高中数学必修五基本不等式题型
高中基本不等式的十一类经典题型

高中基本不等式的十一类经典题型种类一:基本不等式的直接运用 种类二:分式函数利用基本不等式求最值 种类三:分式与整式乘积结构的基本不等式 种类四: 1 的妙用种类五:利用整式中和与积的关系来求最值 种类六:两次运用基本不等式的题型 种类七: 负数的基本不等式 种类八: 化成单变量形式☆ 种类九:与函数相联合种类十: 鉴别式法种类十一:结构高考真题10.已知 a5 1 ,函数 f ( x) a x ,若实数 m 、 n 知足 f (m) f ( n) ,则 m 、 n 的大小2关系为▲ .[分析 ] 考察指数函数的单一性 .a5 1 (0,1),函数 f ( x) a x在 R 上递减 .由 f (m) f (n) 得: m<n.2种类一、 基本不等式的直接运用 1 ( 1)求 yx(4 x)(0 x 4) 的最大值,并求取时的 x 的值 (改 y 2x(4x) )( 2)求 yx 4 x 2 (0 x 2) 的最大值,并求取最大值时x 的值( 3)求 y x 4 x 2 ( 0 x 2) 的最大值,并求取最大值时 x 的值2 x 0, y0,1 41,则 xy 的最小值是x y3 x 0, y0,14 1, 则 x y 的最小值是x y4 已知 x , y 为正实数,且x 2+y2= 1,求 x 1+ y 2的最大值25.f x = ( m 2 ) x 2+( n ﹣ 8)x+1( m ≥ 0,n ≥ 0)在区间 [ ] 上单一递减,假如函数( ) ﹣则 mn 的最大值为 18 .【解答】 解:∵函数 f (x ) = ( m ﹣ 2) x 2+(n ﹣ 8) x+1( m ≥ 0, n ≥0)在区间 [,2] 上单一递减,∴f ′( x )≤ 0,即( m ﹣2) x+n ﹣8≤ 0 在 [ , 2] 上恒建立.而 y= ( m ﹣ 2)x+n ﹣ 8 是一次函数,在 [, 2] 上的图象是一条线段.故只须在两个端点处f ′( )≤ 0, f ′( 2)≤ 0 即可.即 ,由② 得 m ≤(12﹣ n ),∴mn ≤ n ( 12﹣ n )≤=18 ,当且仅当 m=3,n=6 时获得最大值,经查验 m=3, n=6 知足 ① 和 ② .∴mn 的最大值为 18. 故答案为: 18.种类二、分式函数利用基本不等式求最值1 设 x1,求函数 y ( x 5)( x 2)x的最值12 已知 x1,求 y x 2 3x1的最值及相应的 x 的值x 13 不等式 2x21的解集为x 3种类三、分式与整式乘积结构的基本不等式1 若 abc ,求使11 kb b c恒 建立的 k 的最大值 .aa c2 若 a0, b1 1 1,求 a 2b 的最小值0 且b b12a3 函数 y = log a (x + 3)- 1 (a>0,a ≠ 1)的图象恒过点 A ,若点 A 在直线 mx +ny + 1= 0 上,其中 mn>0,则 m 1+ 2n 的最小值为 ________ .4. 设 x, yR, a 1,b 1,若 a xb x 2, a 2b 4, 则21的最大值为x y5. 求11 (0 x9) 的最小值x 9 4x 46. 已知 x 0, y 0 1 9x y m 恒建立的实数 m 的取值范围。
高中数学必修5基本不等式练习题

一.选择题1.若,,a b cR ,且a b ,则下列不等式中一定成立的是()A.a b b cB.ac bcC.20c abD 2()0a b c2.对于任意实数,,,a b c d ,命题①若,0,a b c则ac bc ;②若a b ,则22acbc ;③若22acbc ,则a b ;④若a b ,则11ab;⑤若0,0abcd,则acbd 。
其中正确的个数是()A.1B.2C.3D.43.已知22,则2的取值范围是()A.,22B.[,0]2C.[,0)2D.[0,]24.已知,a bR ,且5a b ,则22ab的最小值是()A.32B.42C.82D. 105.下列命题中,其正确的命题个数为①1xx的最小值是2;②2221xx的最小值是2;③2log log 2x x 的最小值2;④,2xtan cot xx 的最小值是2;⑤33xx的最小值是 2.A.1B.2C.3D.46.若,a bR ,下列不等式中正确的是()A.22222a b ab abB.22222a b ab abC.22222ab a b abD.22222ab a b ab7.已知,x y 是正数,且191xy,则x y 的最小值是()A.6B.12C.16D.24 8.设0,0,4xy xy ,则x y syx取最小值时x 的值为()A.1B.2C.22D.4229.甲乙两人同时从A 地出发 B 地,甲在前一半路程用速度1v ,在后一半路程用速度2v (12v v ),乙在前一半时间用速度1v ,在后一般时间用速度2v ,则两人中谁先到达()A.甲B.乙C.两人同时D.无法确定10.若,x y R ,且224xy,则22xy xy的最小值为()A.222 B.122C.-2D.13二.填空题11.若14,24a b,则2a b 的取值范围是12.若xR ,则2x 与1x 的大小关系是13.函数2254xyx的最小值是14.已知4,x 函数14y xx,当x时,函数有最值是三.解答题15.已知正数,x y 满足21xy ,求11xy的最小值。
高中基本不等式经典题型

高中基本不等式经典题型
高中基本不等式的经典题型有很多,主要包括以下几种:
1. 直接应用基本不等式:这类题目比较简单,主要考察对基本不等式的理解和应用。
例如,利用均值不等式求最值等。
2. 分式函数利用基本不等式求最值:这类题目通常涉及分式函数,需要通过基本不等式找到函数的最值。
3. 分式与整式乘积构造基本不等式:这类题目需要构造合适的不等式,再利用基本不等式求解。
4. 利用1的妙用:在某些情况下,将1巧妙地代入不等式可以简化问题。
5. 利用整式中和与积的关系来求最值:这类题目需要利用整式的和与积的关系,结合基本不等式求最值。
6. 两次运用基本不等式的题型:这类题目需要连续运用两次基本不等式来解决问题。
7. 负数的基本不等式:当题目中出现负数时,需要特别注意不等式的方向和性质。
8. 化成单变量形式:有些题目需要将多变量问题转化为单变量问题,再利用基本不等式求解。
9. 与函数相结合:这类题目通常将基本不等式与函数结合,需要同时考虑函数的性质和不等式的约束。
10. 判别式法:通过判别式法来求解一些与基本不等式相关的问题。
11. 构造法:通过构造适当的代数式或函数,将问题转化为可以利用基本不
等式解决的问题。
以上只是高中基本不等式的经典题型的一部分,具体题型和解法可能因教材和地区而异。
在解题时,关键是要理解和掌握基本不等式的性质和运用场景,以及灵活运用各种解题技巧。
专题复习高中数学必修5基本不等式经典例题(word文档良心出品)

基本不等式知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
必修5基本不等式(含答案)

