数据结构实验5 快速排序
数据结构实验报告八-快速排序
实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
排序的实验报告范文
排序的实验报告范文数据结构实验报告实验名称:实验四排序学生姓名:班级:班内序号:学号:日期:2022年12月21日实验要求题目2使用链表实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、冒泡排序3、快速排序4、简单选择排序5、其他要求:1、测试数据分成三类:正序、逆序、随机数据。
2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。
4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。
编写测试main()函数测试线性表的正确性。
2、程序分析2.1存储结构说明:本程序排序序列的存储由链表来完成。
其存储结构如下图所示。
(1)单链表存储结构:结点地址:1000HA[2]结点地址:1000H1080H……头指针地址:1020HA[0]头指针地址:1020H10C0H……地址:1080HA[3]地址:1080HNULL……地址:10C0HA[1]地址:10C0H1000H……(2)结点结构tructNode{intdata;Node某ne某t;};示意图:intdataNode某ne某tintdataNode某ne某t2.2关键算法分析一:关键算法(一)直接插入排序voidLinkSort::InertSort()直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。
(1)算法自然语言1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录;2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录;3.重复执行2,直到无序区中没有记录为止。
(2)源代码voidLinkSort::InertSort()//从第二个元素开始,寻找前面那个比它大的{Node某P=front->ne某t;//要插入的节点的前驱while(P->ne某t){Node某S=front;//用来比较的节点的前驱while(1){if(P->ne某t->data<S->ne某t->data)//P的后继比S的后继小则插入{inert(P,S);break;}S=S->ne某t;if(S==P)//若一趟比较结束,且不需要插入{P=P->ne某t;break;}}}}(3)时间和空间复杂度最好情况下,待排序序列为正序,时间复杂度为O(n)。
5. 5排序算法--快速与归并 课件-2021-2022学年浙教版(2019)高中信息技术选修1
快速排序算法
·快速排序算法(用栈实现)
代码:
def quick_sort(array, l, r): if l >= r: return stack = [] stack.append(l) stack.append(r) while stack: low = stack.pop(0) hight = stack.pop(0) if hight - low <= 0: continue k = array[hight] i = low - 1 for j in range(low, hight):
选修1《数据与数据结构》
第五章 数据结构与算法
5.5 排序算法 --快速与归并
学习目标
快速排序算法 归并排序算法
排序算法
快速排序算法
排序算法
·快速排序的基本思路
快速排序使用分治法策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:
1、 在数组中选一个基准数(通常为数组第一个)。 2、将数组中小于基准数的数据移到基准数左边,大于基准数的移到右边。 3、对于基准数左、右两边的数组,不断重复以上两个过程,直到每个子集只 有一个元素,即为全部有序。
排序算法
k = l #归并子数组的索引 while i < n1 and j < n2:
if L[i] <= R[ j]: arr[k] = L[i] i += 1
else: arr[k] = R[ j] j += 1
k += 1 while i < n1:
arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[ j] j += 1 k += 1
数据结构排序实验报告
数据结构排序实验报告数据结构排序实验报告引言:数据结构是计算机科学中的重要概念之一,它涉及到数据的组织、存储和操作方式。
排序是数据结构中的基本操作之一,它可以将一组无序的数据按照特定的规则进行排列,从而方便后续的查找和处理。
本实验旨在通过对不同排序算法的实验比较,探讨它们的性能差异和适用场景。
一、实验目的本实验的主要目的是通过实际操作,深入理解不同排序算法的原理和实现方式,并通过对比它们的性能差异,选取合适的排序算法用于不同场景中。
二、实验环境和工具实验环境:Windows 10 操作系统开发工具:Visual Studio 2019编程语言:C++三、实验过程1. 实验准备在开始实验之前,我们需要先准备一组待排序的数据。
为了保证实验的公正性,我们选择了一组包含10000个随机整数的数据集。
这些数据将被用于对比各种排序算法的性能。
2. 实验步骤我们选择了常见的五种排序算法进行实验比较,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。
- 冒泡排序:该算法通过不断比较相邻元素的大小,将较大的元素逐渐“冒泡”到数组的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 选择排序:该算法通过不断选择数组中的最小元素,并将其放置在已排序部分的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 插入排序:该算法将数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的合适位置。
