铁电材料概述优秀课件
铁电材料和反铁电材料
双电滞回线
• 反铁电体在转变温度以 下,邻近的晶胞彼此沿 反平行方向自发极化。 反铁电体一般宏观无剩 余极化强度,但在很强 的外电场作用下,可以 诱导成铁电相,其P-E 呈双电滞回线。其在E 较小时,无电滞回线, 当E很大时,出现了双 电滞回线。
反铁电材料与铁电材料储能过程
• 当施加在铁电电容器的电场撤 掉时,由于铁电体较大的剩余 极化,大部分充电输入的能量 WF 被存储在材料中,只有很小 一部分 W'F 被释放; 而对于反铁 电电容器,当电场降为零,极 化也降至零,材料不储存多余 能量,除去很小一部分 WAF因 极化转向发热的损耗外,输入 能量的大部分 W'AF 以电能释放 • 反铁电体在足够电场作用下转 变为铁电体,这便是一个储能 的过程; 当电场强度逐步减小到 零,铁电相变为反铁电相,这 就是一个释能过程
锆酸铅钡基反铁电陶瓷的介电性能研究
4.氧化铝基陶瓷的热导和介电弛豫特性研究:采用 传统的高温固相反应方法,制备纯氧化铝陶瓷及 其分别掺杂稀土元素钇和镧的陶瓷样品。研究了 烧结温度(1300 C到1500 C)对这些样品性能的 影响。 实验发现纯Al2O3以及其掺Y3+和La3+三组陶 瓷都存在介电弛豫现象,然后对其进行了机理分 析。另外,掺杂少量烧结助剂的氧化铝的热导率 达到了8.60 W/(m·K),远高于传统氧化铝材料的 热导率。
实际铁电材料存在的问题
• • • • • • 制备工艺的优化 工艺机理的研究 疲劳问题 漏电流问题 与集成器件工艺的结合 污染问题
铁电材料的研究现状
• 铁电材料具有良好的铁电性、压电性、热 释电性以及非线性光学等特性,是当前国际 高新技术材料中非常活跃的研究领域之一, 其研究热点正向实用化发展。 • 目前广泛研究和应用的铁电体主要为含铅 类材料,如PbTiO3(PT)、Pb(Zr1xTix)03(PZT)、(Pb,La)(Zr,Ti)03(PLZT) 等。其中,PZT的优良压电性使之取代传统 的BaTiO3成为应用最广的压电材料。
铁电材料
铁电材料是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。
科学家已经了解到铁电材料的原子结构可以使其自发产生极化现象,但至今尚不清楚光电过程是如何在铁电材料中发生的。
如果能够理解这一光电机制并应用于太阳能电池,将能有效地提高太阳能电池的效率。
研究人员所采用的铁电材料是铋铁酸盐薄膜(BFO)。
这种特别制作的薄膜有着不同寻常的特性,在数百微米的距离内整齐而有规律地排列着不同的电畴。
电畴为条状,每个电畴宽为50纳米到300纳米,畴壁为2纳米,相邻电畴的极性相反。
这样研究人员就可以清楚地知道内置电场的精确位置及其电场强度,便于在微观尺度上开展研究,同时也避免了杂质原子环绕及多晶材料所造成的误差。
当研究人员用光照射铋铁酸盐薄膜时,获得了比材料本身的带隙电压高很多的电压,说明光子可释放电子,并在畴壁上形成空穴,这样即使没有半导体的P—N结构,也可形成垂直于畴壁的电流。
通过各种试验,研究人员确定畴壁在提高电压上具有十分重要的作用。
据此他们开发出一种模型,可令极性相反的电畴制造出多余的电荷,并能传递到相邻的电畴。
这种情况有点像传递水桶的过程,随着多余电荷不断注入锯齿状相邻的电畴,电压可逐级显著增加。
在畴壁的两侧,由于电性相反,就可形成电场,使载电体分离。
在畴壁的一侧,电子堆积,空穴互相排斥;而另一侧则空穴堆积,电子互相排斥。
太阳能电池之所以会损失效率,是由于电子和空穴会迅速结合,但是这种情况不会在铋铁酸盐薄膜上出现,因为相邻的电畴极性相反。
根据同性相斥,异性相吸的原理,电子和空穴会沿相反的方向运动,而由于电子的数量远超空穴的数量,所以多余的电子会溢出到相邻的电畴。
