预应力张拉方法与计算
预应力张拉控制力怎么计算
预应力张拉控制力怎么计算正文:一:引言预应力张拉控制力是预应力混凝土结构中一个重要的参数,它用来控制预应力钢束的拉伸程度和预应力水平。
本文将介绍预应力张拉控制力的计算方法。
二:预应力计算理论根据力学原理,预应力张拉控制力的计算可以通过以下步骤进行:2.1 确定预应力水平预应力水平取决于混凝土结构的设计要求和安全系数。
一般情况下,预应力水平为混凝土耐久性和承载力的最低要求。
2.2 确定预应力钢束的截面积预应力钢束截面积的选择应根据结构设计要求和预应力水平进行适当调整。
2.3 确定预应力钢束的受力特性预应力钢束受力特性包括强度、刚度和伸长量等参数。
这些参数可以通过实验或计算进行确定。
2.4 确定预应力钢束的拉伸长度根据预应力钢束的受力特性和施工条件,确定合理的拉伸长度。
2.5 计算预应力张拉控制力根据预应力水平、预应力钢束截面积和拉伸长度,采用力学公式计算预应力张拉控制力。
三:实例分析本章节将通过实例分析,进一步说明预应力张拉控制力的计算方法。
四:总结本文介绍了预应力张拉控制力的计算方法,包括确定预应力水平、预应力钢束截面积、预应力钢束的受力特性、预应力钢束的拉伸长度以及计算预应力张拉控制力的步骤。
这些方法可以在预应力混凝土结构设计和施工中得到应用。
附件:无法律名词及注释:无正文:一:引言预应力张拉控制力是预应力混凝土结构设计和施工过程中的一个重要参数,它对于保证结构的安全性和稳定性至关重要。
本文将详细介绍预应力张拉控制力的计算方法。
二:预应力计算理论2.1 预应力水平的确定预应力水平是根据设计要求、结构承载力和耐久性等因素决定的。
一般情况下,预应力水平应满足设计要求,并具备足够的安全系数。
2.2 预应力钢束截面积的确定预应力钢束截面积的选择需要综合考虑结构的设计要求、预应力水平和预应力钢束的强度性能等因素。
通常情况下,应根据实际情况进行合理调整。
2.3 预应力钢束受力特性的确定预应力钢束的受力特性包括强度、刚度和伸长量等参数。
预应力张拉力计算
预应力张拉力计算预应力张拉力计算CK0+667.275立交桥箱梁,设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径15.2mm,公称面积Ag=139mm2,弹性模量Eg=1.95×105MP。
为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。
理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。
一、计算公式及参数:1、预应力平均张拉力计算公式及参数:式中:Pp—预应力筋平均张拉力(N)P—预应力筋张拉端的张拉力(N)X—从张拉端至计算截面的孔道长度(m)θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩擦的影响系数:取0.0015u—预应力筋与孔道壁的磨擦系数,取0.252、预应力筋的理论伸长值计算公式及参数:△L=PpL/(ApEp)式中:Pp—预应力筋平均张拉力(N)L—预应力筋的长度(mm)Ap—预应力筋的截面面积(mm2),取139mm2Ep—预应力筋的弹性模量(N/mm2),取1.95×105N/mm2二、伸长量计算:1、N1束一端的伸长量:单根钢绞线张拉的张拉力P=0.75×1860×139=193905NX直=3.5m;X曲=2.35mθ=4.323×180=0.25radKX曲+uθ=0.0015×2.35+0.25×0.25=0.066Pp=193905×(1-e-0.066)/0.066=187644N△L曲=PpL/(ApEp)=187644×2.35/(139×1.95×105)=16.3mm△L直=PpL/(ApEp)=187644×3.5/(139×1.95×105)=24.2mm△L曲+△L直=16.3+24.2=40.52、N2束一端的伸长量:单根钢绞线张拉的张拉力:P=0.75×1860×139=193905NX直=0.75;X曲=2.25mθ=14.335×π/180=0.2502KX曲+uθ=0.0015×2.25+0.25×0.2502=0.0659Pp=193905×(1-e-0.0659)/0.0659=187653N△L曲=PpL/(ApEp)=187653×2.25/(139×1.95×105)=15.6mm △L直=PpL/(ApEp)=187653×0.75/(139×1.95×105)=5.2mm (△L曲+△L直)*2=(15.6+5.2)*2=41.6mm第二章张拉时理论伸长量计算一、计算参数:1、K—孔道每米局部偏差对摩擦的影响系数:取0.00152、u—预应力筋与孔道壁的摩擦系数:取0.253、Ap—预应力筋的实测截面面积:139mm24、Ep—预应力筋实测弹性模量:1.95×105N/mm25、锚下控制应力:σk=0.75Ryb=0.75×1860=1395N/mm26、单根钢绞线张拉端的张拉控制力:P=σkAp=193905N7、千斤顶计算长度:60cm8、工具锚长度:7cm二、张拉时理论伸长量计算:以N1束钢绞线为例:N1束一端的伸长量:式中:P—油压表读数(MPa)F—千斤顶拉力(KN)P=P1时,(1)15%σcon=232.7KN时:P=-0.48+0.021PF=-0.48+0.0219×232.7=4.6MPa(3)30%σcon=465.4KN时:P=-0.48+0.021PF=-0.48+0.0219×465.4=9.7MPa(4)100%σcon=1551.2KN时:P=-0.48+0.021PF=-0.48+0.0219×1551.2=33.5MPa (5)103%σcon=1597.7KN时:P=-0.48+0.021PF=-0.48+0.0219×1597.7=34.5MPaP=P2时,(1)15%σcon=203.6KN时:P=-0.48+0.021PF=-0.48+0.0219×203. 6=4.0MPa(3)30%σcon=407.2KN时:P=-0.48+0.021PF=-0.48+0.0219×407.2=8.4MPa(4)100%σcon=1357.3KN时:P=-0.48+0.021PF=-0.48+0.0219×1357.3=29.2MPa (5)103%σcon=1398.0KN时:P=-0.48+0.021PF=-0.48+0.0219×1398.0=30.1MPa三、2407号千斤顶张拉,千斤顶回归方程:P=0.02247F+0.08式中:P—油压表读数(MPa)F—千斤顶拉力(KN)P=P1时:(1)15%σcon=232.7KN时:P=-0.2247F+0.08=0.08+0.02247×232.7=5.3MPa (3)30%σcon=465.4KN时:P=-0.02247F+0.08=0.08+0.02247×465.4=10.5MPa (4)100%σcon=1551.2KN时:P=-0.02247F+0.08=0.08+0.02247×1551.2=34.9MPa (5)103%σcon=1597.7KN时:P=-0.02247F+0.08=0.08+0.02247×1597.7=36.0MPa P=P2时:(1)15%σcon=203. 6KN时:P=-0.2247F+0.08=0.08+0.02247×203.6=4.7MPa (3)30%σcon=407.2KN时:P=-0.02247F+0.08=0.08+0.02247×407.2=9.2MPa (4)100%σcon=1357.3KN时:P=-0.02247F+0.08=0.08+0.02247×1357.3=30.6MPa (5)103%σcon=1398.0KN时:P=-0.02247F+0.08=0.08+0.02247×1398.0=31.5MPa。