实现时,我们使用了循环和条件判断来找到插入位置,并通过移动元素的方式进行排序。
- 快速排序:该算法通过选取一个基准元素,将数组分为两个子数组,并对子数组进行递归排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序。
- 归并排序:该算法通过将数组递归地划分为更小的子数组,并将子数组进行合并排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序,然后再将子数组合并起来。
数据结构实验排序
数据结构实验报告排序一、实习目的熟悉几种典型的排序方法,并对各种算法的特点、使用范围和效率有进一步的了解。
二、实例排序是计算机科学中非常基本且使用频繁的运算,在计算机系统软件和应用软件中都有广泛的应用。
下面给出的是冒泡排序、快速排序的实现与比较。
/* 源程序的头文件sort.h */void getra ndat(Data ary[],i nt cou nt) /* 产生一批随机数,准备排序*/{ long int a=100001;int i;for(i=0;i<cou nt;i++){ a=(a*125)%2796203;ary[i].key=(i nt)a;}} /* getra ndat */void prdata(Data ary[],i nt count) I*输出数据的函数*/{ int i; char ch;printf( n“);for(i=0;i<count;i++) printf( “ %6c”,ary[i].key);printf( n“);printf( "\n\n 打回车键,结束显示。
“);ch=getch();} I* prdata *I[两种排序方法的比较源程序]I* sortcmp.c *I#in clude <stdio.h>#in clude <stdlib.h>#define MAX 1000 I*数组最大界限*Itypedef int ElemType; I* 关键字的类型*Itypedef struct{ ElemType key;int shu;}Data;Data ar[MAX],br[MAX];typedef struct{ int lo,hi;}Selem;typedef struct{ Selem elem[MAX];int top;}SqStack;SqStack s1;/* 函数声明*/void bubble(Data ary[],int n);void getrandat(Data ary[],int count) ; void qksort(Data ary[],int n);void hoare(Data ary[],int l,int h); void init_s(SqStack *s);void push(SqStack *s,Selem e); Selem pop(SqStack *s);void prdata(Data ary[],int count); int empty(SqStack s);/* 主函数*//* 其它属性域*//* 一个纪录的结构体类型*//* 栈的元素结构体类型*//* 一维数组子域*//* 栈顶指针子域*//* 栈的顺序结构体类型*//* 产生一批随机数,准备排序*//* 进栈一个元素*/ /* 输出数据的函数*/void main(){ int k,n,j; j; char ch;do { printf("\n\n\n");printf("\n\n 1. 产生一批随机数准备排序");printf("\n\n 2. 一般情况的起泡排序");printf("\n\n 3. 有序情况的起泡排序");printf("\n\n 4. 一般情况的快速排序");printf("\n\n 5. 有序情况的快速排序");printf("\n================== printf("\n 请输入您的选择 scanf("%d",&k); switch(k){ case 1:{ printf("the number ofdatas:"); /*scanf("%d",&n);getrandat(ar,n); for(j=0;j<n;j++)br[j]=ar[j]; prdata(ar,n); } break;case 2:{ for(j=0;j<n;j++) ar[j]=br[j];bubble(ar,n); prdata(ar,n); } break;case 3: { bubble( ar,n); prdata(ar,n);} break;=================="); (1,2,3,4,5,6)");输入数据个数 *//*产生 n 个随机数 *//* 保留复原始数据 *//* 恢复原始数据 */ /* 对 n 个数据起泡排序 *//* 排序后输出 *//* 有序情况的起泡排序 */ 恢复原始数据*//* 对 n 个数据快速排序 *//* 排序后输出 *//* 有序情况的快速排序 */case 4:{ for(j=0;j<n;j++) ar[j]=br[j]; /*qksort(ar,n); prdata(ar,n);} break;case 5:{ qksort(ar,n);prdata(ar,n);} break;case 6: exit(0);} /* switch */printf("\n --------------- ");}while(k>=1 && k<6);printf("\n 打回车键,返回。
数据结构与算法实验报告5-查找与排序
北京物资学院信息学院实验报告
课程名_数据结构与算法
实验名称查找与排序
实验日期年月日实验报告日期年月日姓名______ ___ 班级_____ ________ 学号___
一、实验目的
1.掌握线性表查找的方法;
2.了解树表查找思想;
3.掌握散列表查找的方法.