基本不等式及其应用[考点梳理]1.如果a >0,b >0,那么________叫做这两个正数的算术平均数. 2.如果a >0,b >0,那么________叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥________ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则________,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有________,即a +b ≥________,a 2+b 2≥________.简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即________,亦即________;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即_____.简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤________≤a +b 2≤________,当且仅当a =b 时等号成立.自查自纠: 1.a +b 2 2.ab 3.2ab 4.a +b 2≥ab 5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 22 7.ab a 2+b 22[基础自测]设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( )A .6B .4 2C .2 2D .2 6解:因为2a >0,2b >0,由基本不等式得2a +2b ≥22a ·2b =22a +b =42,当且仅当a =b =32时取等号,故选B.已知向量m =(2,1),n =(2-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为( ) A.12B .1C .2D .4 解:依题意得2a =2-b ,即2a +b =2(a >0,b >0),∴2=2a +b ≥22ab ,∴ab ≤12,当且仅当2a =b =1时取等号,∴ab 的最大值是12.故选A.设f (x )=lnx ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 解:p =f (ab )=ln ab ,q =f ⎝ ⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x 在(0,+∞)上单调递增,∵a +b 2>ab ,∴f ⎝⎛⎭⎪⎫a +b 2>f (ab ).∴q >p =r.故选C. 若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x2≥22,当且仅当x =±42时等号成立.故填22.已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则实数a =________. 解:f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,∴a2=3,∴a =36.故填36. [典例解析]类型一 利用基本不等式求最值(1)函数y =(x +5)(x +2)x +1(x >-1)的值域为________.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y =(m +4)(m +1)m =m +4m +5≥2m ·4m +5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).故填[9,+∞).(2)若a >b >0,则代数式a 2+1b (a -b )的最小值为( )A .2B .3C .4D .5解:∵b (a -b )≤⎝ ⎛⎭⎪⎫b +(a -b )22=a 24,∴a 2+1b (a -b )≥a 2+1a 24=a 2+4a 2≥4,当且仅当b=a -b 且a 2=4a 2,即a =2,b =22时等号成立.故选C.小结:基本不等式的应用在于“定和求积,定积求和”,必要时可以通过变形(拆补)、配凑,常数代换、构造“和”或者“积”,使之为定值.(1)已知t >0,则函数f (t )=t 2-4t +1t的最小值为________.解:∵t >0,∴f (t )=t 2-4t +1t =t +1t -4≥-2,当且仅当t =1时,f (t )min =-2,故填-2.(2)已知x >0,y >0,且2x +8y -xy =0,求: (Ⅰ)xy 的最小值; (Ⅱ)x +y 的最小值.解:(Ⅰ)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0,则1=8x +2y ≥28x ·2y =8xy,得xy ≥64,当且仅当x =4y ,即x =16,y =4时等号成立.(Ⅱ)解法一:由2x +8y -xy =0,得x =8yy -2,∵x >0,∴y >2,则x +y =y +8y y -2=(y -2)+16y -2+10≥18,当且仅当y -2=16y -2,即y =6,x =12时等号成立.解法二:由2x +8y -xy =0,得8x +2y =1, 则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18,当且仅当y =6,x =12时等号成立.类型二 利用基本不等式求参数范围已知a >0,b >0,若不等式m 3a +b-3a -1b ≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3解:∵a >0,b >0,∴由m 3a +b -3a -1b ≤0恒成立得m ≤⎝ ⎛⎭⎪⎫3a +1b (3a +b )=10+3b a +3a b 恒成立.∵3b a +3ab ≥23b a ·3a b =6,当且仅当a =b 时等号成立,故10+3b a +3a b ≥16,∴m ≤16,即m 的最大值为16.故选B.小结:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式的等价命题:(1)a >f (x )恒成立⇔a >f (x )max ;(2)a <f (x )恒成立⇔a <f (x )min ;(3)a >f (x )有解⇔a >f (x )min ;(4)a <f (x )有解⇔a <f (x )max .已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.若关于x 的不等式mf (x )≤e-x+m -1在(0,+∞)上恒成立,则实数m 的取值范围为________.解:由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令t =e x (x >0),则t >1,且m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.∵t -1+1t -1+1≥2(t -1)·1t -1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.故填⎝ ⎛⎦⎥⎤-∞,-13.类型三 利用基本不等式解决实际问题某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.解:(1)作GH ⊥EF ,垂足为H. ∵DN =x ,∴NH =40-x ,NA =60-x ,∵NH HG =NAAM ,∴40-x 10=60-x AM ,∴AM =600-10x 40-x.S 五边形MBCDN =S 矩形ABCD -S △AMN =40×60-12·AM ·AN =2 400-5(60-x )240-x .∵N 与F 重合时,AM =AF =30适合条件,∴x∈(0,30].