细菌和病毒的遗传

合集下载

10细菌和病毒的遗传-性导、转导

10细菌和病毒的遗传-性导、转导


如果研究三因子转导(three-factor transduction),只需分析一个实 验的结果就可以推出三个基因的次序。
普遍性转导

例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。 供体用P1噬菌体感染,P1的后代再用来感染受体细胞,
然后把受体细胞接种在选择培养基上。

如果通过中断杂交已知三个基因中的一个如a不在中 间,就可对a+进行选择,即在对a+进行选择的选择培 养基上,把可以生长的a+细胞选出来。然后,再把被 选择的受体细胞重复接种在其他对b+或c+进行选择的 选择培养基上,检查a+细胞是否同时具有b+和c+。
突变子和重组子都是一个核苷酸对或者碱基对(bp)。所
以基因内每个碱基均可能发生突变,任意两个碱基间均能 发生交换重组
噬菌体突变型的互补试验
属于同一基因(功能单位)还是两个基因突变产生的呢
p59
对于两个独立起源的、表型相似的隐性突变,如何判定是 在二倍体生物中,可以建立双突变杂合体。双突变体杂合 体有两种形式:顺式(cis)和反式(trans)
普遍性转导
最少的一类转导体应当代表最难于转导的情况,
这种转导体是同时发生交换次数最多的一类。
这种转导子的基因排列应为两边是供体基因,而
中间为受体基因。
假定由实验得到的最少的转导体类别为a+b+c- ,
那么就可以确定,这三个基因的正确次序应当是 acb或bca,而不是abc。
普遍性转导