铋铁酸盐薄膜本身并不是一种很好的太阳能电池材料,因为它只对蓝色和近紫外线发生反应,而且在其产生高电压的同时,并不能产生足够高的电流。
但是研究人员确信,在任何具有锯齿状结构的铁电材料中,类似的过程也会发生。
铁电材料ppt课件
铁电体的定义
❖ 铁电体的定义:指在温度范围内具有自发极 化且极化强度可以因外电场而反向的晶体。
❖ 铁电体具有很多电畴且具有电滞回线。因此, 凡具有电畴和电滞回线的介电材料就称为铁 电体。
❖ 铁电体的晶体并不含有铁,铁电体常被称为 息格毁特晶体。
3
铁电体的主要特征值
1. 自发极化 2. 电 畴 3. 电滞回线 4. 居里温度 5. 介电反常
,擦写次数低,写数据功耗大等缺点。
16
FeRAM器件结构
17
铁电存储器(MFSFET)
MFS(Metal Ferroelectric –Semiconductor )FET
在MOS中用铁电薄膜(F) 代替二氧化硅栅氧化物薄 膜(O)构成MFSFET场 效应管
由于极化滞后,漏电流展 现两种状态:开,关
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
பைடு நூலகம்
以及与它们具有相同类型的晶体。
(4)按相转变的微观机构分类
(5)"维度模型"分类法
12
铁电材料的历史发展和现状
小型 化 铁电软膜理论
热力学理论
发现铁电性
铁电薄膜及器件
钙钛矿时期
KDP时期
罗息盐的发现
13
Company Logo
(2)按极化轴多少分类
沿一个晶轴方向极化的铁电体:罗息盐(RS)、KDP等;
沿几个晶轴方向极化的铁电晶体:BaTiO3、Cd2Nb2O7等。
(3)按照在非铁电相时有无对称中心分类
非铁电相无对称中心:钽铌酸钾(KTN)和磷酸二氢钾(KDP)族的晶体。
由于无对称中心的晶体一般是压电晶体,故它们都是具有压电效应的晶体;
材料铁电性能的测量课件
铁电材料在一定温度范围内表现 出明显的铁电效应,即自发极化 随着温度的升高而降低,反之亦然。
铁电材料的特性
01
02
03
电滞回线
铁电材料具有显著的电滞 回线,即其介电常数和极 化强度随外加电场的变化 而发生非线性变化。
热释电效应
当铁电材料受到温度变化 时,其自发极化强度会发 生变化,产生热释电电流。
铁电测试仪通常采用交流测量方法,通过在材料上施加一定频率和幅度的交流电信 号,测量材料的响应信号,从而计算出材料的铁电性能参数。
铁电测试仪具有高精度、高稳定性和可重复性的特点,是研究材料铁电性能的重要 工具。
示波器
示波器是一种常用的电子测量仪 器,它可以用来观察和测量各种
信号的波形和参数。
在测量材料铁电性能时,示波器 可以用来观察和记录材料的电响 应信号,帮助研究者了解材料的
压电效应
在铁电材料中,自发极化 强度随外力作用而发生改 变,从而产生压电电压。
铁电材料的应用
传感器
利用铁电材料的压电效应 和热释电效应,可以制作 出高灵敏度、高分辨率的 传感器。
存储器
铁电材料具有非易失性的 电滞回线,可以用于制作 铁电随机存储器(FRAM)。
换能器
利用铁电材料的压电效应 和热释电效应,可以制作 出高效能的换能器。
在传感器领域的应用
总结词
铁电材料在传感器领域的应用主要涉及压力传感器和振动传感器。
详细描述
由于铁电材料的压电效应,它们可以用于制造高灵敏度、低噪声和宽频带压力传 感器和振动传感器。这些传感器广泛应用于航空航天、汽车、机械和医疗等领域, 用于监测压力、振动和声学信号,并进行相应的控制和调节。
2023
总结词
LB61_铁电基础PPT课件
图6-4: 铁电体按居 里-外斯常数 分类表
42
量子顺电体 Quantum Paraelectrics
先兆性铁电体 Incipient Ferroelectrics 代表性材料:SrTiO3, 其它有: CaTiO3 , KTaO3 主要特点:介电常数随温度减低而增大,
