北师大版初二数学下册知识点汇总

合集下载

北师大版初二数学下册重点知识梳理汇总,期末高分必备!

北师大版初二数学下册重点知识梳理汇总,期末高分必备!

北师大版初二数学下册重点知识梳理汇总,期末高分必备!GUIDE导读初二数学下册知识点(※表示重点部分)第一章 三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容 几何语言 条件与结论等腰三角形的性质定理 等腰三角形的两底角相等。

简述为:等边对等角在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论 等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC ,AB=AC ,AD⊥BC,则AD 是BC 边上的中线,且AD 平分∠BAC 条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 ※等腰三角形中的相等线段:1.等腰三角形两底角的平分线相等2.等腰三角形两腰上的高相等3.两腰上的中线相等4.底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理 等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。

它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容 几何语言 条件与结论等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC解读 【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展 判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念 证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明 (2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章 一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc,(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0三. 不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

北师大版八年级数学下册知识点总结

北师大版八年级数学下册知识点总结

北师大版八年级数学下册知识点总结第一章代数初步
1.1 代数式
•代数式的定义
•代数式的分类
•代数式的运算
1.2 多项式与因式分解
•多项式的定义与分类
•多项式的加减乘除
•因式分解的概念
•因式分解的方法
第二章方程
2.1 一元一次方程
•一元一次方程的定义
•一元一次方程的基本性质
•解一元一次方程的方法
2.2 一元一次方程组
•一元一次方程组的定义
•一元一次方程组的基本性质
•解一元一次方程组的方法
2.3 一元二次方程
•一元二次方程的定义
•一元二次方程的基本性质
•解一元二次方程的方法
第三章几何初步
3.1 角
•角的定义与分类
•角的度数与弧度制
•角平分线的性质
3.2 四边形
•四边形的概念与分类
•四边形的性质
第四章圆的初步
4.1 圆的性质
•圆的定义与性质
•圆心角与圆弧的关系
•弧长公式与扇形面积公式
4.2 切线与割线
•切线与割线的定义
•切线定理与割线定理
4.3 圆的应用
•圆的运动公式
•圆的方程与判别式
第五章数据的收集与处理
5.1 数据的收集
•数据的来源与调查方法
•数据的类型与统计图表
5.2 数据的处理
•数据的中心趋势
•数据的离散程度
•数据的相关性
总结
本文档总结了北师大版八年级数学下册的主要知识点,涵盖了代数初步、方程、几何初步、圆的初步以及数据的收集与处理。

每一章都介绍了重点知识点的定义、性质、分类以及相关的运算方法和解题技巧。

希望本文档能够对八年级学生和教师有所帮助。

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

北师大八年级数学下册知识点总结

北师大八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点第一章三角形的证明一、全等三角形判断、性质:1. 判断(SSS) 〔SAS) (ASA) (AAS) 〔HL直角三角形〕2. 全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等; ( 定义)定理:等腰三角形的两个底角相等〔简写成“等边平等角〞〕。

推论 1:等腰三角形顶角的均分线、底边上的中线及底边上的高线相互重合。

〔三线合一〕推论 2:等边三角形的各角都相等,而且每一个角都等于 60°。

等腰三角形是以底边的垂直均分线为对称轴的轴对称图形;三、等腰三角形的判断1. 相关的定理及其推论定理:有两个角相等的三角形是等腰三角形〔简写成“等角平等边〞。

〕推论 1:三个角都相等的三角形是等边三角形。

推论 2:有一个角等于 60°的等腰三角形是等边三角形。

2. 反证法:先假定命题的结论不建立,而后推导出与定义、根本事实、已有定理或条件相矛盾的结果,进而证明命题的结论必定建立。

这类证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判断假如三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互抗命题、互逆定理在两个命题中,假如一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,此中一个命题称为另一个命题的抗命题 .假如一个定理的抗命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,此中一个定理称为另一个定理的逆定理 .五、线段的垂直均分线、角均分线1、线段的垂直均分线。

性质:线段垂直均分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直均分线订交于一点,而且这一点到三个极点的距离相等。

北师大版数学八年级下册各章节知识点汇总

北师大版数学八年级下册各章节知识点汇总

围 直线 y ax b 在直线 y cx d 的上方对应的点的横坐标范围.
六、一元一次不等式组
※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.
※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说 这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定.
由于任何一个一元一次不等式都可以转化为 ax b >0 或 ax b <0 或 ax b ≥0 或 ax b ≤0( a 、b 为常数,a ≠0) 的形式,所以解一元一次不等式可以看作:当一次函数 y ax b 的值大于 0(或小于 0 或大于等于 0 或小于等于
0)时求相应的自变量的取值范围.
①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集; ⑤答: 写出答案,并检验答案是否符合题意. 五、一元一次不等式与一次函数 1、一次函数与一元一次不等式
一、不等关系 ※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负数 <=> 大于等于 0(≥0) <=> 0 和正数 <=> 不小于 0 非正数 <=> 小于等于 0(≤0) <=> 0 和负数 <=> 不大于 0 二、不等式的基本性质 性质 1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结