预应力张拉方法与计算
预应力张拉方法与计算预应力张拉就是在构件中提前加拉力,使得被施加预应力张拉构件承受拉应力,进而使得其产生一定的形变,来应对结构本身所受到的荷载,包括构件自身重量的荷载、风荷载、雪荷载、地震荷载作用等等。
在工程现场的你,不懂预应力怎么炫技?!先张法懂不?先张法是在砼构件浇筑前先张拉预应力筋,并用夹具将其临时锚固在台座或钢模上,再浇筑构件砼,待其达到一定强度后(约75%)放松并切断预应力筋,预应力筋产生弹性回缩,借助砼与预应力筋间的粘结,对砼产生预压应力。
台座由台面、横梁和承力结构组成。
按构造形式不同,可分为墩式台座、槽形台座和桩式台座等。
台座可成批生产预应力构件。
台座承受全部预应力筋的拉力,故台座应具有足够的强度、刚度和稳定性,以免因台座变形、倾覆和滑移而引起预应力的损失。
墩式长线台座墩式台座由现浇钢筋砼做成,台座应具有足够的强度、刚度和稳定性,台座设计应进行抗倾覆验算与抗滑移验算。
⑴抗倾覆验算:式中:N——预应力筋的张拉力;e1——张拉力合力作用点至倾覆点的力臂;G——台墩的自重力;L——台墩重心至倾覆点的力臂;Ep——台墩后面的被动土压力合力;e2——被动土压力合力至倾覆点的力臂。
对于与台面共同工作的台墩,倾覆点的位置宜选在砼台面下4~5cm处。
⑵抗滑移验算:式中:K——抗滑移安全系数,不小于1.3;N1——抗滑移的力,对于独立台墩,由侧壁土压力和底部摩阻力产生。
台墩与台面共同工作时,预应力筋的张拉力几乎全部传给了台面,可不进行抗滑移验算。
槽式台座由端柱、传力柱、横梁和台面组成,既可承受张拉力和倾覆力矩,加盖后又可作为蒸汽养护槽。
适用于张拉吨位较大的吊车梁、屋架、箱梁等大型预应力砼构件。
钢模台座:先张法预应力筋张拉流程:预应力筋的张拉:⑴单根钢丝张拉:台座法多进行单根张拉,由于张拉力较小,一般可采用10~20kN电动螺杆张拉机或电动卷扬机单根张拉,弹簧测力计测力,优质锥销式夹具锚固。
⑵整体钢丝张拉:台模法多进行整体张拉,可采用台座式千斤顶设置在台墩与钢横梁之间进行整体张拉,优质夹片式夹具锚固。
预应力筋平均张拉力计算公式
预应力筋平均张拉力计算公式一:正文:1. 引言本文档旨在介绍预应力筋平均张拉力计算公式。
预应力筋在混凝土结构中起着重要的作用,其拉力的计算对于结构的安全性和稳定性具有重要意义。
2. 预应力筋的定义预应力筋是在混凝土中施加预先预应力力的钢筋,通过对混凝土施加压力,使其在负载作用下具有更好的性能。
3. 预应力筋平均张拉力的计算公式预应力筋平均张拉力的计算公式如下:Favg = (Fp + Fq) / 2其中,Favg表示预应力筋平均张拉力,Fp表示预应力筋的预应力力,Fq表示预应力筋的附加荷载。
4. 计算步骤预应力筋平均张拉力的计算步骤如下:步骤一:确定预应力筋的预应力力和附加荷载的数值;步骤二:将预应力筋的预应力力和附加荷载代入计算公式,得出预应力筋平均张拉力的数值。
5. 范例计算为了更好地理解预应力筋平均张拉力的计算方法,下面给出一个范例计算:已知预应力筋的预应力力为Fp=100kN,附加荷载为Fq=50kN,代入公式可得:Favg = (100 + 50) / 2 = 75kN因此,该范例中预应力筋的平均张拉力为75kN。
附件:本文档未涉及附件。
法律名词及注释:本文档未涉及法律名词及注释。
二:正文:1. 引言本文档旨在详细介绍预应力筋平均张拉力的计算公式,通过对预应力筋的平均张拉力的准确计算,可以提高混凝土结构的安全性和稳定性。
2. 预应力筋的作用预应力筋是在混凝土结构中施加预先预应力力的钢筋,通过对混凝土施加压力,使其在负载作用下具有更好的性能。
预应力筋可以有效抵抗混凝土结构的拉力,提高结构的抗震能力和承载能力。
3. 预应力筋平均张拉力的计算公式预应力筋平均张拉力的计算公式为:Favg = (Fp + Fq) / 2其中,Favg表示预应力筋平均张拉力,Fp表示预应力筋的预应力力,Fq表示预应力筋的附加荷载。
4. 计算步骤为了准确计算预应力筋的平均张拉力,可以按照以下步骤进行计算:步骤一:确定预应力筋的预应力力和附加荷载的数值;步骤二:将预应力筋的预应力力和附加荷载代入计算公式,得出预应力筋平均张拉力的数值。
预应力张拉伸长量最简单的计算公式
预应力张拉伸长量最简单的计算公式
预应力张拉伸长量是计算预应力的重要参数之一。
它反映了预应力杆件在张拉过程中的伸长变化量,也是评价预应力施工质量的关键指标。
在计算预应力张拉伸长量时,可以使用以下简单的公式:
ΔL = F × L / A × E
其中,ΔL代表预应力张拉伸长量,F代表预应力的施加力,L代表预应力杆件的长度,A代表预应力杆件的截面积,E代表预应力杆件的弹性模量。
通过这个公式,我们可以计算出预应力杆件在施加预应力力后的伸长变化量。
这个伸长量可以直接影响到预应力的传递效果和杆件的受力性能。
需要注意的是,公式中的参数需要准确的数值来进行计算。
预应力施工过程中,需要使用专业的设备和工具来控制施加力的大小和施加位置,以确保计算结果的准确性。
在实际应用中,预应力张拉伸长量的计算是预应力施工的重要一环。
通过合理的计算和控制,可以保证预应力杆件的受力效果和工程的安全可靠性。
因此,工程师在预应力施工过程中,需要充分了解预应力张拉伸长量的计算原理和方法,并严格按照规范要求进行操作,
以确保工程质量和安全。
预应力张拉计算说明
预应力张拉计算说明预应力张拉计算及现场操作说明本合同段梁板均为先张梁板,根据台座设置长度,实际钢绞线下料长度为89米。
一、理论伸长量计算由公式ΔL=(Nk*L)/EA计算可得理论伸长量。
公式ΔL=(Nk*L)/E g A g中ΔL:理论伸长量Nk:作用于钢绞线的张拉力(控制应力σk= 1395Mp)L:钢绞线下料长度(89m)E g:钢绞线弹性模量(1.95X105 Mp)A g:钢绞线截面面积(140mm2)由公式计算得ΔL=(1395*140*89)/(195700*140)=0.63441m=634.41mm现场张拉采取五级张拉分别为10%σk,20%σk,40%σk,8 0%σk,100%σk;对应理论伸长量分别为L1,L2,L3,L4,L5,L6。
由公式计算得L1=63.44 mm(10%ΔL)L2=126.88 mm(20%ΔL)L3=253.76mm(40%ΔL)L4=507.52mm(80%ΔL)L5=634.41 mm(100%ΔL)二、现场张拉实测(一)现场张拉操作现场张拉采取六级张拉分别为10%σk,20%σk,40%σk , 8 0%σk,100%σk;对应伸长量分别为A,B,C,D,E。