4.掌握插入排序、交换排序和选择排序的思想和方法;
二、实验内容
查找部分
1.实现顺序查找的两个算法(P307), 可以完成对顺序表的查找操作, 并根据查到和未查到两种情况输出结果;
2.实现对有序表的二分查找;
3.实现散列查找算法(链接法),应能够解决冲突;
排序部分
4.分别实现直接插入排序、直接选择排序、冒泡排序和快速排序算法
三、实验地点与环境
3.1 实验地点
3.2实验环境
(操作系统、C语言环境)
四、实验步骤
(描述实验步骤及中间的结果或现象。
在实验中做了什么事情, 怎么做的, 发生的现象和中间结果, 给出关键函数和主函数中的关键段落)
五、实验结果
六、总结
(说明实验过程中遇到的问题及解决办法;个人的收获;未解决的问题等)。
数据结构实验报告——排序
1.实验要求【实验目的】学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。
【实验内容】使用简单数组实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、希尔排序3、冒泡排序4、快速排序5、简单选择排序6、堆排序(选作)7、归并排序(选作)8、基数排序(选作)9、其他要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性。
2. 程序分析2.1 存储结构存储结构:数组2.2 关键算法分析//插入排序void InsertSort(int r[], int n) {int count1=0,count2=0;插入到合适位置for (int i=2; i<n; i++){r[0]=r[i]; //设置哨兵for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置r[j+1]=r[j]; //记录后移r[j+1]=r[0];count1++;count2++;}for(int k=1;k<n;k++)cout<<r[k]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//希尔排序void ShellSort(int r[], int n){int i;int d;int j;int count1=0,count2=0;for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序{for (i=d+1; i<n; i++){r[0]=r[i]; //暂存被插入记录for (j=i-d; j>0 && r[0]<r[j]; j=j-d)r[j+d]=r[j]; //记录后移d个位置r[j+d]=r[0];count1++;count2=count2+d;}count1++;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//起泡排序void BubbleSort(int r[], int n) {插入到合适位置int temp;int exchange;int bound;int count1=0,count2=0;exchange=n-1; //第一趟起泡排序的范围是r[1]到r[n]while (exchange) //仅当上一趟排序有记录交换才进行本趟排序{bound=exchange;exchange=0;for(int j=0;j<bound;j++) //一趟起泡排序{count1++; //接下来有一次比较if(r[j]>r[j+1]){temp=r[j]; //交换r[j]和r[j+1]r[j]=r[j+1];r[j+1]=temp;exchange=j; //记录每一次发生记录交换的位置count2=count2+3; //移动了3次}}}for(int i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//快速排序一次划分int Partition(int r[], int first, int end,int &count1,int &count2){int i=first; //初始化int j=end;while (i<j){while (i<j && r[i]<= r[j]){j--; //右侧扫描count1++;}count1++;if (i<j){temp=r[i]; //将较小记录交换到前面r[i]=r[j];r[j]=temp;i++;count2=count2+3;}while (i<j && r[i]<= r[j]){i++; //左侧扫描count1++;}count1++;if (i<j){temp=r[j];r[j]=r[i];r[i]=temp; //将较大记录交换到后面j--;count2=count2+3;}}return i; //i为轴值记录的最终位置}//快速排序void QuickSort(int r[], int first, int end,int &count1,int &count2){if (first<end){ //递归结束int pivot=Partition(r, first, end,count1,count2); //一次划分QuickSort(r, first, pivot-1,count1,count2);//递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end,count1,count2); //递归地对右侧子序列进行快速排序}}//简单选择排序Array void SelectSort(int r[ ], int n){int i;int j;int index;int temp;int count1=0,count2=0;for (i=0; i<n-1; i++) //对n个记录进行n-1趟简单选择排序{index=i;for(j=i+1;j<n;j++) //在无序区中选取最小记录{count1++; //比较次数加一if(r[j]<r[index]) //如果该元素比现在第i个位置的元素小index=j;}count1++; //在判断不满足循环条件j<n时,比较了一次if(index!=i){temp=r[i]; //将无序区的最小记录与第i个位置上的记录交换r[i]=r[index];r[index]=temp;count2=count2+3; //移动次数加3 }}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//筛选法调整堆void Sift(int r[],int k,int m,int &count1,int &count2) //s,t分别为比较和移动次数{int i;int j;int temp;i=k;j=2*i+1; //置i为要筛的结点,j为i的左孩子while(j<=m) //筛选还没有进行到叶子{if(j<m && r[j]<r[j+1]) j++; //比较i的左右孩子,j为较大者count1=count1+2; //该语句之前和之后分别有一次比较if(r[i]>r[j])break; //根结点已经大于左右孩子中的较大者else{temp=r[i];r[i]=r[j];r[j]=temp; //将根结点与结点j交换i=j;j=2*i+1; //下一个被筛结点位于原来结点j的位置count2=count2+3; //移动次数加3 }}}//堆排序void HeapSort(int r[],int n){int count1=0,count2=0; //计数器,计比较和移动次数int i;int temp;for(i=n/2;i>=0;i--) //初始建堆,从最后一个非终端结点至根结点Sift(r,i,n,count1,count2) ;for(i=n-1; i>0; i--) //重复执行移走堆顶及重建堆的操作{temp=r[i]; //将堆顶元素与最后一个元素交换r[i]=r[0];r[0]=temp; //完成一趟排序,输出记录的次序状态Sift(r,0,i-1,count1,count2); //重建堆}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//一次归并void Merge(int r[], int r1[], int s, int m, int t){int i=s;int j=m+1;int k=s;while (i<=m && j<=t){if (r[i]<=r[j])r1[k++]=r[i++]; //取r[i]和r[j]中较小者放入r1[k]elser1[k++]=r[j++];}if (i<=m)while (i<=m) //若第一个子序列没处理完,则进行收尾处理r1[k++]=r[i++];elsewhile (j<=t) //若第二个子序列没处理完,则进行收尾处理r1[k++]=r[j++];}//一趟归并void MergePass(int r[ ], int r1[ ], int n, int h){int i=0;int k;while (i<=n-2*h) //待归并记录至少有两个长度为h的子序列{Merge(r, r1, i, i+h-1, i+2*h-1);i+=2*h;}if (i<n-h)Merge(r, r1, i, i+h-1, n); //待归并序列中有一个长度小于h else for (k=i; k<=n; k++) //待归并序列中只剩一个子序列r1[k]=r[k];}//归并排序void MergeSort(int r[ ], int r1[ ], int n ){int h=1;int i;while (h<n){MergePass(r, r1, n-1, h); //归并h=2*h;MergePass(r1, r, n-1, h);h=2*h;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;}void Newarray(int a[],int b[],int c[]) {cout<<"新随机数组:";c[0]=0;a[0]=0;b[0]=0;for(int s=1;s<11;s++){a[s]=s;b[s]=20-s;c[s]=rand()%50+1;cout<<c[s]<<" ";}cout<<endl;}2.3 其他3. 程序运行结果void main(){srand(time(NULL));const int num=11; //赋值int a[num];int b[num];int c[num];int c1[num];c[0]=0;a[0]=0;b[0]=0;Newarray(a,b,c);cout<<"顺序数组:";for(int j=1;j<num;j++)cout<<a[j]<<" ";cout<<endl;cout<<"逆序数组:";for(j=1;j<num;j++)cout<<b[j]<<" ";cout<<endl;cout<<endl;cout<<"插入排序结果为:"<<"\n";InsertSort(a,num);InsertSort(b,num);InsertSort(c,num);cout<<endl;Newarray(a,b,c);cout<<"希尔排序结果为:"<<"\n";ShellSort(a, num);ShellSort(b, num);ShellSort(c, num);cout<<endl;Newarray(a,b,c);cout<<"起泡排序结果为:"<<"\n";BubbleSort(a, num);BubbleSort(b, num);BubbleSort(c, num);cout<<endl;int count1=0,count2=0;Newarray(a,b,c);cout<<"快速排序结果为:"<<"\n";QuickSort(a,0,num-1,count1,count2);for(int i=1;i<num;i++)cout<<a[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(b,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<b[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(c,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<c[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;cout<<endl;cout<<endl;Newarray(a,b,c);cout << "简单选择排序结果为:" << "\n";SelectSort(a,num);SelectSort(b,num);SelectSort(c,num);cout<<endl;Newarray(a,b,c);cout << "堆排序结果为:" << "\n";HeapSort(a, num);HeapSort(b, num);HeapSort(c, num);cout<<endl;Newarray(a,b,c);cout << "归并排序结果为:" << "\n";MergeSort(a, c1,num );MergeSort(b, c1,num );MergeSort(c, c1,num );}。
快速排序算法实验报告
快速排序算法实验报告快速排序一、问题描述在操作系统中,我们总是希望以最短的时间处理完所有的任务。
但事情总是要一件件地做,任务也要操作系统一件件地处理。
当操作系统处理一件任务时,其他待处理的任务就需要等待。
虽然所有任务的处理时间不能降低,但我们可以安排它们的处理顺序,将耗时少的任务先处理,耗时多的任务后处理,这样就可以使所有任务等待的时间和最小。
只需要将n 件任务按用时去从小到大排序,就可以得到任务依次的处理顺序。
当有 n 件任务同时来临时,每件任务需要用时ni,求让所有任务等待的时间和最小的任务处理顺序。
二、需求分析1. 输入事件件数n,分别随机产生做完n件事所需要的时间;2. 对n件事所需的时间使用快速排序法,进行排序输出。
排序时,要求轴值随机产生。
3. 输入输出格式:输入:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
输出:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
4. 测试数据:输入 95 3 4 26 1 57 3 输出1 2 3 3 4 5 5 6 7三、概要设计抽象数据类型因为此题不需要存储复杂的信息,故只需一个整型数组就可以了。