在低温区出现一个平台,整个温度区间 没有铁电性。 有出现铁电性的先兆;可能是量子涨落造 成低温区不出现铁电性。
➢钛酸铋钠 (Na1/2Bi1/2)TiO3,A-位复合
钙钛矿结构
➢其它材料:钨青铜结构(tungsten
bronze)
47
Kighelman, Damjanov and N Setter, J Appl Phys 90(2001) 464884
G A Smolenski, J Phys Soc Jpn 28Supl (1970) 2649
4
主要特征
➢电滞回线hysteresis loop ➢居里温度Curie temperature c ➢介电反常Dielectric anomalous
5
电滞回线 hysteresis loop
6
7
➢自发极化Ps ➢剩余极化Pr ➢矫顽电场Ec
8
Sawyer-Tower 电路
9
➢电滞回线表明,铁电体的极化强度与外电场
18
Spontaneous polarization of BaTiO3
19
Dielectric constant of BaTiO3
20
21
22
钛酸钡晶体的自发畸变与温度的关系
23
24
KDP晶体的自发极化强度与温度的关系
25
KDP晶体的介电常数与温度的关系
铁电材料概述
(3)钙钛矿型材料—ABO3
钛酸钡(BaTiO3)钛酸钡陶瓷是目前应用最广
泛和研究较透彻旳一种铁电材料。钛酸钡是第一种不 含氢旳氧化物铁电体,因为其性能优良,化学上,热 学上旳稳定性好,工艺简便,不久被用作介电和压电 元件。
钙钛矿构造:有BaTiO3 ( 钛酸钡) 、 KNbO3 、KTaO3 、LiNbO3 PZT(Pb(Zr Ti )03) 、 PLZT(铅、镧、锆、钛), 至 20 世纪 50 年代末, 大约有 100 种化合物被 发觉具有铁电性。截至1990 年,已知旳铁电约为 250 种.通式
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
以及与它们具有相同类型旳晶体。
(4)按相转变旳微观机构分类
(5)“维度模型”分类法
铁电材料旳制备措施
1 固相反应法 2 溶胶一 凝胶法 3 熔盐法 4 喷雾分解法 5 柠檬酸前驱法 6 水热法 7 无卤素法 8 低温液相法 9……
薄膜—主要材料以及其优缺陷
目前主流旳铁电材料主要有下列两种:PZT、SBT。
PZT是锆钛酸铅(PbZrxTi1-xO3)。PZT是研究最多、使用最广泛 旳,它旳优点是能够在较低旳温度下制备,能够用溅射和 MOCVD旳措施来制备,具有剩余极化较大、原材料便宜、晶化 温度较低旳优点;缺陷是有疲劳退化问题,还有含铅会对环境造 成污染。
铁电材料旳应用
可作信息存储、图象显示
像BaTiO3一类旳钙钛矿型铁电体具有很高旳介电常数能够 做成小体积大容量旳陶瓷电容器。
铁电薄膜能用于不挥发存贮器外,还可利用其压电特征, 用于制作压力传感器,声学共振器,还可利用铁电薄膜热 释电非致冷红外传感器研究
铁电材料:在具有压电效应旳材料中 ,具有自发极化 ,(自发极化
《介电和铁电材料》课件
介电材料具有优良的稳定性,不易受环境温度和 湿度的影响。
介电常数可调
通过改变介电材料的组分和结构,可以调节介电 常数,以满足不同应用需求。
02
铁电材料介绍
铁电材料的定义
铁电材料
指在一定温度范围内具有自发极化、 且自发极化方向随温度变化的一类功 能材料。
自发极化
铁电材料内部存在的电偶极矩,不需 外电场作用就能产生自发极化。
铁电材料的分类
单晶体铁电体
如钛酸钡(BaTiO3)、铌酸锂(LiNbO3)等。
多晶体铁电体
如锆钛酸铅(Pb(Zr,Ti)O3,简称PZT)等。
有机铁电体
如聚偏氟乙烯(PVDF)等。
铁电材料的特性
电滞回线