张拉顺序:1、先张拉左侧锚端,用3#千斤顶张拉N1筋,张拉到10%σk,记录此时伸长量A1,再张拉到20%σk,记录此时伸长量B1;后依次张拉N2-N9,对称张拉,分别记录各自伸长量:A2,B2 (9)B9;锚固好左侧。
2、张拉右侧锚端,用1#、2#千斤顶同时同步张拉,张拉到40%σk,记录此时伸长量C,锚固后继续张拉到80%σk,记录此时伸长量D,继续张拉到100%σk,记录下各自伸长量为E。
C、D、E值均为两千斤顶伸长的平均值。
(二)数据处理N1实际伸长量L n1=E+C或L n1=E+2(B1-A1)N2实际伸长量L n1=E+C或L n1=E+2(B2-A2)N3实际伸长量L n1=E+C或L n1=E+2(B3-A3)N4实际伸长量L n1=E+C或L n1=E+2(B4-A4)N5实际伸长量L n1=E+C或L n1=E+2(B5-A5)N6实际伸长量L n1=E+C或L n1=E+2(B6-A6)N7实际伸长量L n1=E+C或L n1=E+2(B7-A7)N8实际伸长量L n1=E+C或L n1=E+2(B8-A8)N9实际伸长量L n1=E+C或L n1=E+2(B9-A9)三、现场张拉注意要点1、现场张拉伸长值与理论伸长值必须随时比对,不得超过理论伸长值的±6%(即38.06mm);2、张拉时应匀速缓慢张拉,并在每级处持荷5min后读数;3、张拉时注意观察钢绞线断丝数,超过规定值必须替换,从新张拉;4、钢绞线张拉8小时后,才可进行下步钢筋施工。
桥梁预应力张拉详细计算过程及伸长量计算过程
桥梁预应力张拉详细计算过程及伸长量计算过程引言桥梁建设是现代交通基础设施的重要组成部分,而桥梁预应力张拉技术则是桥梁建设中不可或缺的重要技术之一。
预应力张拉是通过在桥梁构建中施加顶部预应力,来减小桥梁在使用过程中由于自重、荷载等原因所引起的变形和挠度,保证桥梁在使用过程中的稳定性和安全性。
本文将详细介绍桥梁预应力张拉的计算过程及伸长量计算过程。
桥梁预应力张拉的计算过程步骤1:确定张拉力和张拉方式桥梁预应力张拉的第一步是确定桥梁所需的张拉力及张拉方式。
张拉力的大小需要根据桥梁的设计要求来确定,而张拉方式包括单钩拉伸法和双钩拉伸法两种。
步骤2:计算张拉钢束的位置桥梁预应力张拉的第二步是计算张拉钢束的位置。
张拉钢束位置的计算是基于桥梁的索力平衡原理来进行的,可以根据桥梁的梁跨、跨中荷载和桥墩高度等参数进行计算。
步骤3:计算预应力损失桥梁预应力张拉的第三步是计算预应力损失。
预应力损失包括摩擦损失、锚固损失和局部损失等,预应力张拉时要根据实际情况对其进行合理的估计和调整。
步骤4:计算锚固力桥梁预应力张拉的第四步是计算锚固力。
锚固力是指在桥梁预应力张拉过程中锚固系统所需要承受的力,要根据实际情况进行计算和调整。
步骤5:计算张拉钢束的伸长量桥梁预应力张拉的最后一步是计算张拉钢束的伸长量。
伸长量的计算需要根据钢束的弹性模量、张拉力大小和锚固长度等参数进行计算。
张拉钢束的伸长量计算过程张拉钢束的伸长量计算是桥梁预应力张拉过程中的一个重要步骤,涉及到桥梁的预应力张拉效果的预测和评估。
下面简要介绍张拉钢束的伸长量计算过程。
步骤1:确定钢束的弹性模量张拉钢束的伸长量计算的第一步是确定钢束的弹性模量。
弹性模量是指在给定应力条件下材料的应变值,通常可以从材料手册中查到。
步骤2:计算材料的工作应力计算材料的工作应力是张拉钢束的伸长量计算的第二步,可以根据材料的弹性模量、张拉力和钢束的初始长度等参数进行计算。
步骤3:计算钢束的伸长量计算钢束的伸长量是进行张拉钢束伸长量计算的最后一步,可以根据材料的弹性模量、钢束的初始长度、张拉力和工作应力等参数进行计算。
预应力的设计张拉力怎么算
预应力的设计张拉力怎么算Text 1:预应力的设计张拉力如何计算1. 引言预应力是一种工程结构设计技术,通过在混凝土结构中施加预先加载的压力以提高结构的强度和稳定性。
在预应力设计中,设计张拉力是非常重要的参数之一,它直接影响着结构的性能和安全性。
本文将详细介绍预应力的设计张拉力的计算方法。
2. 张拉力的定义设计张拉力是指在预应力设计中施加在预应力构件上的拉应力。
它可以通过以下公式计算:张拉力 = 预应力力 / 预应力区域的截面积3. 张拉力的计算方法3.1 张拉力的计算公式在实际预应力设计中,可以使用以下公式计算张拉力:张拉力 = 引线的切应力 * 预应力区域的有效截面积3.2 切应力的计算切应力是张拉应力沿预应力构件纵向的分布。
它可以通过以下公式计算:切应力 = 预应力力 / 预应力区域的周长3.3 有效截面积的计算有效截面积是指预应力区域中真正承载预应力的截面积。
它可以通过以下公式计算:有效截面积 = 总截面积 - 径向预应力束的截面积4. 示例计算以下是一个示例计算,以说明如何使用上述方法计算设计张拉力。
- 预应力力:1000 kN- 预应力区域的截面积:0.2 m^2- 引线的切应力:10 MPa- 总截面积:0.25 m^2- 径向预应力束的截面积:0.05 m^2根据上述数据,可以计算出张拉力如下:张拉力 = 1000 kN / 0.2 m^2 = 5000 kN5. 结论本文介绍了预应力的设计张拉力的计算方法,包括张拉力的定义、计算公式以及切应力和有效截面积的计算方法。
通过示例计算,说明了如何使用这些方法进行实际的张拉力计算。
附件:无法律名词及注释:- 预应力:在混凝土结构中施加预先加载的压力以提高结构的强度和稳定性的技术。
- 张拉力:在预应力构件上施加的拉应力,用于提高结构的性能和安全性。
Text 2:预应力设计中张拉力的计算方法和步骤1. 引言预应力是一种提高混凝土结构强度和稳定性的设计技术。
预应力张拉伸长值简易计算与量测方法(全文)
预应力张拉伸长值简易计算与量测方法(全文)范本1(风格:简洁明了)正文:1. 张拉伸长值的定义1.1 张拉伸长值是指在预应力混凝土结构中,由于张拉作用导致钢筋伸长的数值。
1.2 预应力张拉伸长值的计算非常重要,能够直接影响到结构的设计和施工质量。
2. 预应力张拉伸长值的简易计算方法2.1 根据施工图纸中给出的预应力钢筋的设计张拉力和压力,可采用以下公式计算张拉伸长值:张拉伸长值 = 张拉力 / 钢筋的弹性模量2.2 根据钢筋的弹性模量表,可以得到钢筋的弹性模量。
2.3 根据实际的预应力张拉作业情况,可以确定张拉力的数值。
3. 预应力张拉伸长值的量测方法3.1 预应力张拉伸长值的量测可以采用伸长计进行。
3.2 伸长计应放置在钢筋上,并确保与钢筋紧密接触。
3.3 在张拉伸长阶段,通过读取伸长计上的刻度,可以得到张拉伸长值的数值。
注释:1. 附件:本文档涉及的附件包括:- 钢筋的弹性模量表- 张拉伸长值的计算表2. 法律名词及注释:本文档所涉及的法律名词及其注释包括:- 预应力混凝土结构:指采用预应力钢筋进行加固和增强的混凝土结构,具有较高的承载能力和抗震能力。
范本2(风格:详细解析)正文:1. 预应力张拉伸长值的定义和意义1.1 预应力张拉伸长值是指在预应力混凝土结构中,由于预应力钢筋的张拉作用而引起的钢筋伸长的数值。
预应力张拉伸长值的大小直接影响着结构的受力和变形性能。