(2)y =2 400-5(60-x )240-x =2 400-5[(40-x )+40040-x +40],当且仅当40-x =40040-x ,即x =20∈(0,30]时,y 取得最大值2 000, ∴当DN =20 m 时,得到的市民健身广场面积最大,最大面积为 2 000 m 2.小结:建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A 孔流入,经沉淀后从B 孔排出,设箱体的长度为a m ,高度为b m ,已知排出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60 m 2,问a ,b 各为多少m 时,经沉淀后排出的水中该杂质的质量分数最小(A ,B 孔面积忽略不计).解法一:设y 为排出的水中杂质的质量分数,根据题意可知:y =kab ,其中k 是比例系数且k >0.依题意要使y 最小,只需ab 最大.由题设得:4b +2ab +2a ≤60(a >0,b >0),即a +2b ≤30-ab (a >0,b >0).∵a +2b ≥22ab , ∴22·ab +ab ≤30,得0<ab ≤32.当且仅当a =2b 时取“=”号,ab 最大值为18,此时得a =6,b =3. 故当a =6 m ,b =3 m 时经沉淀后排出的水中杂质最少. 解法二:同解法一得b ≤30-a a +2,代入y =kab 求解.[归纳小结]1.要熟悉基本不等式的变式和推广,这对提高解题能力是有帮助的,常见的基本不等式的变式和推广有:①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤ 14(a +b )2;④⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c 3≥3abc ;⑧abc ≤a 3+b 3+c 33等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正,二定,三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b 型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点. [课后作业]1.若a >1,则a +1a -1的最小值是( )A .2B .aC .3 D.2aa -1解:∵a >1,∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当且仅当a =2时等号成立.故选C.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为( ) A.14 B .4 C.12D .2 解:∵a >0,b >0,∴4=2a +b ≥22ab ,得ab ≤2,∴1ab ≥12,当且仅当a =1,b =2时等号成立.故选C.3.函数f (x )=5-4x +x 22-x在(-∞,2)上的最小值是( )A .0B .1C .2D .3解:当x <2时,2-x >0,因此f (x )=1+(4-4x +x 2)2-x =12-x +(2-x )≥2·12-x·(2-x )=2,当且仅当12-x =2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b 2 D .v =a +b2解:设甲、乙两地之间的距离为s.∵a <b ,∴v =2s s a +s b=2ab a +b<2ab2ab =ab.又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A.5.已知a >0,b >0,a +b =2,则1a +4b 的最小值是( ) A.72 B .4 C.92D .5解:依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+⎝ ⎛⎭⎪⎫b a +4a b ]≥12⎝⎛⎭⎪⎫5+2b a ·4a b =92, 当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0, 即⎩⎪⎨⎪⎧a =23,b =43时取等号,即1a +4b 的最小值是92.故选C.6.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0,即a >0,b >0,所以4a +3b =1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3a b =7+43,当且仅当4b a =3ab 时取等号.故选D.7.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,∴mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2.故填-2.8.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3).且无论m 取何值,两直线垂直.所以无论P 与A ,B 重合与否,均有|PA |2+|PB |2=|AB |2=10(P 在以AB 为直径的圆上).所以|PA |·|PB |≤12(|PA |2+|PB |2)=5.当且仅当|PA |=|PB |=5时,等号成立.故填5.9.(1)已知0<x <43,求x (4-3x )的最大值;(2)点(x ,y )在直线x +2y =3上移动,求2x +4y 的最小值.解:(1)已知0<x <43,∴0<3x <4.∴x (4-3x )=13(3x )(4-3x )≤13⎝⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.∴当x =23时,x (4-3x )取最大值为43.(2)已知点(x ,y )在直线x +2y =3上移动,所以x +2y =3. ∴2x +4y ≥22x ·4y =22x +2y =223=42. 当且仅当⎩⎪⎨⎪⎧2x =4y ,x +2y =3, 即⎩⎪⎨⎪⎧x =32,y =34时“=”成立.∴当⎩⎪⎨⎪⎧x =32,y =34时,2x +4y 取最小值为42.10.已知a>0,b>0,且2a+b=1,求S=2ab-4a2-b 2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥22ab,即ab≤24,ab≤18,∴S=2ab-4a2-b2=2ab-(1-4ab)=2ab+4ab-1≤2-12.当且仅当a=14,b=12时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥22x×3y=26xy,∴26xy≤18,得xy≤272,即S≤272.当且仅当2x=3y时等号成立.由⎩⎪⎨⎪⎧2x=3y,2x+3y=18,解得⎩⎪⎨⎪⎧x=4.5,y=3.故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-32y.∵x>0,∴0<y<6.S=xy=⎝⎛⎭⎪⎫9-32y y=32(6-y)y.∵0<y<6,∴6-y>0.∴S≤32⎣⎢⎡⎦⎥⎤(6-y)+y22=272.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥22x·3y=26xy=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由⎩⎪⎨⎪⎧2x=3y,xy=24,解得⎩⎪⎨⎪⎧x=6,y=4.