北师大版八年级下册数学知识点总结北师大版八年级下册数学主要包括以下知识点:
1. 分式:
- 分式的概念和性质
- 分式的化简和展开
- 分式的四则运算(加减乘除)
- 分式方程的解法
2. 二次根式:
- 二次根式的概念和性质
- 二次根式的化简和展开
- 二次根式的运算(加减乘除)
- 二次根式的求值和应用
3. 平面图形与变换:
- 平行四边形、菱形和正方形的性质和判定
- 三角形的内角和外角性质
- 相似三角形的判定和性质
- 平面图形的位似变换(翻转、旋转、平移)
4. 数据与统计:
- 统计图表的读取和分析
- 数据的表示和处理(频数、频率、平均数等)
- 抽样调查和用样本估计总体
5. 方程与不等式:
- 一元一次方程的概念和性质
- 一元一次方程的解法(整数解、分数解、无解)
- 一元一次方程应用问题的解法
- 一元一次不等式的概念和性质
- 一元一次不等式的解法
6. 概率与统计:
- 随机事件的概念和性质
- 独立事件、互斥事件和相反事件
- 事件的概率计算
- 概率的应用(排列组合、事件的发生次数等)
这些是北师大版八年级下册数学的主要知识点总结,希望对你有帮助。

如果你还有其他问题,请继续提问。

八下数学知识点归纳北师大版

八下数学知识点归纳北师大版

八下数学知识点归纳北师大版
八下数学知识点归纳(北师大版)
1. 整式的加减运算:将同类项相加或相减,并注意合并同类项的系数。

2. 一元一次方程:解一元一次方程时,可以通过加减变换、乘除变换或移项来求解。

3. 二元一次方程组:通过消元法或代入法来求解含有两个未知数的方程组。

4. 三角形的面积:根据三角形的底和高、两边和夹角的正弦公式、两边和夹角的余弦公式来计算三角形的面积。

5. 平行线与比例:根据平行线的性质来求解问题,应用相似三角形的性质计算比例。

6. 一元二次方程:利用配方法或公式法来解一元二次方程,并注意解的情况。

7. 空间图形的计算:通过计算形体的体积或表面积来解决空间图形的问题。

8. 圆的面积和周长:通过半径、直径、弦和扇形的关系来计算圆的面积和周长。

9. 概率与统计:根据事件发生的可能性来计算概率,并通过统计数据的分析和整理来得出结论。

10. 点、直线、平面的关系:通过点和直线的位置关系来判断它们是否相交或平行。

以上是八下数学教材中的一些重要知识点,希望对你的学习有所帮助。

最新北师大版初二下册数学知识点归纳

最新北师大版初二下册数学知识点归纳

最新北师大版初二下册数学知识点归纳篇一第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角平分线。

性质:角平分线上的点到这个角的两边的距离相等。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

3、逆命题、互逆命题的概念,及反证法第二章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.三、解不等式的步骤: 1、去分母; 2、去括号; 3、移项、合并同类项; 4、系数化为1。

四、解不等式组的步骤:1、解出不等式的解集。

2、在同一数轴表示不等式的解集。

3、写出不等式组的解集。

五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组) (4)解不等式组;检验并作答。

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角。

关键:a. 旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b. 图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

(旋转前后两个图形的对应线段相等、对应角相等。

) 注意:旋转后,原图形与旋转后的图形全等。

3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。

这个点就是它的对称中心。

4、中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。

3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比5、图案的分析与设计 ① 首先找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。

② 图案设计的基本手段主要有:轴对称、平移、旋转三种方法。

第四章 分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、()()22a -b =a+b a-b3、()222a 2ab+b a b ±=± 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc=m (a+b+c )4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如22a +2ab+b 或22a -2ab+b 的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

2、运用公式法。

第五章 分式与分式方程1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。

2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示其中A 、B 、C 为整式(0≠C ) 注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。

C B C A B A ⋅⋅=CB C A B A ÷÷=5.分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

3)分式乘方法则: 分式乘方要把分子、分母分别乘方。

4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减 ,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 7. 整数指数幂. 1) 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;2) 任何一个不等于零的数的-n 次幂(n 为正整数),等于这个数的n 次幂的倒数,即 n n a a1=- ()0≠a 注:分数的负指数幂等于这个分数的倒数的正整数指数幂。

相关文档
最新文档