1.2 在预应力混凝土结构中,预应力钢筋经过张拉作用后,通过锚固装置形成预应力,使混凝土结构具有较高的抗弯强度和抗剪强度。
1.3 准确计算和量测预应力张拉伸长值,对于确保结构安全和质量具有重要意义。
2. 预应力张拉伸长值的计算方法2.1 计算预应力张拉伸长值的基本公式为:张拉伸长值 = 张拉力 / 钢筋的弹性模量2.2 需要根据施工图纸中给出的预应力钢筋的设计张拉力和压力来确定张拉力的数值。
2.3 钢筋的弹性模量需要通过弹性模量表来获得。
预应力张拉伸长量计算
后张法预应力张拉伸长 量计算与测定分析一、理论伸长量计算 1、理论公式: 1根据公路桥涵施工技术规范JTJ041—2000,钢绞线理论伸长量计算公式如下: PP P E A LP L =∆ ①()()μθμθ+-=+-kx e P P kx P 1 ②式中:P P ——预应力筋的平均张拉力N,直线筋取张拉端的拉力,曲线筋计算方法见②式;L ——预应力筋的长度;A P ——预应力筋的截面面积mm 2;E P ——预应力筋的弹性模量N/mm 2;P ——预应力筋张拉端的张拉力N ;x ——从张拉端至计算截面的孔道长度m ;θ——从张拉端至计算截面的孔道部分切线的夹角之和rad ;k ——孔道每米局部偏差对摩擦的影响系数;μ——预应力筋与孔道壁的摩擦系数;2计算理论伸长值,要先确定预应力筋的工作长度和线型段落的划分;后张法钢绞线型既有直线又有曲线,由于不同线型区间的平均应力会有很大差异,因此需要分段计算伸长值,然后累加;于是上式中: i L L L L ∆+∆+∆=∆ 21PP i p i E A L P L i =∆P p 值不是定值,而是克服了从张拉端至第i —1段的摩阻力后的剩余有效拉力值,所以表示成“Pp i ”更为合适; 3计算时也可采取应力计算方法,各点应力公式如下:()()()()111--+--⨯=i i kx i i eμθσσ各点平均应力公式为:()()ii kx i pikx e iiμθσσμθ+-=+-1 各点伸长值计算公式为:pip i E x L iσ=∆ 2、根据规范中理论伸长值的公式,举例说明计算方法:某后张预应力连续箱梁,其中425米联内既有单端张拉,也有两端张拉;箱梁中预应力钢束采用高强度低松弛钢绞线Φ,极限抗拉强度f p =1860Mpa,锚下控制应力б0==1395Mpa;K 取m,µ=;1单端张拉预应力筋理论伸长值计算:预应力筋分布图12两端非对称张拉计算:预应力筋分布图2伸长值计算如下表:若预应力钢筋为两端对称张拉,则只需计算出一半预应力筋的伸长值,然后乘以2即得总的伸长量;注:由于采用1500KN千斤顶张拉,根据实测伸长值为量测大缸外露长度的方法,则计算理论伸长值时应加缸内长度约500mm;而锚固端长约470mm,应在计算理论伸长值时扣除;由于两数对于伸长值的计算相差甚微,可以抵消,因此在计算中未记入;二、实测伸长值的测定1、预应力钢筋张拉时的实际伸长值△L,应在建立初应力后开始量测,测得的伸长值还应加上初应力以下的推算伸长值;即:△L=△L1+△L2式中:△L1——从初应力到最大张拉应力间的实测伸长值m ;△L2——初应力以下的推算伸长值m ;关于初应力的取值,根据公路规的规定,一般可取张拉控制应力的10%~25%;初应力钢筋的实际伸长值,应以实际伸长值与实测应力之间的关系线为依据,也可采用相邻级的伸长值;2、钢绞线实测伸长值的经验公式:L实=L b—L a/—L无阻 1L实=L b—L a+L a—L c—L无阻 2L实——钢绞线实际伸长量L a——张拉应力为20%б0时,梁段两端千斤顶活塞行程之和;L b——张拉应力为100%б0时,梁段两端千斤顶活塞行程之和;L c——张拉应力为10%б0时,梁段两端千斤顶活塞行程之和;L无阻——梁段两端千斤顶内钢绞线的无阻伸长量,即:L无阻=PL/E P A P对于以上公式,当钢绞线较短,角度较小时,用2式计算更接近设计伸长量;当钢绞线较长,角度较大时,用1式计算更接近设计伸长量;这是由于预应力筋的长度及弯起角度决定实测伸长量的计算公式,钢绞线较短、弯起角度较小时,摩阻力所引起的预应力损失也较小,10%~20%Σ控钢绞线的伸长量基本上反映了真实变化,0~10%的伸长量可按相邻级别10%~20%推算;钢绞线较长、弯起角度较大时,摩阻力所引起的预应力损失也较大,故初应力采用20%Σ控用20%~100%推算0~10%的伸长量更准确;3、在施工过程中直接测量张拉端千斤顶活塞伸出量的方法存在一定误差,这是因为工具锚端夹片张拉前经张拉操作人员用钢管敲紧后,在张拉到约10%б0开始到100%б0时,因钢绞线受力,夹片会向内滑动,这样通过测量千斤顶的伸长量而得到的量比钢绞线的实际伸长量偏大;因此,我们采用了量测钢绞线绝对伸长值的方法,测得的伸长值须考虑工具锚处钢绞线回缩及夹片滑移等影响,测量方法如下图3所示:4、现以图2所示的预应力钢绞线为列介绍实际伸长值计算方法:对于多束群锚式钢绞线我们采用分级群张法,图2中钢绞线为7束,采用1500KN 千斤顶,根据不同应力下实测伸长值的量测,最后得出总伸长值及与设计伸长值的偏差如下表,并且用与设计伸长值的偏差是否在±6%之内来校核;预应力钢筋编号理论伸长值mm左端右端左端右端实测伸长值mm伸长值偏差% 20%б控/50%б控б控50%б控/б控11 605 69/94 54/183 195 21/24412 605 67/97 61/179 199 19/26613 605 63/91 58/181 197 18/23914 605 65/98 51/178 198 22/238 595注:由于钢绞线右端伸长值大于200mm,千斤顶需要倒一次顶才能完成张拉,因此右端出现了在50%б控时的两个读数,分别表示在从初应力张拉到50%б控时的读数和千斤顶倒顶后张拉到50%б控时的读数;三、问题与思考经张拉实践发现,预应力钢筋的实际伸长值与理论伸长值之间有一定的误差,究其原因,主要有:预应力钢筋的实际弹性模量与计算时的取值不一致;千斤顶的拉力不准确;孔道的摩擦损失计算与实际不符;量测误差等;特别是弹性模量的取值是否正确,对伸长值的计算影响较大;必要时,预应力钢筋的弹性模量、锚圈口及孔道摩阻损失应通过试验测定,计算时予以调整;。
箱梁预应力张拉力和理论伸长量计算
