <-131.(2010·上海春季高考)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.答案 02.(2010·江苏卷)设函数f (x )=x (e x +ae -x )(x ∈R )是偶函数,则实数a 的值为________.答案 -1解析 令g (x )=x ,h (x )=e x +ae -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +ae -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.3.(2011·《高考调研》原创题)已知f (x )是定义在R 上的奇函数,且{x |f (x )>0}={x |1<x <3},则f (π)+f (-2)与0的大小关系是( )A .f (π)+f (-2)>0B .f (π)+f (-2)=0C .f (π)+f (-2)<0D .不确定答案 C解析 由已知得f (π)<0,f (-2)=-f (2)<0,因此f (π)+f (-2)<0.4.如果奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么f (x )在区间[-7,-3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 B解析 先考查函数f (x )在[-7,-3]上的最值,由已知,当3≤x ≤7时,f (x )≥5,则当-7≤x ≤-3时,f (-x )=-f (x )≤-5即f (x )在[-7,-3]上最大值为-5.再考查函数f (x )在[-7,-3]上的单调性,设-7≤x 1<x 2≤-3.则3≤-x 2<-x 1≤7,由已知-f (x 2)=f (-x 2)<f (-x 1)=-f (x 1),从而f (x 2)>f (x 1),即f (x )在[-7,-3]上是单调递增的.5.(08·全国卷Ⅰ)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为________. 答案 (-1,0)∪(0,1)解析 由f (x )为奇函数,则不等式化为xf (x )<0 法一:(图象法)由,可得-1<x <0或0<x <1时,x ·f (x )<0.法二:(特值法)取f (x )=x -1x,则x 2-1<0且x ≠0,解得-1<x <1,且x ≠0. 6.定义在R 上的函数f (x )满足f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1 (-1<x ≤0)-1 (0<x ≤1),则f (3)=________. 解析 ∵f (x +1)=-f (x ),则f (x )=-f (x +1)=-[-f (x +2)]=f (x +2),则f (x )的周期为2,f (3)=f (1)=-1.7.(2011·深圳)设f (x )=1+x 1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2011(x )=( ) A .-1xB .x C.x -1x +1 D.1+x 1-x答案 C解析 由题得f 2(x )=f (1+x 1-x )=-1x ,f 3(x )=f (-1x )=x -1x +1,f 4(x )=f (x -1x +1)=x ,f 5(x )=1+x 1-x=f 1(x ),其周期为4,所以f 2011(x )=f 3(x )=x -1x +1. 1.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)证明函数f (x )为周期函数;(2)试求方程f (x )=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.解析 (1)由⎩⎪⎨⎪⎧ f (2-x )=f (2+x )f (7-x )=f (7+x ) ⇒⎩⎪⎨⎪⎧ f (x )=f (4-x )f (x )=f (14-x )⇒f (4-x )=f (14-x ) ⇒f (x )=f (x +10)∴f (x )为周期函数,T =10.(2)∵f (3)=f (1)=0, f (11)=f (13)=f (-7)=f (-9)=0故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2005]上有402个解,在[-2005,0]上有400个解,所以函数y =f (x )在[-2005,2005]上有802个解.。