如λ的DNA,既可以以自主的状态存在,也可以整合在细菌染色 体中。这种有两种状态的遗传因子叫做附加体(episome)。

细菌和病毒的遗传学分析

细菌和病毒的遗传学分析
gal
用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。

细菌和病毒的遗传和进化的研究

细菌和病毒的遗传和进化的研究

细菌和病毒的遗传和进化的研究细菌和病毒是人类和其他物种生命中的主要因素之一。

它们通过基因的遗传和进化不断地适应环境和攻击宿主,从而保完自己生命的延续。

因此,细菌和病毒的遗传和进化的研究非常重要。

本文将探讨细菌和病毒的遗传和进化的研究,包括遗传多样性和基因转移等重要问题。

遗传多样性细菌和病毒的遗传多样性反映了它们面对的选择压力和环境变化。

这些变化导致某些基因的出现和消失,进而造成群体基因组的演化。

传统上,人们将细菌和病毒分为几个生物型,以反映它们的遗传多样性。

近年来,随着基于DNA序列的分析技术的发展,研究者开始将细菌和病毒的群体基因组划分为生物型,并更加精确地分析它们之间的遗传多样性。

例如,分析不同大肠杆菌株的基因组序列,可以揭示不同的群体遗传变化并确定引起菌株间差异的单个SNP(单核苷酸多态性)之类的变异。

这种方法使研究细菌和病毒的遗传多样性更加精确和全面。

基因转移细菌和病毒的基因转移是它们遗传多样性的主要机制之一。

基因转移可以促进物种的遗传多样性和进化。

对细菌和病毒的基因转移的研究,可以揭示它们如何适应宿主和环境,从而更好地保护自己。

最近的研究还发现,基因转移可以在不同物种间发生,这表明细菌和病毒间遗传信息交流更为普遍。

对基因转移的研究也为新疗法和抗生素开发提供了新的思路。

进化途径细菌和病毒的进化途径是它们在空间和时间上适应不同环境和宿主的战略。

通过长期进化,一些细菌或病毒形成了高度专业化和致病性,使它们更难以被治疗和控制。

理解细菌和病毒的进化途径,对于制定有效的预防和治疗策略至关重要。

近年来,新的分析技术已经使我们可以在不同生态系统和物种之间比较基因组,揭示进化的方向和机制。

例如,通过分析埃博拉病毒的基因组,我们发现它经历了多种分化,导致不同的埃博拉病毒具有不同的致病性和适应能力。

总结细菌和病毒的遗传和进化的研究带给我们许多新的见解。

我们现在更加了解它们如何适应宿主、如何和其他微生物交流基因信息、如何进化,以及如何产生新的致病性变异。

第六章 细菌和病毒的遗传作图

第六章  细菌和病毒的遗传作图
15
第15页,共134页。
温和噬菌体(temperate phages)的 感染周期:
λ和P1噬菌体 溶源途径Lysogenic Cycle: 裂解途径Lytic Cycle
l
16
第16页,共134页。
Temperate Bacteriophage Lifecycle
• 能够溶源化细菌的噬菌体称为温和噬菌体
第1页,共134页。
第6章 细菌及其病毒的遗传作图
第一节 噬菌体遗传分析 第二节 细菌的转化 第三节 细菌的接合
第四节 细菌的性导
第五节 转导
2
第2页,共134页。
第一节 噬菌体遗传分析
一、噬菌体的繁殖 二、噬菌体的突变型 三、噬菌体的基因重组 四、T2的环形遗传图
3
第3页,共134页。
复习1:病毒的一般特性和类型
• 最大的病毒: 牛痘苗病毒——直径超过250nm
• 最小的病毒 脊髓灰质炎病毒——28nm
• 直径 病毒:细菌:真菌 = 1:10:100
5
第5页,共134页。
病毒粒子的模式构造
图6-1
6
第6页,共134页。
复习2:噬菌体的一般特性
• 病毒可根据宿主(动物、植物、细菌)或遗传物 质(DNA或RNA)来分类。
二、转化过程
1.供体(donor)DNA与受体(receptor)细胞 结合(binding)——吸附
– 结合发生在受体细胞特定部位; – 供体DNA片段为双链; – 结合过程是一个可逆过程。
42
第42页,共134页。
感受态与感受态因子
二、转化过程
感受态指细菌能够从周围环境中吸收DNA分子进行 转化的生理状态。
31

细菌和病毒的遗传性导转导

细菌和病毒的遗传性导转导

(二)F΄因子
F因子的整合与环出图
F因子整合到宿主细 菌染色体的过程是 可逆的。
正常、精确
(二)F΄因

P224
lac
F 非正常 环出 Hfr
la F′lac c F
图10-25 F′因子的形成
阿代尔伯格和伯恩斯(Adelberg,E. 和 Burns,S.,1959)称这种携带有某些细 菌染色体基因的F因子为F′因子。
四、转导
(transduction)
P224
(一)概念:以噬菌体为媒介所进行的细菌遗传物质
重组的过程。
(二)转导现象的发现 黎德伯格(Lederberg)和津德(Zinder)在1952年首 先在鼠伤寒沙门氏菌(Salmenella typhimurium)中 发现转导现象。
四、转导
(transduction)
U型管实验结果的解释: 转导噬菌体---转导
溶源性细菌 (温和噬菌体P22)

(四)转导的类型
图--噬菌体转导
图a、普遍性转导
图b、特殊性转导 /局限性转导
普遍性转导过程图
转导细菌染色体组的任何不同部分
转导体
转导噬菌体 部分二倍体
普导遍性转
由此形成的具有重组遗传结构的细菌细胞叫转导体 transductant。
普遍性转 导
例如:供体基因型a+b+c+,受体的基因型为a- b- c- 。
供体用P1噬菌体感染,P1的后代再用来感染受体细胞, 然后把受体细胞接种在选择培养基上。
如果通过中断杂交已知三个基因中的一个如a不在中间, 就可对a+进行选择,即在对a+进行选择的选择培养基上, 把可以生长的a+细胞选出来。然后,再把被选择的受体 细胞重复接种在其他对b+或c+进行选择的选择培养基上, 检查a+细胞是否同时具有b+和c+。