算法的基本思想对一个给定的进行快速排序,首先需要选择一个轴值,假设输入的数组中有k个小于轴值的数,于是这些数被放在数组最左边的k个位置上,而大于周知的结点被放在数组右边的n-k个位置上。
k也是轴值的下标。
这样k把数组分成了两个子数组。
分别对两个子数组,进行类似的操作,便能得到正确的排序结果。
程序的流程输入事件件数n-->随机产生做完没个事件所需时间-->对n个时间进行排序-->输出结果快速排序方法:初始状态 72 6 57 88 85 42 l r第一趟循环 72 6 57 88 85 42 l r 第一次交换 6 72 57 88 85 42 l r 第二趟循环 6 72 57 88 85 42 r l 第二次交换 72 6 57 88 85 42 r l反转交换 6 72 57 88 85 42 r l这就是依靠轴值,将数组分成两部分的实例。
《数据结构》实验报告——排序
《数据结构》实验报告排序实验题目:输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。
实验所使用的数据结构内容及编程思路:1.插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。
一般情况下,第i趟直接插入排序的操作为:在含有i-1个记录的有序子序列r[1..i-1]中插入一个记录r[i]后,变成含有i个记录的有序子序列r[1..i];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r[0]处设置哨兵。
在自i-1起往前搜索的过程中,可以同时后移记录。
整个排序过程为进行n-1趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。
2.快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
假设待排序的序列为{L.r[s],L.r[s+1],…L.r[t]},首先任意选取一个记录(通常可选第一个记录L.r[s])作为枢轴(或支点)(pivot),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。
由此可以该“枢轴”记录最后所罗的位置i作为界线,将序列{L.r[s],…,L.r[t]}分割成两个子序列{L.r[i+1],L.[i+2],…,L.r[t]}。
这个过程称为一趟快速排序,或一次划分。
一趟快速排序的具体做法是:附设两个指针low和high,他们的初值分别为low和high,设枢轴记录的关键字为pivotkey,则首先从high所指位置起向前搜索找到第一个关键字小于pivotkey的记录和枢轴记录互相交换,然后从low所指位置起向后搜索,找到第一个关键字大于pivotkey的记录和枢轴记录互相交换,重复这两不直至low=high为止。
数据结构(C语言版)实验报告 (内部排序算法比较)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
数据结构加强之排序算法讲解
3.1 直接插入排序
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }
排序算法
常见的经典排序算法
冒泡排序 选择排序 插入排序 希尔排序 快速排序 归并排序
1 冒泡排序
算法描述 设待排序记录序列中的记录个数为n
一般地,第i趟起泡排序从1到n-i+1
依次比较相邻两个记录的关键字,如果发生逆序, 则交换之。 其结果是这n-i+1个记录中,关键字最大的记录被 交换到第n-i+1的位置上,最多作n-1趟。
北邮数据结构实验报告-排序
北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。
二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。
具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。
2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。
具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。
3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。
具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。
4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。
具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。
5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。
具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。
排序算法分析实验报告
一、实验目的1. 了解常见的排序算法的基本原理。
2. 分析不同排序算法的时间复杂度和空间复杂度。
3. 通过实验比较不同排序算法的性能。
4. 培养编程实践能力和数据结构分析能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容本次实验主要对以下几种排序算法进行分析和比较:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 堆排序(Heap Sort)四、实验步骤1. 编写每个排序算法的Python代码。
2. 创建一个随机整数数组作为测试数据。
3. 分别使用不同的排序算法对测试数据进行排序。
4. 记录每种排序算法的执行时间。
5. 分析不同排序算法的性能。
五、实验结果与分析1. 冒泡排序```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```执行时间:约0.001秒冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
由于比较次数较多,效率较低。
2. 选择排序```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```执行时间:约0.002秒选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
数据结构实验报告排序
数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。
在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。
一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。
具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。
二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。
每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。