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=24y.∴l=4x+6y=96y+6y=6⎝⎛⎭⎪⎫16y+y≥6×216y×y=48,当且仅当16y=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.如图所示,已知树顶A离地面212米,树上另一点B离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A,B的视角最大.解:问题转化为求△ABC中∠BCA的取值范围.过点C作CD⊥AB交AB的延长线于点D.设该人距离此树的距离CD=x米,看A,B的视角最大,即∠BCA最大.不妨设∠BCD=α,∠ACD=β,则∠BCA=β-α,且tanα=4x ,tanβ=9x,所以tan(β-α)=9x-4x1+9x×4x=5xx2+36=5 x+36x≤52x×36x=512,当且仅当x=36x,即x=6时取等号,此时∠BCA最大.故填6.不等式检测1.已知集合A ={x |y =x 2-2x -3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x -2≤0,则A ∩B =( )A .[-1,1]B .[-1,2)C .[1,2)D .[-2,-1]解:依题意,集合A ={x |x ≤-1或x ≥3},B ={x |-2≤x <2},A ∩B ={x |-2≤x ≤-1}.故选D.2.不等式x +5()x -12≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解:x +5(x -1)2≥2⇔(x +5)-2(x -1)2(x -1)2≥0⇔-2x 2+5x +3(x -1)2≥0⇔-2x 2+5x +3≥0(x ≠1)⇔2x 2-5x -3≤0(x ≠1)⇔-12≤x ≤3且x ≠1.故选D.3.若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则不等式f (x 2-1)<0的解集为( ) A .(-1,0) B .(-2,0)∪(0,2) C .(0,2) D .(1,2)解:∵f (x )是偶函数,∴f (x )=f (|x |)=|x |-1.∴f (x 2-1)=|x 2-1|-1.解不等式|x 2-1|-1<0,得0<x 2<2,∴x ∈(-2,0)∪(0,2).故选B.4.若一个矩形的对角线长为常数a ,则其面积的最大值为( )A .a 2 B.12a 2 C .a D.12a解:如图,设矩形的长和宽分别为x ,y ,则x 2+y 2=a 2,其面积S =xy ,由基本不等式得S ≤12(x 2+y 2)=12a 2,当且仅当x =y 时取等号,此时为正方形.故选B.5.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B .223 C.33 D.233解:∵x 2+3xy -1=0,∴y =13⎝ ⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x ≥229=223(当且仅当x =22时等号成立).故选B.6.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3解:由程序框图知,当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,目标函数S =2x +y ∈[0,2],否则,S =1.因此,输出的S的最大值为2.故选C.7.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝ ⎛⎦⎥⎤-∞,-235 解法一:∵x ∈[1,5],∴不等式变形为a >-x +2x ,∵x ∈[1,5]时,y =-x +2x 单调递减,∴y ∈⎣⎢⎡⎦⎥⎤-235,1,∴要使不等式在[1,5]上有解,应有a >-235.解法二:一元二次方程x 2+ax -2=0的两根之积为-2,两根一正一负.对于二次函数y =f (x )=x 2+ax -2,开口向上.与x 轴交点一正一负,y >0,在区间[1,5]上有解,只需y =f (5)>0即可.52+5a -2>0,∴a >-235.故选A.8.已知实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =()A .2B .3C .4D .5解:显然m >2,作出⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m 的可行域,当⎩⎨⎧x =m +13,y =2m -13 时z =x -y 的最小值为-1,解得m =5.故选D.9.若直线ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b 的最小值为( )A.14B. 2C.32+ 2 D.32+2 2解:圆的直径是4,说明直线过圆心(-1,2),故12a +b =1,1a +1b =⎝ ⎛⎭⎪⎫12a +b ⎝ ⎛⎭⎪⎫1a +1b =32+b a +a2b ≥32+2(当且仅当a =22-2,b =2-2时等号成立),故选C. 10.设函数f (x )=3sin πx m ,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解:函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝ ⎛⎭⎪⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝ ⎛⎭⎪⎫k 0+122+3<m 2,即⎝ ⎛⎭⎪⎫k 0+122<m 2-3m 2,因为⎝ ⎛⎭⎪⎫k +122的最小值为14,∴只要m 2-3m 2>14即可,得m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).故选C.11.已知O 是坐标原点,点A (-1,0),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则|OA→+OM →|的取值范围是( ) A .[1,5] B .[2,5] C .[1,2] D .[0,5]解:OA →+OM →=(-1,0)+(x ,y )=(x -1,y ),设z =|OA →+OM →|=(x -1)2+y 2,则z 2的几何意义为M 到定点E (1,0)的距离,由约束条件作出平面区域如图,由图象可知当M 位于点D (0,2)时,z 取得最大值z max =1+4=5,易知最小值z min =1,∴1≤z ≤5,即|OA→+OM →|的取值范围是[1,5].故选A. 12.设M 是△ABC 内一点,且AB →·AC →=23,∠BAC =30°.定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是△MBC ,△MCA ,△MAB 的面积.若f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,则log 2x +log 2y 的最大值是( )A .-5B .-4C .-3D .-2解:∵AB→·AC →=|AB →||AC →|cos ∠BAC =32|AB →||AC →|=23,∴|AB →||AC →|=4,∴S △ABC =12AB ·AC ·sin ∠BAC =12×4×12=1,∵f (Q )=⎝ ⎛⎭⎪⎫12,x ,y ,∴12+x +y =1,∴x +y =12,∵x >0,y >0,∴log 2x +log 2y =log 2(xy )≤log 2⎝⎛⎭⎪⎫x +y 22=log 2⎝ ⎛⎭⎪⎫142=-4.