01
铁电材料具有显著的电滞回线,即其介电常数随电场的变化而
变化。
压电效应
02
当铁电材料受到外力作用时,其内部电偶极矩发生改变,从而
记忆效应
介电和铁电材料都具有记忆效应 ,能够将外部电场的历史状态保 留下来,并在一定条件下恢复。
介电和铁电材料的差异
极化机制
介电材料的极化主要来源于电子 云位移,而铁电材料的极化则来 源于正负电荷中心的相对位移。
相变温度
铁电材料通常在一定的温度下发 生相变,表现出明显的铁电性, 而介电材料的相变温度则不明显 。
响应速度
铁电材料的极化响应速度较快, 适合用于制造高速电子器件,而 介电材料的响应速度相对较慢。
介电和铁电材料的应用领域
介电材料
主要用于制造绝缘材料、电子元件、光学薄膜等,如陶瓷、玻璃、塑料等。
铁电材料
主要用于制造压电器件、热释电器件、非线性光学器件等,如石英晶体、钛酸 钡等。
铁电功能材料PPT课件
常见的钙钛矿型铁电体包括钛酸钡(BaTiO3)、锆钛酸铅(Pb(Zr,Ti)O3)等。
含铅铁电体
含铅铁电体是指含有铅元素的铁电体,其特点是具有较高的居里温度和 较大的压电系数。
含铅铁电体的晶体结构复杂,通常由多种元素组成,如锆、铌、铅、钛 等。这些元素在晶体结构中发挥着不同的作用,共同决定了铁电体的性
质。
常见的含铅铁电体包括锆铅酸钡(Ba(Zr,Pb)O3)、铌铅酸铅(Pb (Nb,Pb)O3)等。
其他类型铁电体
其他类型铁电体是指除了钙钛矿型和含铅铁电体之外的铁电 材料。这些材料的晶体结构和化学组成多种多样,因此其性 质也各不相同电 体、弛豫型铁电体等。这些材料在某些方面具有独特性质, 因此在特定领域有着广泛的应用。
04
铁电材料的发展历程
铁电材料的发现
铁电材料的发现可以追溯到19世纪末 期,当时科学家们开始研究晶体材料 的电学性质。
这种自发极化现象是铁电材料所特有 的,因此科学家们将这类材料称为铁 电体。
光吸收:某些铁电材料对特 定波长的光具有较高的吸收
系数。
04
05
光折射:铁电材料在不同电 场状态下表现出不同的折射
率。
热学性质
铁电材料在热学性质上具有 热释电效应、热膨胀和热传 导等特性。
04
热膨胀:铁电材料在温度升 高时,体积增大的现象称为 热膨胀。
01 03
•·
02
热释电效应:铁电材料在温 度变化时,产生电荷的现象 称为热释电效应。
磁学性质
01
02
03
04
弱磁性:铁电材料具有
铁电陶瓷材料介绍及其应用PPT(22张)
•
10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。
•
11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。
•
12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。
•
2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。
•
3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。
•
4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
•
• pi ----热释电系数, 单位: C/m2.K
• 大多数晶体的Ps随温度 的增加而下降,热释点 系数为负
• 在热释电体中, 高度极化状态, Ps 很高, 外场难以改变Ps方向
• 少数, 在 E 作用下 Ps 可重新定向----铁电体
• 铁电体 (Ferroelectrics) : Ps
•
E Ps 重行定向-----铁电体的最重要判
第一章 铁电陶瓷材料及应用
Developmental History of Ferroelectrics