插入排序的实现可以使用一层循环和适当的元素交换。
三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。
通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。
四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。
然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。
五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。
归并排序的实现可以使用递归或迭代的方式。
六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。
我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。
通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。
2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。
数据结构排序算法之快速排序
数据结构排序算法之
快速排序
●算法介绍
快速排序也是交换类排序的一种。
快速排序是选择一个数据作为枢纽,将啊序列分为两部分,枢纽的一边比它小(至少不大于),另一边比它大(至少不小于)。
●执行流程
原始序列:23 45 12 90 78 56
I J
进行第一趟排序,选择23作为枢纽,整个过程是一次交替扫描的过程
1)使用最后一个元素J=56开始从右向左扫描
23 45 12 90 78 56 56>23不交换,J--
I J
23 45 12 90 78 56 78>23 J--
I J
23 45 12 90 78 56 12<23 交换I++
I J
12 45 90 78 56 45>23 交换J--
I J
12 45 90 78 56 此时I=J 所以这个位置为枢纽的位置
IJ
12 23 45 90 78 56 一趟排序结束
2) 然后从枢纽的位置开始分为两部分,按照同样的方法进行排序即可,也就递归。
●示例代码
●执行结果
ky@ky-S910-X31E:~/libz/628$ gcc quicksort.c -oquick
./quick
●性能分析
本算法的时间复杂度是n的平方,空间复杂度是O(1)。
更多内容请关注个人文库/p/helpylee。
数据结构实验报告
实验报告4 排序一、实验目的1、掌握常用的排序方法,并掌握用高级语言实现排序算法的方法。
2、深刻理解排序的定义和各种排序方法的特点,并能加以灵活应用。
3、了解各种方法的排序过程及其依据的原则,并掌握各种排序方法的时间复杂度的分析方法。
二、实验要求及内容要求编写的程序所能实现的功能包括:1、从键盘输入要排序的一组元素的总个数2、从键盘依次输入要排序的元素值3、对输入的元素进行快速排序4、对输入的元素进行折半插入排序三、实验代码及相关注释#include <iostream>using namespace std;#include "malloc.h"typedef struct{int key;}RedType;typedef struct{RedType r[100];int length;}SqList; //1 快速排序的结构体typedef struct{int data[100];int last;}Sequenlist; //2 折半插入排序的结构体int Partition ( SqList &L, int low, int high ) //1 寻找基准{L.r[0]=L.r[low];//子表的第一个记录作基准对象int pivotkey = L.r[low].key; //基准对象关键字while(low<high){while(low<high && L.r[high].key>= pivotkey) --high;L.r[low] = L.r[high]; //小于基准对象的移到区间的左侧while(low<high&& L.r[low].key<= pivotkey) ++low;L.r[high] = L.r[low] ; //大于基准对象的移到区间的右侧}L.r[low] = L.r[0];return low;}void QuickSort ( SqList &L, int low, int high ) //1 快速排序{//在序列low-high中递归地进行快速排序if ( low < high){int pivotloc= Partition (L, low, high); //寻找基准QuickSort ( L, low, pivotloc-1); //对左序列同样递归处理QuickSort ( L, pivotloc+1, high); //对右序列同样递归处理}}Sequenlist *Sqlset() //2 输入要折半插入排序的一组元素{Sequenlist *L;int i;L=(Sequenlist *)malloc(sizeof(Sequenlist));L->last=0;cout<<"请输入要排序的所有元素的总个数:";cin>>i;cout<<endl;cout<<"请依次输入所有元素的值:";if(i>0){for(L->last=1;L->last<=i;L->last++)cin>>L->data[L->last];L->last--;}return (L);}middlesort(Sequenlist *L) //2 折半插入排序{int i,j,low,high,mid;for(i=1;i<=L->last;i++){L->data[0]=L->data[i];low=1;high=i-1;while(low<=high){mid=(low+high)/2;if(L->data[0]<L->data[mid])high=mid-1; //插入点在前半区elselow=mid+1; //插入点在后半区}for(j=i;j>high+1;j--){L->data[j]=L->data[j-1];} //后移L->data[high+1]=L->data[0]; //插入}return 0;}int main(){gg: cout<<"请选择功能(1.快速排序2.折半插入排序3.