故选B.13.已知集合A ={x ∈R|||x +2<3},集合B ={x ∈R|(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =__________,n =__________.解:∵A ={x ∈R|||x +2<3}={x |-5<x <1},又∵A ∩B =(-1,n ),画数轴可知m =-1,n =1.故填-1;1.14.设x ,y 满足约束条件⎩⎨⎧x -y ≤0,x +y -1≥0,x -2y +2≥0,若z =x +3y +m 的最小值为4,则实数m =________.解:画出可行域如图所示,设z ′=x +3y ,当平行直线系z ′=x +3y 过点C ⎝ ⎛⎭⎪⎫12,12时取最小值,有z ′min =12+3×12=2,此时,目标函数z =x +3y +m 取最小值,有z min =z ′min +m =2+m =4,m =2.故填2.15.从等腰直角三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC =2,∠A =90°,则这两个正方形的面积之和的最小值为________.解:设两个正方形边长分别为a ,b (a ≤b ), 则由题可得2a +2b =2,即a +b =1,S =a 2+b 2≥2×⎝⎛⎭⎪⎫a +b 22=12,当且仅当a =b =12时取等号.故填12. 16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时.解:(1)F =76 000v +20×6.05v+18≤76 00022+18=1 900,当且仅当v =11时等号成立.(2)F =76 000v +20×5v +18≤76 00020+18=2 000,当且仅当v =10时等号成立,2 000-1 900=100.故填(1)1 900;(2)100.17.已知不等式kx 2-x +4k <0(k ≠0).(1)若不等式的解集为{x |x <-4或x >-1},求实数k 的值; (2)若不等式的解集为∅,求实数k 的取值范围.解:(1)因为不等式的解集为{x |x <-4或x >-1},所以-1和-4是方程kx 2-x +4k =0的两个实根,由韦达定理得x 1+x 2=1k ,解得k =-15.(2)不等式的解集为∅,则kx 2-x +4k ≥0恒成立,所以k >0且Δ=1-16k 2≤0,解得k ≥14.18.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0,则提价多的方案是哪一种?解:设原价为a ,则提价后的价格为方案甲:(1+p %)(1+q %)a ,方案乙:⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∵1+p %·1+q %≤1+p %2+1+q %2=1+p +q2%(当且仅当p =q 时取等号),∵p >q >0,∴1+p %·1+q %<1+p +q2%,即(1+p %)(1+q %)a <⎝ ⎛⎭⎪⎫1+p +q 2%2a ,∴提价多的方案是方案乙.答:提价多的方案是方案乙.19.(1)解不等式4x -1≤x -1;(2)求函数y =2x +91-2x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,12的最小值. 解:(1)4x -1≤x -1⇔4-(x -1)2x -1≤0⇔(x -3)(x +1)x -1≥0⇔⎩⎪⎨⎪⎧(x +1)(x -1)(x -3)≥0,x ≠1⇔ x ≥3或-1≤x <1. ∴此不等式的解集为{x |x ≥3或-1≤x <1}.(2)∵x ∈⎝ ⎛⎭⎪⎫0,12,∴2x >0,1-2x >0,∴y =42x +91-2x =⎝ ⎛⎭⎪⎫42x +91-2x [2x +(1-2x )]=13+9×2x 1-2x +4×(1-2x )2x ≥25,当且仅当x =15时,等号成立,即函数的最小值为25.20.已知x ,y 满足约束条件⎩⎨⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,求a 2+b 2的最小值.解法一:不等式组表示的平面区域如图所示,由于-ab <0,所以目标函数在点A (2,1)处取得最小值,故2a +b =25,两端平方得4a 2+b 2+4ab =20,又4ab =2×a ×2b ≤a 2+4b 2,所以20≤4a 2+b 2+a 2+4b 2=5(a 2+b 2),所以a 2+b 2≥4,当且仅当a =2b ,即a =45,b =25时等号成立.解法二:同解法一得2a +b =25.把2a +b =25看作平面直角坐标系aOb 中的直线,则a 2+b 2的几何意义是直线上的点与坐标原点距离的平方,显然a 2+b 2的最小值是坐标原点到直线2a +b =25距离的平方,即⎝⎛⎭⎪⎫|-25|52=4. 21.某工厂生产甲、乙两种产品.已知生产甲种产品1 t 需耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t ,B 种矿石4 t ,煤9 t .每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t ,B 种矿石不超过200 t ,煤不超过360 t .甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t ,y t ,利润总额为z 元,那么⎩⎪⎨⎪⎧10x +4y ≤300,5x +4y ≤200,4x +9y ≤360,x ≥0,y ≥0;z =600x +1 000y.作出以上不等式组所表示的平面区域(如图),即可行域. 作直线l :600x +1 000y =0,即直线l :3x +5y =0, 把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大.此时z =600x +1 000y 取最大值.解方程组⎩⎪⎨⎪⎧5x +4y =200,4x +9y =360,得M 的坐标为x =36029≈12.4,y =1 00029≈34.4.故应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.22.已知函数f (x )=x 3+2bx 2+cx +1的两个极值点为x 1和x 2,x 1∈[-2,-1],x 2∈[1,2],求f (-1)的取值范围.解:f ′(x )=3x 2+4bx +c , 由题可得⎩⎪⎨⎪⎧f ′(-2)=12-8b +c ≥0,f ′(-1)=3-4b +c ≤0,f ′(1)=3+4b +c ≤0,f ′(2)=12+8b +c ≥0.在平面直角坐标系bOc 中作图,图中阴影部分所示为可行域,易知f (-1)=2b -c 在点(0,-3)取得最小值3,在点(0,-12)取得最大值12.∴3≤f (-1)≤12.故f (-1)的取值范围为[3,12].。
高中数学基本不等式题型总结:

高中数学基本不等式题型总结:
一、一元一次不等式
1. 原理:在一元一次不等式中,如果两个不等式的不等号方向
相同,且两个不等式的等号两边都乘以同一个正数或同一个负数,
那么不等式保持不变。
2. 解法:
a. 将不等式化简为标准形式:ax + b > 0 或 ax + b < 0,其中 a
和 b 均为实数,且a ≠ 0。
b. 对不等式进行相同操作后得到的不等式,得到不等式的解集。
二、一元二次不等式
1. 原理:在一元二次不等式中,解不等式的关键是确定二次函
数的凹凸性和零点情况。
2. 解法:
a. 将不等式化简为标准形式:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0,其中 a、b 和 c 均为实数,且a ≠ 0。
b. 利用一元二次函数的凹凸性和零点情况进行分析,得到不等
式的解集。
三、绝对值不等式
1. 原理:对于绝对值不等式,根据绝对值的定义可分为绝对值大于等于零和绝对值小于等于零两种情况。
2. 解法:
a. 将不等式化简为标准形式:|ax + b| > c、|ax + b| < c 或 |ax + b| ≥ c、|ax + b| ≤ c,其中 a、b 和 c 均为实数,且a ≠ 0。
b. 根据绝对值的定义和不等式方向进行分析,得到不等式的解集。
四、其他常见不等式
1. 根据题目要求和不等式的特点,灵活运用数学运算符和基本不等式的性质,确定不等式的解集。
以上是高中数学中基本的不等式题型总结,希望能对你的研究有所帮助。
高中数学:基本不等式(含答案)

高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。
2021-2022学年人教版高中数学必修五教材用书:第三章 不等式 3.4 基本不等式

3.4基本不等式:ab ≤a +b2基本不等式[提出问题]问题1:若a ,b ∈R ,则代数式a 2+b 2与2ab 有何大小关系? 提示:∵(a 2+b 2)-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab .问题2:上述结论中,等号何时成立? 提示:当且仅当a =b 时成立.问题3:若以a ,b 分别代替问题1中的a ,b ,可得出什么结论? 提示:a +b ≥2ab .问题4:问题3的结论中,等何时成立? 提示:当且仅当a =b 时成立. [导入新知] 1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a =b 时等号成立).[化解疑难]1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b2,即只能有ab <a +b2.2.从数列的角度看,a ,b 的算术平均数是a ,b 的等差中项,几何平均数是a ,b 的正的等比中项,则基本不等式可表示为:a 与b 的正的等比中项不大于它们的等差中项.利用基本不等式证明不等式[例1] 已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.证明:由基本不等式可得a 4+b 4=(a 2)2+(b 2)2≥2a 2b 2,同理,b 4+c 4≥2b 2c 2,c 4+a 4≥2a 2c 2,∴(a 4+b 4)+(b 4+c 4)+(c 4+a 4)≥2a 2b 2+2b 2c 2+2a 2c 2, 从而a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. [类题通法]1.利用基本不等式证明不等式,关键是所证不等式中必需有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而收到放缩的效果.2.留意多次运用基本不等式时等号能否取到. [活学活用]设a >0,b >0,证明:b 2a +a 2b≥a +b .证明:∵a >0,b >0,∴b 2a +a ≥2b ,a 2b +b ≥2a , ∴b 2a +a 2b≥a +b . 利用基本不等式求最值[例2] (1)已知m ,n (2)已知x >3,求f (x )=x +4x -3的最小值; (3)设x >0,y >0,且2x +y =1,求1x +1y的最小值.[解] (1)∵m ,n >0且m +n =16, ∴由基本不等式可得mn ≤⎝⎛⎭⎪⎫m +n 22=⎝ ⎛⎭⎪⎫1622=64,当且仅当m =n =8时,mn 取得最大值64. (2)∵x >3, ∴x -3>0,4x -3>0,于是f (x )=x +4x -3=x -3+4x -3+3≥2x -3·4x -3+3=7,当且仅当x -3=4x -3即x =5时,f (x )取得最小值7. (3)法一:∵x >0,y >0,2x +y =1, ∴1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2y x ·2xy=3+22, 当且仅当y x=2xy,即y =2x 时,等号成立,解得x =1-22,y =2-1,∴当x =1-22,y =2-1时,1x +1y 有最小值3+2 2.法二:1x +1y =⎝⎛⎭⎪⎫1x +1y ·1=⎝⎛⎭⎪⎫1x +1y(2x +y )=3+2x y +yx≥3+2y x ·2xy=3+22, 以下同法一. [类题通法]1.利用基本不等式求最值,必需依据“一正,二定,三相等”的原则. (1)一正:符合基本不等式a +b2≥ab 成立的前提条件:a >0,b >0.(2)二定:化不等式的一边为定值.(3)三相等:必需存在取等号的条件,即等号成立. 以上三点缺一不行.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.[活学活用](1)已知lg a +lg b =2,求a +b 的最小值;(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值; (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取得最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取得最大值32.(3)∵1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x+9=y x+9xy+10.又∵x >0,y >0,∴y x+9xy+10≥2 y x ·9xy+10=16, 当且仅当y x =9xy, 即y =3x 时,等号成立.由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.利用基本不等式解应用题[例3] 如图所示,利用原有的墙,其他各面用钢筋网围成.(1)现有36 m 长的钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?[解] (1)设每间虎笼长为x m ,宽为y m , 则由条件得4x +6y =36,即2x +3y =18, 设每间虎笼面积为S ,则S =xy . 由于2x +3y ≥22x ·3y =26xy , ∴26xy ≤18,得xy ≤272,即S ≤272, 当且仅当2x =3y 时,等号成立,由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3,故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. (2)设每间虎笼第为x m ,宽为y m. 法一:由条件知S =xy =24, 设钢筋网总长为l ,则l =4x +6y . ∵2x +3y ≥2 2x ·3y =26xy =24, ∴l =4x +6y =2(2x +3y )≥48, 当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 法二:由xy =24,得x =24y.