25m箱梁预应力张拉和理论伸长量计算一、张拉力计算〔校核图纸〕1、钢绞线参数Øj钢绞线截面积:A=140mm2,标准强度:R b y=1860Mpa,弹性模量E y=1.95×105Mpa2、张拉力计算a、单根钢绞线张拉力P=5 R b y×A=5×1860×106×140×10-6Knb、每束张拉力(中跨梁)N1~N2〔4索〕:P总=1×4=Kn〔标准〕*1.02= KnN3~N4〔3索〕:P总=1×3=Kn〔标准〕= Knc、每束张拉力(边跨梁)N1~N4〔4索〕:P总=1×4=Kn〔标准〕Kn二、设计图纸中钢绞线中有直线和曲线分布,且有故P≠P P(1)中跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕〔2〕、边跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ187〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕备注:以上终点力P P〔KN〕、ΔL〔mm〕伸长量根据以下公式计算P〔1- e-(kx+μθ)〕〔1〕、P P= kx+μθP P L〔2〕、ΔL= A P E P35m箱梁预应力张拉和理论伸长量计算一、张拉力计算〔校核图纸〕1、钢绞线参数Øj钢绞线截面积:A=140mm2,标准强度:R b y=1860Mpa,弹性模量E y=1.95×105Mpa2、张拉力计算a、单根钢绞线张拉力P=5 R b y×A=5×1860×106×140×10-6Knb、每束张拉力(中跨梁)N1~N5〔4索〕:P总=1×4=Kn〔标准〕*1.02= Knc、每束张拉力(边跨梁)N1、N5〔4索〕:P总=1×4=Kn〔标准〕*1.02= KnN2~N4〔5索〕:P总=1×5=Kn〔标准〕*1.02= Kn二、设计图纸中钢绞线中有直线和曲线分布,且有故P≠P P〔1〕、中跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N2:理论计算值〔根据设计〕1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕1.5:N5钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N5:理论计算值〔根据设计〕〔2〕、边跨箱梁1.1:N1钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N1:理论计算值〔根据设计〕1.2:N2钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯1.3:N3钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ100〔为弧度〕竖弯和平弯N3:理论计算值〔根据设计〕1.4:N4钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N4:理论计算值〔根据设计〕1.5:N5钢绞线经查表:k=0.0015 μ5根据图纸计算角度θ〔为弧度〕竖弯和平弯N5:理论计算值〔根据设计〕备注:以上终点力P P〔KN〕、ΔL〔mm〕伸长量根据以下公式计算P〔1- e-(kx+μθ)〕〔1〕、P P= kx+μθP P L〔2〕、ΔL= A P E P。
预应力张拉计算方法
预应力张拉计算方法预应力张拉计算方法1、引言预应力张拉计算方法是在结构设计中非常重要的一环,它涉及到预应力混凝土结构的安全性、可靠性和经济性。
本文将介绍预应力张拉计算方法的详细步骤和相关知识。
2、材料特性和参数在进行预应力张拉计算之前,首先需要了解材料的特性和相关参数。
这包括预应力钢材的抗拉强度、弹性模量和应变-力度曲线,以及混凝土的抗压强度、弹性模量和拉应变能力等。
3、预应力梁的截面分析预应力梁的截面分析是计算预应力张拉的关键步骤。
首先,需要确定梁的几何尺寸和截面形状。
然后,通过应变兼容性和力平衡方程,计算梁的内力分布和应力状态。
最后,根据设计要求,确定预应力拉索的布置和张拉力的大小。
4、预应力拉索的计算预应力拉索是提供预应力的关键组成部份。
在计算预应力拉索时,需要考虑拉索的材料特性、截面形状和张拉力。
根据拉索的抗拉强度和预应力钢材的特性参数,计算拉索的最大工作张拉力和最小工作张拉力。
同时,需要考虑拉索的预应力损失和锚固长度。
5、锚固系统的计算锚固系统是保证预应力钢材的安全性和可靠性的关键部份。
在计算锚固系统时,需要考虑锚头的尺寸和形状、锚固套筒的数目和间距,以及锚固力的传递和分配等问题。
通过计算锚固力的大小和分布,确定锚固系统的工作状态。
6、局部失效的计算在预应力梁的设计中,局部失效是需要特殊关注的问题。
通过计算梁的截面应力和局部应力集中系数,判断梁的局部失效状态。
根据失效的情况,采取相应的加固措施,确保梁的安全性和可靠性。
7、附件本文档所涉及附件如下:附件1:预应力钢材的特性参数表附件2:混凝土的特性参数表附件3:预应力梁截面分析计算表附件4:预应力拉索计算表附件5:锚固系统计算表附件6:局部失效计算表8、法律名词及注释本文档所涉及的法律名词及注释如下:1) 弹性模量:材料在弹性阶段内所具有的恢复变形的能力。
2) 抗压强度:材料在抗压载荷下所能承受的最大压缩应力。
3) 弹性模量:材料在弹性阶段内单位应力下的相对变形。
(准确)预应力张拉力矩计算方法
(准确)预应力张拉力矩计算方法预应力张拉力矩是在预应力钢束张拉时施加在结构构件上的力矩,它是确保结构的稳定性和承载能力的重要参数。
本文介绍了一种准确的预应力张拉力矩计算方法。
方法介绍预应力张拉力矩的计算方法可分为两个步骤:确定钢束力和计算张拉力矩。
确定钢束力钢束力的大小取决于预应力钢束的特性和施力条件。
一般可以通过以下步骤确定钢束力:1. 预应力钢束特性分析:根据预应力钢束的材料特性和尺寸,计算出其截面面积和模量。
2. 施力条件确定:确定预应力钢束施力的位置、施力方式(单点或多点),以及施力的大小。
3. 应力分析:通过应力分析计算出预应力钢束施力后所产生的应力分布情况。
4. 反算计算:利用截面面积、模量和应力分布,反算出预应力钢束的力大小。
计算张拉力矩一旦钢束力确定,可以使用以下公式计算张拉力矩:张拉力矩 = 钢束力 * 引致预应力效应的距离其中,钢束力是上一步确定的预应力钢束力大小,引致预应力效应的距离是指力矩的转动中心与预应力钢束施力位置之间的距离。
注意事项在进行预应力张拉力矩计算时,需要注意以下几个方面:1. 确认预应力钢束的材料特性和尺寸,使得计算结果更准确。
2. 确定施力条件,包括施力位置、施力方式和施力大小。
3. 所使用的公式有可能会因具体结构和施力条件的不同而有所调整,需根据实际情况灵活运用。
4. 确保计算中使用的数据准确可靠。
结论通过采用上述准确的预应力张拉力矩计算方法,可以为结构设计和施工提供可靠的数据支持。
在进行计算时,应注意准确确认预应力钢束的特性和施力条件,确保计算结果的精确性和可操作性。
预应力张拉伸长量最简单的计算公式
预应力张拉伸长量最简单的计算公式1.引言在预应力混凝土结构设计与施工中,预应力张拉是一项重要的工序。
为了保证结构的安全可靠,我们需要对张拉伸长量进行准确的计算。
本文将介绍预应力张拉伸长量的计算公式和简单的应用方法。
2.张拉伸长量的定义预应力张拉伸长量是指在预应力钢束受到预压力作用后,由于钢束的伸长引起的结构整体的伸长量。
它是预应力混凝土结构中一个重要的参数,影响着结构的变形和受力性能。
3.张拉伸长量的计算公式根据材料力学和几何关系,可以通过以下公式计算预应力张拉伸长量:`ε=P/(A*E)`其中,ε表示张拉伸长量,P表示预应力钢束的预应力,A表示预应力钢束的截面面积,E表示预应力钢束的弹性模量。
4.张拉伸长量计算公式的推导4.1.张拉伸长量原则预应力钢束受到的预应力作用后,根据胡克定律可以得出以下关系:`σ=P/A`其中,σ表示预应力钢束的应力。