1940s Birth of ferroelectric ceramics (BaTiO3) 1950s PZT piezoelectric ceramics developed
PTC effect in BaTiO3 ceramics 1960s Transparent electro-optic PLZT ceramics 1970s The engineered ferroelectric cpmposites 1980s PMN relaxor ceramics
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称料
①
球磨抽料烘烤
②
③
预合成
④
⑤
研磨、造粒、再研磨
⑦
完量
铁磁性能测量
铁电性测量
Bi6FeCrTi3O18样品的制备以及各性能测量的流程图
13
块状陶瓷的常用方法——固相烧结工艺具体流程(以制备层
状钙钛矿为例) (1)称料 1.烘料:将所需原料放到80℃下烘干24h 2.按照化学式计算各原料所需质量,用电子电平称量,置于培养皿中。 (2)球磨:将烘干好的料放入球磨罐里,再注入无水酒精至淹没料,将球磨罐放到球 磨机器上固定好,设置转速,时间24h(注意球磨罐必须烘干)。 (3)抽料:将球磨好的料,注入无水酒精,搅拌均匀,用洗净的针筒抽料,放入干烧杯 里,如此重复一直等球磨罐里没有剩余料为止(玻璃针筒的清洗分为:布擦,水洗, 硝酸浸泡超声10min,水洗,乙醇清洗,吹干)。 (4)烘烤:将有料的烧杯盖上烧杯盖放入烘烤箱里,在约100℃下烘24h,去除酒精。 (5)预合成:将烘干的样品取出,研磨成粉末(大约20min)后装入培养皿中。再将培 养皿中的样品粉末放入洁净干燥的坩埚中压实压平,然后放入高温炉中烧结。升温8h 从室温到800℃, 800℃保温8h,最后降温到100℃左右取出。将预合成的料取出后 研磨,至粉末状,大约40~50 min,然后将磨耗的料放入球磨罐再次球磨48h。重复 (3) - (5)步骤。 (6)研磨:在烘烤好的样品放入研钵里,研磨20-30min,分三次滴入适量的黏合剂(之 前须将黏合剂在80℃左右烘一下,每次滴加十三滴,分三次共三十九滴,每次滴完后 研磨10min),然后将所有的料压成大片(尽量压厚)放置8h再磨碎过筛。 (7)压片:用压片机将样品压成大片(厚度约2 mm)和小片(厚度小于2 mm)。 (8)排塑:因为在研磨时加入了粘合剂,所以要把其中的有机物去掉。放入高温箱式电 炉中升温6h升到500℃(使用6h慢速升温主要是为了防止有机物还没有挥发就碳化), 再保温4h。 (9)烧结:将排塑后的样品放到高温箱式电炉中,用8h分别升温至980℃、1000℃温 度后再保温4h,另一份980℃保温6h。然后用M03XHF22型X射线衍射仪对样品进行 结构分析,选择合适的温度,对剩下的样品再次烧结。 (10) 减薄、抛光:将样品在粗砂纸上打磨,致厚度为0.5 mm及 0.2 mm左右各两1片4 。 再至于细砂纸上进行抛光。再将抛光后的样品置于无水乙醇中超声5min后取出,装入
压电效应:正压电效应和逆压电效应。具有压电效应的材料称 为压电材料。
铁电材料:在具有压电效应的材料中 ,具有自发极化 ,(自发极化
包括二部分:一部分来源于离子直接位移;另一部分是由于电子云的形 变)
而且其自发极化强度可以因外电场反向而反向 ,或者在电场作用 下不可反向但可以重取向的晶体 。铁电体中的自发极化有两个或多
10
铁电薄膜的主要制备方法
11
两种主要制备方法(实验室可以做 的)
块状陶瓷的常用方法——固相烧结工艺主要 步骤:配料 混合 预烧 粉碎 成型 排胶 烧结 被电
极 测试
薄膜材料的主要制备方法——溶胶凝胶法主 要步骤:基片清洁 溶胶的制备 匀胶 干燥 晶化
12