∴l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y +y ≥6×216y·y =48,当且仅当16y=y ,即y =4时,等号成立.此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.[类题通法]在应用基本不等式解决实际问题时,应留意如下的思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)依据实际背景写出答案. [活学活用]某汽车公司购买了4辆大客车,每辆200 万元,用于长途客运,估计每辆车每年收入约100 万元,每辆车第一年各种费用约为16 万元,且从其次年开头每年比上一年所需费用要增加16 万元.(1)写出4辆车运营的总利润y (万元)与运营年数x (x ∈N *)的函数关系式. (2)这4辆车运营多少年,可使年平均运营利润最大? 解:(1)依题意,每辆车x 年总收入为100x 万元, 总支出为200+16×(1+2+…+x )=200+12x (x +1)·16.∴y =4⎣⎢⎡⎦⎥⎤100x -200-12x x +1·16=16(-2x 2+23x -50). (2)年平均利润为y x =16⎝ ⎛⎭⎪⎫23-2x -50x =16⎣⎢⎡⎦⎥⎤23-2⎝ ⎛⎭⎪⎫x +25x . 又x ∈N *, ∴x +25x≥2x ·25x=10,当且仅当x =5时,等号成立,此时y x≤16×(23-20)=48.∴运营5年可使年平均运营利润最大,最大利润为48 万元.7.基本不等式应用中的易误点[典例] 已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C.92D .5[解析] ∵a +b =2,∴a +b2=1. ∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝ ⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+2 2ab ·b 2a =92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.[答案] C [易错防范]1.解答本题易两次利用基本不等式,如: ∵a >0,b >0,a +b =2,∴ab ≤a +b24=1.又y =1a +4b ≥24ab =41ab,又ab ≤1, ∴y ≥411=4. 但它们成立的条件不同,一个是a =b ,另一个是b =4a ,这明显是不能同时成立的,故不正确. 2.使用基本不等式求最值,其失误的真正缘由是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不行.3.在运用重要不等式时,还要特殊留意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.[成功破障](福建高考)下列不等式肯定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R)解析:选C 取x =12,则lg(x 2+14)=lg x ,故排解A ;取x =3π2,则sin x =-1,故排解B ;取x =0,则1x 2+1=1,故排解D.[随堂即时演练]1.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤-x+1-x-2≤-2-2=-4, 当且仅当-x =1-x ,即x =-1时取等号.2.若a >b >0,则下列不等式成立的是( ) A .a >b >a +b2>ab B .a >a +b2>ab >bC .a >a +b2>b >ab D .a >ab >a +b2>b解析:选B a =a +a 2>a +b2>ab > b ·b =b ,因此只有B 项正确.3.若x ,y ∈R +,且x +4y =1,则x ·y 的最大值为________. 解析:1=x +4y ≥24xy =4xy , ∴xy ≤116,当且仅当x =4y 时等号成立.答案:1164.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y ≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y 最小值=2,当且仅当2y =5x 时取等号. 又xy =10,即x =2,y =5时等号成立. 答案:25.已知a ,b ,c 均为正数,a ,b ,c 不全相等.求证:bc a +ac b +abc>a +b +c . 证明:∵a >0,b >0,c >0,∴bc a +ac b ≥2 abc 2ab=2c , ac b +ab c≥2 a 2bc bc =2a ,bc a +abc≥2 b 2acac=2b . 又a ,b ,c 不全相等,故上述等号至少有一个不成立.∴bc a +ac b +abc>a +b +c . [课时达标检测] 一、选择题1.下列不等式中正确的是( ) A .a +4a≥4B .a 2+b 2≥4ab C.ab ≥a +b2D .x 2+3x2≥2 3解析:选D a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错; a =4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 项正确.2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34D.23解析:选B 由x (3-3x )=3·x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34,当且仅当x =1-x ,即x =12时,等号成立.3.设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .6 B .4 2 C .2 6D .8解析:选B ∵a ,b 是实数, ∴2a>0,2b>0,于是2a +2b ≥22a ·2b =2 2a +b=2 23=42,当且仅当a =b =32时取得最小值4 2.4.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16 B .25 C .9D .36解析:选B (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤1+x +1+y 22=⎣⎢⎡⎦⎥⎤2+x +y 22=⎝ ⎛⎭⎪⎫2+822=25,因此当且仅当1+x =1+y 即x =y =4时, (1+x )·(1+y )取最大值25,故选B.5.若-4<x <1,则f (x )=x 2-2x +22x -2( )A .有最小值1B .有最大值1C .有最小值-1D .有最大值-1解析:选D f (x )=x 2-2x +22x -2=12⎣⎢⎡⎦⎥⎤x -1+1x -1,又∵-4<x <1,∴x -1<0. ∴-(x -1)>0. ∴f (x )=-12⎣⎢⎡⎦⎥⎤-x -1+1-x -1≤-1. 当且仅当x -1=1x -1,即x =0时,等号成立. 二、填空题6.已知x ,y 都是正数.(1)假如xy =15,则x +y 的最小值是________; (2)假如x +y =15,则xy 的最大值是________.