4.2.钢束应变计算通过胡克定律,可以得到钢束的应变与应力之间的关系:`ε=σ/E`结合上述两个公式,可以得到预应力钢束的张拉伸长量公式为:`ε=P/(A*E)`5.张拉伸长量计算的实例现在,我们将通过一个具体的实例来演示如何计算预应力张拉伸长量。
假设有一根预应力钢束,其预应力为100k N,截面面积为1000m m^2,弹性模量为200GP a。
根据上述公式,我们可以得到:`ε=100000N/(1000m m^2*200000MP a)`经过计算,最终得到的张拉伸长量为0.05m m。
6.结论本文简要介绍了预应力张拉伸长量的定义、计算公式以及一个具体的计算实例。
预应力张拉伸长量的计算是预应力混凝土结构设计与施工中的重要内容,对于确保结构的安全可靠具有重要意义。
希望本文能够为读者在预应力张拉伸长量的计算方面提供一定的帮助。
(本文总字数:306)。
钢绞线预应力张拉计算公式
钢绞线预应力张拉计算公式1.张拉力计算:预应力张拉时,钢绞线所受到的张拉力通常通过杠杆原理进行计算。
张拉力的计算公式如下:T=F×L/L1其中,T为钢绞线的张拉力,F为应力发生器施加的力,L为应力发生器的行程,L1为杠杆臂长。
2.钢绞线的力学性能计算:钢绞线的力学性能包括钢绞线的截面面积、弹性模量和屈服强度等参数。
钢绞线的力学性能可以通过实验获得,也可以通过参考国家标准或厂家提供的技术资料来获取。
钢绞线的截面面积(A)可以通过测量钢绞线的直径(d)或计算其截面积公式来获得。
弹性模量(E)通常在工程中是已知的,可以根据实际需要定义。
屈服强度(fy)通常也是已知的,可以根据国家标准或厂家提供的技术资料来获取。
3.钢绞线预应力计算:钢绞线的预应力计算通常需要考虑到结构的荷载条件和预应力的设计要求。
预应力计算的目标是确定所施加的预应力的大小,以满足结构的设计要求。
预应力计算可以根据结构的荷载条件、材料的力学性能和结构的几何形状等因素来确定。
通常,预应力计算可以根据设计规范和公式来进行。
4.钢绞线的预应力损失计算:在预应力张拉过程中,钢绞线的预应力会因为预应力损失而降低。
预应力损失主要包括材料的弹性变形、开裂损失、摩擦损失和局部附加应力等。
预应力损失的计算可以采用不同的方法,如传统的经验公式法和有限元模拟法等。
注意事项:在进行钢绞线预应力张拉计算时,需要考虑以下几个因素:1.结构的荷载条件:结构的荷载条件是进行预应力计算的基础,包括静力荷载和动力荷载等。
2.钢绞线的力学性能:钢绞线的力学性能对预应力计算也是很重要的,包括钢绞线的弹性模量、屈服强度和材料的应变硬化等。
3.钢绞线的材料特性:钢绞线的材料特性也会影响到预应力计算,包括钢绞线的弹性模量、屈服强度和材料的应变硬化等。
4.预应力损失的计算:预应力损失是预应力计算中很重要的一个环节,需要考虑到材料的弹性变形、开裂损失、摩擦损失和局部附加应力等因素。
预应力张拉计算书
一、计算公式、参数1、预应力平均力张拉计算公式及参数Pp—预应力筋平均张拉力(N)P—预应力筋张拉端张拉力(N)θ—从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩擦的影响系数取0.0015μ—预应力筋与孔道壁的摩察系数取0.23Ap—预应力筋的截面面积(mm 2)取140mm 2Ep—预应力筋的弹性模量(N/mm 2)L—预应力筋的长度(mm)取140mm 2X—从张拉端至计算截面的孔道长度(m)0.65米为工作段长度,0.585米为实测千斤顶长度,即为实际工作段长度。
注:当预应力筋为直线时Pp=P;σcon=o.75f=1395Mpa;设计要求σcon=1340Mpa预应力张拉计算书(25m中跨)1-e-(kx+μθ)=1-0.999253279=0.000746721 p p(N)=P(1-e-(kx+μθ))/(kx+μθ)=183219.2807△L(m)=PpL/(ApEp)=0.00334349一端总伸长量=0.0871824332、N2束一端的伸长量斜线段的伸长量P(N) =1340Ap=1340*140=187600 X(m) =25.91/2-4.884-1.974-0.650+0.585=8.1232θ(rad)=0×3.14/180=0kx+μθ=0.0015×8.1232+0.23×0=0.0121848e-(kx+μθ)= 2.718-0.0121848=0.9878891341-e-(kx+μθ)=1-0.987889134=0.012110866 p p(N)=P(1-e-(kx+μθ))/(kx+μθ)=186461.6938△L(m)=PpL/(ApEp)=0.055482258曲线段的伸长量P(N) =Pp=186461.6938=186461.7 X(m) =7/360*3.14*2*40= 4.884θ(rad)=7×3.14/180=0.122111111kx+μθ=0.0015×4.884+0.23×0.0959444=0.035412222e-(kx+μθ)= 2.718-0.035412222=0.9652074541-e-(kx+μθ)=1-0.965207454=0.034792546 p p(N)=P(1-e-(kx+μθ))/(kx+μθ)=183198.811△L(m)=PpL/(ApEp)=0.032777451直线段的伸长量P(N) =Pp=183198.811=183198.8 X(m) = 1.974= 1.9740θ(rad)=0×3.14/180=0kx+μθ=0.0015×1.974+0.23×0=0.002961e-(kx+μθ)= 2.718-0.002961=0.9970433791-e-(kx+μθ)=1-0.99704379=0.002956621 p p(N)=P(1-e-(kx+μθ))/(kx+μθ)=182927.8527△L(m)=PpL/(ApEp)=0.013246683一端总伸长量=0.1015063923、N3束一端的伸长量斜线段的伸长量P(N) =0.75fpkAp=0.75×1860*140=195300 X(m) =25.7/2-0.733-10.401-0.650+0.585= 1.651预应力张拉计算书(25m边跨)一、计算公式、参数1、预应力平均力张拉计算公式及参数Pp—预应力筋平均张拉力(N)P—预应力筋张拉端张拉力(N)θ—从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k—孔道每米局部偏差对摩擦的影响系数取0.0015μ—预应力筋与孔道壁的摩察系数取0.23Ap—预应力筋的截面面积(mm2)取140mm2Ep—预应力筋的弹性模量(N/mm2)L—预应力筋的长度(mm)取140mm2X—从张拉端至计算截面的孔道长度(m)0.65米为工作段长度,0.585米为实测千斤顶长度,即为实际工作段长度。
预应力混凝土施工中的张拉力计算
预应力混凝土施工中的张拉力计算预应力混凝土是一种在混凝土中施加预先拉伸力的建筑材料。
这种材料可以提高混凝土的强度和耐久性,使其更适合用于大型建筑项目。
在预应力混凝土的施工过程中,张拉力的计算是非常重要的一步。
本文将介绍预应力混凝土施工中的张拉力计算方法。