退出程序):";int m;cin>>m;cout<<endl;if(m==1){SqList L;int n;cout<<"请输入要排序的所有元素的总个数:";cin>>n;cout<<endl;L.length=n;cout<<"请依次输入所有元素的值:";for(int i=1;i<=L.length;i++){cin>>L.r[i].key;}cout<<endl;cout<<"快速排序后为:";QuickSort(L,1,L.length);for(int j=1;j<=L.length;j++){cout<<L.r[j].key<<" ";}cout<<endl;cout<<endl;goto gg;}if(m==2){Sequenlist *L;int i;L=Sqlset();cout<<endl;middlesort(L);cout<<"折半插入排序后为:";for(i=1;i<=L->last;i++){cout<<L->data[i]<<" ";}cout<<endl;cout<<endl;goto gg;}if(m==3){exit(0);cout<<endl;}return 0;}四、重要函数功能说明1、Sequenlist *Sqlset() 输入要折半插入排序的一组元素2、int Partition ( SqList &L, int low, int high ) 寻找快速排序的基准3、void QuickSort ( SqList &L, int low, int high ) 快速排序4、middlesort(Sequenlist *L) 折半插入排序五、程序运行结果下图仅为分别排序一次,可多次排序,后面有相关截图:六、实验中遇到的问题、解决及体会1、起初编写快速排序的程序时,我是完全按照老师PPT上的算法敲上去的,然后建立了一个SqList的结构体,调试运行时出现错误,仔细查看才意识到Partition函数中L中应该包含元素key,而我建立结构体时没有注意,然后我将key这个元素补充进去,继续调试,又出现错误,提示我Partition没有定义,我就觉得很奇怪,我明明已经写了函数定义,为什么会这样,当我又回过头来阅读程序时,我发现QuickSort函数中调用了Partition函数,但是我的Partition函数的定义在QuickSort函数的后面,于是我将Partition函数放到了QuickSort函数的前面,再次调试运行,就可以正常运行,得出结果了。
数据结构 排序
排序的时间开销: 排序的时间开销是
衡量算法好坏的最重要的标志。排序的 时间开销可用算法执行中的数据比较次 数与数据移动次数来衡量。
内排序分类
• 依不同原则 插入排序、交换排序、选择排序、归 并排序和计数排序等。 依所须工作量 简单排序---时间复杂度o(n2) 先进排序方法---时间复杂度o(n logn) 基数排序---时间复杂度o(d.n)
08
08 08 25*
i=3
21 21
i=4
21 16
25 21
25* 25
49
16
08 08
16
25* 49
16
21 16
25 21
25* 49 25
08
08
i=5
08
25* 49
直接插入排序的算法
typedef int SortData; void InsertSort ( SortData V[ ], int n ) {
希尔排序 (Shell Sort)
基本思想设待排序对象序列有 n 个对象, 首 先取一个整数 gap < n 作为间隔, 将全部对 象分为 gap 个子序列, 所有距离为 gap 的对 象放在同一个子序列中, 在每一个子序列中 分别施行直接插入排序。然后缩小间隔 gap, 例如取 gap = gap/2,重复上述的子序列划 分和排序工作。直到最后取 gap == 1, 将所 有对象放在同一个序列中排序为止。 希尔排序方法又称为缩小增量排序。
//按非递减顺序对表进行排序
数据结构排序实验报告
引言概述:数据结构排序实验是计算机科学与技术专业中一项重要的实践课程。
通过实验,可以深入理解和掌握不同排序算法的原理、特点和性能表现。
本文将针对数据结构排序实验进行详细的阐述和总结,包括实验目的、实验内容、实验结果分析和总结。
一、实验目的1. 加深对数据结构排序算法的理解:通过实验,掌握不同排序算法的工作原理和实现方式。
2. 分析和比较不同排序算法的性能:对比不同排序算法在不同数据规模下的时间复杂度和空间复杂度,理解它们的优劣势。
3. 提高编程和算法设计能力:通过实验的编写,提升对排序算法的实现能力和代码质量。
二、实验内容1. 选择排序算法:选择排序是一种简单直观的排序算法,将序列分为有序和无序两部分,每次从无序部分选择最小(最大)元素,放到有序部分的末尾(开头)。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析2. 插入排序算法:插入排序逐步构建有序序列,对于未排序的元素,在已排序序列中从后向前扫描,找到对应位置插入。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析3. 快速排序算法:快速排序利用分治的思想,将序列分为左右两部分,选取基准元素,将小于基准的放在左边,大于基准的放在右边,递归地对左右部分进行排序。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析4. 归并排序算法:归并排序是一种稳定的排序算法,通过将序列分为若干子序列,分别进行排序,然后再将排好序的子序列合并成整体有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析5. 堆排序算法:堆是一种特殊的树状数据结构,堆排序利用堆的性质进行排序,通过构建大顶堆或小顶堆,并逐个将堆顶元素移出形成有序序列。
- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析三、实验结果分析1. 比较不同排序算法的执行时间:根据实验数据和分析,对比不同排序算法在不同数据规模下的执行时间,并针对其时间复杂度进行验证和分析。
快速排序实验报告心得(3篇)
第1篇一、实验背景随着计算机科学的发展,算法在各个领域都扮演着至关重要的角色。
排序算法作为算法领域中的一项基本技能,其重要性不言而喻。
快速排序作为一种高效的排序算法,因其简洁的原理和良好的性能,被广泛应用于各种场景。
本次实验旨在通过实践,深入了解快速排序算法的原理、实现及其性能特点。
二、实验目的1. 掌握快速排序算法的基本原理和实现方法;2. 分析快速排序算法的时间复杂度和空间复杂度;3. 比较快速排序与其他排序算法的性能差异;4. 熟练运用快速排序算法解决实际问题。
三、实验内容1. 快速排序算法原理及实现快速排序是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列划分为两个子序列,一个子序列中的所有元素均小于等于基准元素,另一个子序列中的所有元素均大于等于基准元素。
然后递归地对这两个子序列进行快速排序。
具体实现步骤如下:(1)选择基准元素:从待排序序列中选取一个元素作为基准元素,通常选择序列的第一个或最后一个元素。
(2)划分:将待排序序列划分为两个子序列,左子序列包含小于等于基准元素的元素,右子序列包含大于等于基准元素的元素。
(3)递归排序:递归地对左子序列和右子序列进行快速排序。
2. 快速排序算法性能分析快速排序算法的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。
空间复杂度为O(logn),因为快速排序采用递归实现,需要一定的栈空间。
3. 快速排序与其他排序算法的比较与冒泡排序、插入排序等简单排序算法相比,快速排序具有以下优点:(1)时间复杂度较低,适用于大规模数据的排序;(2)空间复杂度较低,节省内存资源;(3)对数据结构无特殊要求,适用于各种数据类型。
然而,快速排序也存在以下缺点:(1)最坏情况下的时间复杂度较高,当数据量较大且分布不均匀时,性能可能不如其他排序算法;(2)递归实现可能导致栈溢出,对数据量较大的排序任务不适用。
四、实验总结通过本次实验,我对快速排序算法有了更深入的了解。
数据结构排序实验报告
数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。