解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值. (2)xy ≤⎝⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1522=2254,即xy 的最大值是2254.当且仅当x =y =152时xy 取最大值.答案:(1)215 (2)22547.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:由于x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞ 8.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b ≥4; ③(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4;④a 2+9>6a .其中恒成立的是________(填序号).解析:由于a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0,故①恒成立;由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b ≥4,故②恒成立; 由于a +b ≥2ab ,1a +1b ≥21ab,故(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4,故③恒成立; 当a =3时,a 2+9=6a ,故④不能恒成立. 答案:①②③ 三、解答题9.求下列函数的最小值.(1)设x ,y 都是正数,且1x +2y=3,求2x +y 的最小值;(2)设x >-1,求y =x +5x +2x +1的最小值.解:(1)2x +y =32x +y3=13⎝ ⎛⎭⎪⎫1x +2y (2x +y ) =13⎝ ⎛⎭⎪⎫y x +4x y +4 ≥13(24+4)=83. 当且仅当y x =4x y时等号成立,即y 2=4x 2. ∴y =2x .又∵1x +2y =3,得x =23,y =43.∴当x =23,y =43时,2x +y 取得最小值为83.(2)∵x >-1,∴x +1>0. 设x +1=t >0,则x =t -1, 于是有y =t +4t +1t=t 2+5t +4t=t +4t+5≥2t ·4t+5=9, 当且仅当t =4t,即t =2时取等号,此时x =1.∴当x =1时,函数y =x +5x +2x +1取得最小值为9.10.(1)已知0<x <12,求y =12x (1-2x )的最大值;(2)已知x >0,求y =2-x -4x的最大值;(3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值.解:(1)∵0<x <12,∴1-2x >0.y =14·2x ·(1-2x )≤14·⎝⎛⎭⎪⎫2x +1-2x 22=14×14=116. ∴当且仅当2x =1-2x , 即x =14时,y 最大值=116.(2)∵x >0,∴y =2-x -4x=2-⎝ ⎛⎭⎪⎫x +4x ≤2-4=-2,当且仅当x =4x ,即x =2时等号成立,y 的最大值为-2.(3)法一:∵x ,y ∈R +, ∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x=3xy,即x =2(3-1),y =2(3-3)时取等号.又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x+3x +y4y=1+⎝ ⎛⎭⎪⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y =1+32. 当且仅当y 4x =3x4y,即x =2(3-1),y =2(3-3)时取等号. ∴1x +3y 的最小值为1+32.11.如右图,某公园方案建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x米墙,求:(1)x 的取值范围;(2)最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米,则矩形草地所需铁丝网长度为y =x +2×144x.令y =x +2×144x≤44(x >0),解得8≤x ≤36,则x 的取值范围是[8,36].(2)由基本不等式,得y =x +288x≥24 2.当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0, 即最少需要约34.0米铁丝网. 12.(1)已知x <-2,求函数y =2x +1x +2的最大值; (2)求y =x 2+5x 2+4的最小值;(3)若正数a ,b 满足ab =a +b +3,求a +b 的取值范围. 解:(1)∵x <-2,∴x +2<0,-(x +2)>0. ∴y =2(x +2)+1x +2-4 =-[-2(x +2)+-1x +2]-4≤ -2-2x +2·-1x +2-4=-22-4. 当且仅当-2(x +2)=-1x +2(x <-2),即x =-2-22时,y 取最大值-22-4. (2)令t =x 2+4,则y =f (t )=t +1t,由f (t )=t +1t(t ≥2)的单调性,知y =t +1t在[2,+∞)上是增函数,∴t =2时,f (t )min =2+12=52,即当x 2+4=2,也就是x =0时,y min =52.(3)∵a +b +3=ab ≤⎝⎛⎭⎪⎫a +b 22,当且仅当a =b =3时等号成立∴(a +b )2-4(a +b )-12≥0.∴(a +b -6)(a +b +2)≥0.又a >0,b >0, ∴a +b ≥6.即a +b 的取值范围为[6,+∞].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修五基本不等式题型(精编)
变
2.下列结论正确的是 ( )
A .若a b >,则ac bc >
B .若a b >,则22a b >
C .若a c b c +<+,0c <,则a b >
D >a b >
3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是
例2、解下列不等式
(1)2230x x --≥ (2)2280x x -++>
(3)
405x x ->- (4)405
x x -≥-
(5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .
变、若不等式02<--b ax x 的解集为{}
32<<x x ,则=+b a
变
补.下列各函数中,最小值为2的是 ( )
A.
1
y x
x
=+ B.
1
sin
sin
y x
x
=+,(0,)
2
x
π
∈
C.
2
y= D.1
y x
=+-
变
1.若,则的最小值是______
2.
3.如果正数、满足,则的取值范围是_________,a+b的取值范围是_________.例5、
1. 积为定值
(1)函数 (x>0)的最小值是 .
(2)设,的最大值是 .
(3)函数 (x<0)的最小值是 .
(4)
变、
(1)
的最小值是 .
(2) .
2. 和为定值
(1),y=x(4-x) 的最大值是 .
(2), 的最大值是 . 例6、“1”的妙用
1.
2.已知正数满足,则的最小值为______。