一、预应力混凝土的基本原理预应力混凝土是通过在混凝土中施加预先拉伸力来提高其强度和耐久性的。
这种拉伸力可以通过钢筋或钢缆等材料施加。
当混凝土凝固后,这些材料会保持其张力状态,从而使混凝土受到压缩力的同时也受到拉伸力的作用。
这种双向作用可以使混凝土更加坚固和耐久。
二、在预应力混凝土的施工过程中,张拉力的计算是非常重要的一步。
这种计算可以帮助工程师确定所需的张拉力大小和施加位置,从而确保混凝土结构的强度和稳定性。
1. 确定所需的张拉力大小在进行张拉力计算之前,需要确定所需的张拉力大小。
这个值通常是根据混凝土结构的设计要求来确定的。
一般来说,这个值应该足够大,以确保混凝土结构的强度和稳定性。
2. 确定张拉力的施加位置确定所需的张拉力大小后,需要确定张拉力的施加位置。
这个位置通常是根据混凝土结构的设计要求和实际情况来确定的。
在确定施加位置时,需要考虑混凝土结构的形状、大小和重量等因素。
3. 计算张拉力的大小在确定所需的张拉力大小和施加位置后,需要计算张拉力的大小。
这个计算通常是通过使用张拉力计来完成的。
张拉力计可以测量张拉力的大小和施加位置,从而帮助工程师确定所需的张拉力大小和施加位置。
三、预应力混凝土施工中的注意事项在进行预应力混凝土施工时,需要注意以下几点:1. 确保张拉力的准确性在进行张拉力计算时,需要确保张拉力的准确性。
这可以通过使用高质量的张拉力计和准确的计算方法来实现。
2. 确保张拉力的均匀性在进行张拉力施加时,需要确保张拉力的均匀性。
这可以通过使用适当的张拉设备和施加方法来实现。
3. 确保混凝土的质量在进行预应力混凝土施工时,需要确保混凝土的质量。
预应力张拉伸长量计算公式
预应力张拉伸长量计算公式预应力张拉伸长量是指在预应力混凝土构件中,由于预应力钢束的张拉而引起的构件伸长量。
预应力张拉伸长量的计算公式如下:ΔL = (P × L) / (AE)其中,ΔL为预应力张拉伸长量,P为预应力钢束的张拉力,L为预应力钢束的长度,A为预应力钢束的截面积,E为预应力钢束的弹性模量。
根据这个公式,我们可以得出以下几个要点:1. 预应力张拉伸长量与预应力钢束的张拉力成正比。
即张拉力越大,伸长量也越大。
2. 预应力张拉伸长量与预应力钢束的长度成正比。
即钢束长度越长,伸长量也越大。
3. 预应力张拉伸长量与预应力钢束的截面积成反比。
即钢束截面积越大,伸长量越小。
4. 预应力张拉伸长量与预应力钢束的弹性模量成反比。
即弹性模量越大,伸长量越小。
在实际工程中,我们需要根据预应力张拉伸长量的计算公式来确定预应力钢束的张拉力。
首先,我们需要知道预应力构件的设计要求和参数,包括构件的尺寸、预应力钢束的型号和数量等。
然后,根据这些参数,我们可以计算出预应力钢束的截面积和长度。
最后,根据预应力张拉伸长量的计算公式,我们可以计算出预应力钢束的张拉力。
预应力张拉伸长量的计算对于预应力混凝土构件的设计和施工非常重要。
正确计算预应力张拉伸长量可以保证预应力钢束的张拉力符合设计要求,确保构件具有足够的抗拉强度和刚度。
同时,预应力张拉伸长量的计算也可以为施工过程中的张拉操作提供参考,确保张拉力的准确施加。
在实际工程中,为了减小预应力张拉伸长量对构件的影响,常常会采取一些措施。
例如,在预应力构件的设计中,可以采用较小的预应力钢束截面积和长度,以减小预应力张拉伸长量。
此外,还可以采用预应力钢束的预压和后张拉等施工技术,来控制预应力张拉伸长量,确保构件的稳定性和安全性。
预应力张拉伸长量是预应力混凝土构件设计和施工中需要考虑的重要因素。
通过准确计算预应力张拉伸长量,可以保证预应力钢束的张拉力符合设计要求,确保构件的抗拉强度和刚度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预应力拉方法与计算预应力拉就是在构件中提前加拉力,使得被施加预应力拉构件承受拉应力,进而使得其产生一定的形变,来应对结构本身所受到的荷载,包括构件自身重量的荷载、风荷载、雪荷载、地震荷载作用等等。
在工程现场的你,不懂预应力怎么炫技?!先法懂不?先法是在砼构件浇筑前先拉预应力筋,并用夹具将其临时锚固在台座或钢模上,再浇筑构件砼,待其达到一定强度后(约75%)放松并切断预应力筋,预应力筋产生弹性回缩,借助砼与预应力筋间的粘结,对砼产生预压应力。
台座由台面、横梁和承力结构组成。
按构造形式不同,可分为墩式台座、槽形台座和桩式台座等。
台座可成批生产预应力构件。
台座承受全部预应力筋的拉力,故台座应具有足够的强度、刚度和稳定性,以免因台座变形、倾覆和滑移而引起预应力的损失。
墩式长线台座墩式台座由现浇钢筋砼做成,台座应具有足够的强度、刚度和稳定性,台座设计应进行抗倾覆验算与抗滑移验算。
⑴抗倾覆验算:式中:N——预应力筋的拉力;e1——拉力合力作用点至倾覆点的力臂;G——台墩的自重力;L——台墩重心至倾覆点的力臂;Ep——台墩后面的被动土压力合力;e2——被动土压力合力至倾覆点的力臂。
对于与台面共同工作的台墩,倾覆点的位置宜选在砼台面下4~5cm处。
⑵抗滑移验算:式中:K——抗滑移安全系数,不小于 1.3;N1——抗滑移的力,对于独立台墩,由侧壁土压力和底部摩阻力产生。
台墩与台面共同工作时,预应力筋的拉力几乎全部传给了台面,可不进行抗滑移验算。
槽式台座由端柱、传力柱、横梁和台面组成,既可承受拉力和倾覆力矩,加盖后又可作为蒸汽养护槽。
适用于拉吨位较大的吊车梁、屋架、箱梁等大型预应力砼构件。
钢模台座:先法预应力筋拉流程:预应力筋的拉:⑴单根钢丝拉:台座法多进行单根拉,由于拉力较小,一般可采用10~20kN 电动螺杆拉机或电动卷扬机单根拉,弹簧测力计测力,优质锥销式夹具锚固。
⑵整体钢丝拉:台模法多进行整体拉,可采用台座式千斤顶设置在台墩与钢横梁之间进行整体拉,优质夹片式夹具锚固。
要求钢丝的长度相等,事先调整初应力。
在预制厂生产预应力多孔板时,可在钢模上用镦头梳筋板夹具进行整体拉。
方法是:钢丝两端镦粗,一端卡在固定梳筋板上,另一端卡在拉端的活动梳筋板上。
用拉钩钩住活动梳筋板,再通过连接套筒将拉钩和拉杆式千斤顶连接,即可拉。
⑶单根钢绞线拉:可采用前卡式千斤顶拉,单孔夹片工具锚固定。
⑷整体钢绞线拉:一般在三横梁式台座上进行,台座式千斤顶与活动横梁组装在一起,利用工具式螺杆与连接器将钢绞线挂在活动横梁上,拉前,先用小型千斤顶在固定端逐根调整钢绞线初应力。
拉时,台座式千斤顶推动活动横梁带动钢绞线整体拉。
⑸粗钢筋的拉:分单根拉和多根成组拉。
由于在长线台座上预应力筋的拉伸长值较大,一般千斤顶行程多不能满足,拉较小直径钢筋可用卷扬机。
拉机具的拉力应不小于预应力筋拉力的1.5倍;拉行程应不小于预应力筋伸长值的 1.1~1.3倍。
预应力筋的拉程序:预应力钢丝:钢丝的拉工作量大,宜采用一次拉程序:⑵低松驰钢绞线:采用一次拉程序:预应力值校核:钢丝拉时,伸长值不作校核。
拉锚固后,用钢丝力测定仪反复测定4次,取后3次的平均值为钢丝力。
其允许偏差为设计规定预应力值的±5%。
每工作班检查预应力筋总数的1%,且不少于3根。
钢绞线拉时,一般采用拉力控制、伸长值校核。
拉时预应力筋的实际伸长值与理论伸长值的允许偏差为±6%。
拉力控制的校核方法与钢丝相同。