二、Bi6FeCrTi3O18样品制备及性能测试
(2)按极化轴多少分类
沿一个晶轴方向极化的铁电体:罗息盐(RS)、KDP等;
沿几个晶轴方向极化的铁电晶体:BaTiO3、Cd2Nb2O7等。
(3)按照在非铁电相时有无对称中心分类
非铁电相无对称中心:钽铌酸钾(KTN)和磷酸二氢钾(KDP)族的晶体。
由于无对称中心的晶体一般是压电晶体,故它们都是具有压电效应的晶体;
ABO3 其空间结构如右图 8
铁电材料的分类
(1)结晶化学分类
含有氢键的晶体:磷酸二氢钾(KDP)、三甘氨酸硫酸盐(TGS)、罗息盐
(RS)等。这类晶体通常是从水溶液中生长出来的,故常被称为水溶性铁电体,
又叫软铁电体;
(Li2双O氧-N化b2物O晶5)体等:,如这B类aT晶iO体3(是B从aO高-T温iO熔2)体、或K熔N盐bO中3(生K长2出O-来N的b2,O5又)称、为L硬iNb铁O电3 体.它们可以归结为ABO3型,Ba2+,K+、Na+离子处于A位置,而Ti4+、Nb6+、 Ta6+离子则处于B位置。
4
关于铁电的发展历史, 大体可以分为以下四个 阶段
罗息盐时期—发现铁电性 KDP时期—铁电热力学理论 钙钛矿时期—铁电软模理论 铁电薄膜及器件时期—小型化(铁电液晶、聚合物复合材
料、薄膜材料和异质结构等非均匀系统 )
5
(1)罗息盐
罗息盐即酒石酸钾钠( NaKC4H406·4H20)是上 千种铁电体中最早被发现的晶体之一.它存在 上、下两个居里点,297K和255K。在这两个 温度之间,它处于铁电相。大于297K或小于 255K时处于顺电相。六方结构。
7
(3)钙钛矿型材料—ABO3
钛酸钡(BaTiO3)钛酸钡陶瓷是目前应用最广
泛和研究较透彻的一种铁电材料。钛酸钡是第一个不 含氢的氧化物铁电体,由于其性能优良,化学上,热 学上的稳定性好,工艺简便,很快被用作介电和压电 元件。
钙钛矿结构:有BaTiO3 ( 钛酸钡) 、 KNbO3 、KTaO3 、LiNbO3 PZT(Pb(Zr Ti )03) 、 PLZT(铅、镧、锆、钛), 至 20 世纪 50 年代末, 大约有 100 种化合物被 发现具有铁电性。截至1990 年,已知的铁电体约为 250 种.通式
非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽)
以及与它们具有相同类型的晶体。
(4)按相转变的微观机构分类
(5)“维度模型”分类法
9
铁电材料的制备方法
1 固相反应法 2 溶胶一 凝胶法 3 熔盐法 4 喷雾分解法 5 柠檬酸前驱法 6 水热法 7 无卤素法 8 低温液相法 9……
6
(2)KDP时期——KH2PO4
KH2PO4的值却高达30 在理论研究方面, Müller 首先将热 力学理论应用于 铁电体。VL Ginsburg 将郎道(Landau)相变 理论应用于KH2PO4型铁 电体, 并迈出了将这一理论应用于更一般情况的第一步
德文希尔(De-Vonshire)将其进行完善,发展为今 天仍之有效的郎道-德文希尔理论
铁电材料概述
报告人—— 陈新娟
1
报告提纲
概念 发展历史 制备方法 现有铁电材料的优缺点以及研究方向 铁电材料的应用
2
压电材料、铁电材料
压电材料是实现机械能与电能相互转换的功能材料.
压电材料主要有四种:压电单晶、 压电陶瓷、 压电聚合物及 复合压电材料。其中压电陶瓷系列品种众多 ,应用广泛。
个可能的取向。所有铁电体都可以通过人工极化使其具有压电性 ,但具有 压电性的并不一定都是铁电体。声-热-电-光-磁-力等性质的交叉效应在
铁电体中普遍存在。
3
§1.1 铁电体的基本物理特性
1 自发极化与铁电体
诱导极化:E≠0 P
电滞回线:
Pr称为铁电体的剩余极化强度 Ec为矫顽场
电场在正负饱和值之间循环一周 时,形成了铁电电滞回线。