二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。
实验中使用的操作系统为 Windows 10。
三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。
它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。
为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。
2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构《实验5》实验报告实验项目5:快速排序学号姓名课程号实验地点指导教师时间评语:按时完成实验;实验内容和过程记录完整;回答问题完整、正确;实验报告的撰写认真、格式符合要求;无抄袭的行为。
成绩教师签字快速排序1、预习要求:快速排序方法。
2、实验目的:(1)了解快速排序方法概念;(2)理解快速排序方法的求解过程;(3)掌握快速排序方法运算。
3、实验内容及要求:(1)建立包含30个数据的序列(数据元素的值由自己设定);(2)完成快速排序运算的程序;(3)给出程序和快速排序前后的结果。
4、实验设备(环境)及要求硬件:支持 Intel Pentium Ⅱ及其以上 CPU ,内存 128MB 以上、硬盘 1GB 以上容量的微机。
软件:配有 Windows98/2000/XP 操作系统,安装 Visual C++ 。
5、实验时间:8学时6、该文档的文件名不要修改,存入<学号> <姓名> 命名的文件夹中7、该表中的数据只需填空,已有内容不要修改实验结果(运行结果界面及源程序,运行结果界面放在前面):#include <iostream.h>#include <string.h>#include <stdlib.h>#include <math.h>#define STUDENT ETypestruct STUDENT{char number[8];char name[8];char sex[3];int key;char place[20];};struct LinearList{EType *r;int length;int maxsize;};void CreatLinearList(LinearList &L,int maxlistsize){L.maxsize=maxlistsize;L.r=new EType[L.maxsize];L.length=0;}void OutputLinearList(LinearList &L){//逐个输出线性表L中的数据元素cout<<" "<<"学号"<<" "<<"姓名"<<" "<<"性别"<<" "<<"年龄"<<" "<<"祖籍"<<endl;cout<<" ==================================="<<endl;for(int i=0; i<L.length; i++)cout<<" "<<L.r[i].number<<" "<<L.r[i].name<<" "<<L.r[i].sex<<" "<<L.r[i].key<<" "<<L.r[i].place<<endl;}int Partition(EType r[],int low,int high){//对记录序列L.r[low..high]进行一次快速排序,并将本范围的元素按标准元素分为两部分int StandardKey;EType Temp;Temp = r[low];StandardKey = r[low].key;while(low<high){while(low<high && r[high].key >= StandardKey)high--;if(low<high)r[low++] = r[high];while(low<high && r[low].key <= StandardKey)low++;if(low<high)r[high--] = r[low];}r[low] = Temp;return low;}void Qsort(EType r[],int low,int high){int StandardLoc;if(low<high-1){StandardLoc=Partition(r,low,high);Qsort(r,low,StandardLoc-1);Qsort(r,StandardLoc+1,high);}}void QuickSort(LinearList &L){Qsort(L.r,0,L.length-1);}void main(){LinearList L;int maxsize=40;charnumber[][8]={"001","002","003","004","005","006","007","008","009","010","011","012","013", "014","015","016","017","018","019","020","021","022","023","024","025","026","027","028","0 29","030"};char name[][8]={"百里","东郭","太史","闻人","公孙","赫连","钟离","鲜鱼","轩辕","南门","公良","乐正","公仪","欧阳","司马","上官","端木","东方","孤独","南宫","诸葛","尉迟","皇圃","慕容","长孙","令狐","司徒","淳于","拓跋","司空"};char sex[][3]={"女","男","女","男","女","女","男","男","女","男","女","男","女","男","女","男","女","男","女","男","女","男","女","男","女","男","女","男","女","男"};char place[][20]={"重庆","长安","东莞","安庆","承德","四平","安稳","香港","金门","龙门","南充","红河","玉溪","会泽","瑞丽","泰山","元阳","琅中","阳朔","漠河","高雄","鸡西","甘肃","新乡","赤水","临沂","峨眉","北海","秭归","潜江"};intkey[30]={15,23,12,28,30,13,19,25,21,18,11,22,44,55,66,34,36,37,31,45,41,26,32,27,51,57,43,42, 60,16};//*****构造链表****************************CreatLinearList(L,maxsize);//*****链表初始化**************************for(int i=0;i<30;i++){strcpy(L.r[i].number,number[i]);strcpy(L.r[i].name,name[i]);strcpy(L.r[i].sex,sex[i]);L.r[i].key=key[i];strcpy(L.r[i].place,place[i]);L.length++;}cout<<"未排序前:"<<endl;OutputLinearList( L);cout<<endl<<endl<<endl;cout<<"快速排序后:"<<endl;QuickSort(L);OutputLinearList(L);}。