先法施工注意事项:⑴台座法拉预应力筋时,应先拉靠近台座截面重心处的预应力筋,避免台座承受过大的偏心压力。
拉宜分批、对称进行。
⑵采用应力控制法拉时,应校核预应力筋的伸长值。
当实际伸长值与计算伸长值的偏差大于±6%时,应暂停拉,查明原因并采取措施调整后,方可继续拉。
⑶多根预应力筋同时拉时,须事先调整初应力,使相互间的应力一致。
预应力筋拉锚固后的实际预应力值与设计规定检验值的相对允许偏差为±5%。
⑷先法中的预应力筋不允许出现断裂或滑脱。
在浇筑砼前发生断裂或滑脱的预应力筋必须予以更换。
⑸锚固时,拉端预应力筋的回缩量应符合设计要求,设计无要求时不得大于施工规规定。
⑹拉锚固后,预应力筋对设计位置的偏差不得大于5mm,且不得大于构件截面短边尺寸的4%。
⑺施工中必须注意安全,严禁正对钢筋拉的两端站立人员,防止断筋回弹伤人。
★★★预应力筋拉完成后,应尽快进行钢筋绑扎、模板拼装和砼浇筑等工作。
砼浇筑时,振动器不得碰撞预应力筋。
砼未达到强度前,也不允许碰撞或踩动预应力筋。
当构件在台座上进行湿热养护时,应防止温差引起的预应力损失。
先法在台座上生产砼构件,其最高允许的养护温度应根据设计规定的允许温差(拉与养护时的温度之差)计算确定。
当砼强度达到7.5N/mm2(粗钢筋配筋)或10N/mm2(钢丝、钢绞线配筋)以上时,则可不受设计规定的温差限制。
预应力筋的放:混凝土强度达到设计规定的数值(不小于标准强度的75%)后,才可放松预应力筋。
轴心受预压构件,所有预应力筋应同时放;偏心受预压构件,应先同时放预压力较小区域的预应力筋,再同时放预压力较大区域的预应力筋;不能满足上述要求时,应分阶段、对称、交错地放,防止构件在放过程中产生弯曲、裂纹或预应力筋断裂。
⑴当预应力筋采用钢丝时,配筋不多的中小型钢筋砼构件,钢丝可用砂轮锯或切断机切断等方法放松。
配筋多的钢筋砼构件,钢丝应同时放松,如逐根放松,则最后几根钢丝将由于承受过大的拉力而突然断裂,易使构件端部开裂。
长线台座上放松后预应力筋的切断顺序,一般由放松端开始,逐次切向另一端。
⑵预应力筋为钢筋时,对热处理钢筋及冷拉IV级钢筋不得用电弧切割,宜用砂轮锯或切断机切断。
数量较多时,也应同时放松。
多根钢丝或钢筋的同时放松,可用油压千斤顶放、砂箱放、楔块放等方法。
⑶采用湿热养护的预应力砼构件,宜热态放松预应力筋,而不宜降温后再放松。
后法不懂不行?后法是先浇混凝土并预留预应力筋孔道的位置,待混凝土强度达到规定值后再拉预应力筋,并用锚具进行锚固。
一般用于大型预制混凝土以及现浇混凝土结构工程的施工。
后法是先制作构件并预留孔道,待构件砼达到规定强度后,在孔道穿入预应力筋,拉并锚固,然后孔道灌浆。
后法不需台座,构件在拉过程中完成砼的弹性压缩。
广泛应用于现场生产的大型预应力构件和现浇砼结构中。
后法工艺流程:预应力筋制作:钢绞线是成盘状供应,不需要对焊接长。
制作工序是:开盘→下料→编束。
⑴下料:钢绞线下料宜用砂轮切割机切割,不得采用电弧切割。
⑵编束:钢绞线编束宜用20号铁丝绑扎,间距2~3m,编束前先将钢绞线理顺,使各根钢绞线松紧一致。
⑶钢绞线下料长度:采用夹片锚具、穿心式千斤顶拉时,按下式计算:钢丝:⑴下料:消除应力钢丝放开后是直的,可直接下料。
钢丝在应力状态下切断下料,控制应力为300N/mm2。
下料长度的误差要控制在L/5000以,且不大于5mm。
较常采用的是“钢管限位法下料”。
⑵编束:为保证钢丝束两端钢丝排列顺序一致,穿束与拉不致紊乱,钢丝必须编束。
钢丝编束可分为空心束和实心束,都需用梳丝板理顺钢丝,在距钢丝端部5~10cm处编扎一道。
实心束工艺简单,空心束孔道灌浆效果优于实心束。
⑶下料长度:采用钢质锥形锚具、锥锚式千斤顶拉时,按下式计算:式中:l ——构件的孔道长度; l1 ——锚环厚度;l2 ——千斤顶分丝头至卡盘外端距离。
粗钢筋:单根预应力钢筋一般拉端均采用螺丝端杆锚具;而固定端除采用螺丝端杆锚具外,还可采用帮条锚具或镦头锚具。
其制作工序是:配料→对焊→冷拉。
下料长度应计算确定,计算时要考虑锚具种类、对焊接头或镦粗头的压缩量、拉伸长值、冷拉率和弹性回缩率、构件长度等因素。
粗钢筋下料长度计算简图孔道留设:预应力筋的孔道形状有直线、曲线和折线三种,其直径与布置根据构件的受力性能、拉锚固体系特点及尺寸确定。
孔道直径:粗钢筋的孔道直径应比对焊接头外径或需穿过孔道的锚具、连接器外径大10~15mm;钢丝、钢铰线的孔道直径应比预应力束外径或锚具外径大5~10mm,且孔道面积宜为预应力筋净面积的3~4倍。
孔道布置:孔道至构件边缘的净距不小于40mm,孔道之间的净距不小于50mm;端部的预埋钢板应垂直于孔道中心线;凡需起拱的构件,预留孔道应随构件同时起拱。
孔道成型方法:孔道成型有钢管抽芯法、胶管抽芯法和埋管法。
孔道成型的要:孔道的尺寸与位置正确,孔道平顺,接头不漏浆。
⑴钢管抽芯法—用于直线孔道。
钢管要求:平直、表面光滑,每根不超过15m,超过15m用两根钢管,中间套管连接;构件中固定:用钢筋井字架,间距不大于1m;防止粘结措施:浇筑后,每隔10~15min时间转动钢管(两根钢管时,旋转方向要相反);抽管时机:初凝后、终凝前,以手指按压砼,无明显压痕又不沾浆即可抽管;常温下一般在砼浇筑后3~5h;抽管顺序:先上后下;先中间,后周边;当部分孔道有扩孔时,先抽无扩孔管道,后抽扩孔管道;抽管时边抽边转、速度均匀、与孔道成一直线。
质量控制:抽管后,及时检查孔道并做好孔道清理工作,以防止穿筋困难。
⑵胶管抽芯法——可用于直线或曲线孔道。
胶管要求:胶管有夹布胶管或钢丝网胶管两种。
使用前,一端封堵,另一端与阀门连接,充水(气)加压至0.5~0.8MPa,使胶皮管直径增大约3mm。
构件中固定:用钢筋井字架,间距不大于0.6m;防止粘结措施:浇筑后不需转动胶管,只需在抽管前放水(气)降压,待管径缩小与砼脱离即可抽管;抽管时机:抽管时间比钢管略迟;抽管顺序:先上后下;先曲后直。
⑶预埋管法——预埋管法可采用薄钢管、镀锌钢管和金属螺旋管、塑料波纹管,埋入后不再抽出,可用于各类形状的孔道,是目前大力推广的孔道留设方法。
波纹管要求:在1KN径向力作用下不变形,使用前进行灌水试验,检查有无渗漏,防止水泥浆流入管堵塞孔道;安装就位过程中避免反复弯曲,以防管壁开裂。
构件中固定:用钢筋井字架,间距不大于0.8~1.0m;螺旋管固定后,必须用铅丝与钢筋扎牢,防止浇筑砼时螺旋管上浮而造成严重事故。
曲线孔道的固定灌浆孔、排气孔与泌水孔:在孔道留设的同时应留设灌浆孔和排气孔。
⑴灌浆孔:一般在构件两端和中间每隔12m设置一个灌浆孔,孔径20~25mm(与灌浆机输浆管嘴外径相适应),用木塞留设。
曲线孔道应在最低点设置灌浆孔,以利于排出空气,保证灌浆密实;一个构件有多根孔道时,其灌浆孔不应集中留在构件的同一截面上,以免构件截面削弱过大。
灌浆孔的方向应使灌浆时水泥浆至上而下垂直或倾斜注入孔道;灌浆孔的最大间距,抽芯成孔的不宜大于12m,预埋波纹管不大于30m。
⑵排气孔与泌水孔:构件的两端留设排气孔,曲线孔道的峰顶处应留设排气兼泌水孔,必要时可在最低点设置排水孔。
预应力筋穿入孔道:预应力筋穿入孔道按穿筋时机分有先穿束和后穿束,按穿入数量分有整束穿和单根穿;按穿束方法分有人工穿束和机械穿束。