细菌及病毒的遗传分析h

细菌及病毒的遗传分析h

trp2+ his2+ tyr1+转化trp2- his2- tyr1- 实验 trp2 34 his2 13 tyr1
Hfr菌株在切除F因子时发生错误切除,分离出一个携带F因子和部分宿主染色体基因的遗传因子,这种带有宿主染色体基因的F因子称为F΄因子。
T2噬菌体的基因重组
将两种不同的T2突变体进行杂交,对其杂交子代进行重组分析 杂交方法: 将Ttor和Ttos两种大肠杆菌细胞混合 同时接种高浓度的T2噬菌体的h-r+和h+r-两种突变体,保证绝大多数细菌都被一个以上噬菌体感染 两种不同的噬菌体DNA可能在宿主细胞内进行重组,从而产生非亲本型子代h+r+和h-r-。 亲本型 重组型
F因子在杂交中的行为——接合过程
(三)中断杂交实验作图
中断杂交实验作图
1分钟≈20%的重组值
二、转化
转化(transformation):指某些细菌(或其它生物)能通过其细胞膜摄取周围介质中的DNA片段,并将此外源DNA片段整合到自己染色体组中的过程。 (一)转化的过程 非感受态细胞 外源DNA被洗掉了 转化因子 感受态细胞 外源DNA仍与细胞结合 整合 吸收 整合 供体单链DNA进入受体细胞后与受体染色体的某一部分联会,并进一步置换受体的对应染色体区段的过程。
第十章 细菌及病毒的遗传分析(2h)
1
第一节 细菌和病毒遗传研究的意义
2
第二节 噬菌体的基因重组
3
第三节 细菌基因重组
4
本章要求
5
思考题
繁殖世代所需时间短;
易于管理和进行化学分析;
便于研究基因的作用;
便于研究基因的突变;
遗传物质较简单,便于用作研究基因结构、功能及调控机制的材料。

遗传学_ 细菌和病毒的遗传分析_

遗传学_ 细菌和病毒的遗传分析_

1180 + 418 + 685 +107 +11940 +3660
100% = 2390 100% =13% 17990
trp2
tyr
34
his2
13 tyr1
his
40
trp
八、转导(transduction)
⚫ 普遍性转导(Generalized transduction)
转导是以噬菌 体为媒介,将 外源基因携带 入细菌,使受 体细胞发生遗 传重组的方式。
a、b间发生交换
单性状的转化子
a、b间不发生交换
双性状的转化子
七、转化作图的原理
细菌两连锁基因的交换率
=
单性状转化子的数 单性状转化子数+共转化的转化子数
100%
表7-1 枯草芽孢杆菌trp2+ his2+ tyr1+(供体)× trp2- his2- tyr1-(受体)的转化实验 座位转化子类型
噬菌体的遗传分析
一、细菌和病毒的遗传分析
7-1 T4噬菌体的电镜照片
二、病毒对遗传学研究的贡献
1952年 Hershey & Chase的同位素示踪试验
证明T4病毒的遗传物质 是脱氧核糖核酸(DNA) 【1969年诺贝尔奖】
二、病毒对遗传学研究的贡献
1956年Fraemkel Conrat的烟草花叶病毒的重建试验
滑,可致病)
粗糙型R菌株 (无荚膜,菌落粗
糙,不致病)
三、转化现象的发现——Griffth的肺炎双球菌实验
IIR菌株不致病 IIIS菌株致病
灭活的IIIS菌株不致病 灭活的IIIS菌株的某种物 质使IIR菌株发生性状改 变,变成致病的IIIS菌株

细菌及病毒的遗传作图

细菌及病毒的遗传作图

7.1 细菌和病毒遗传研究的意义
7.1.1 细菌的培养 7.1.2 细菌在生物进化树中的地位 7.1.3 细菌和病毒在遗传研究中的优越性 7.1.4 细菌和病毒的拟有性过程
7.1.1 细菌培养
平皿分离 平皿培养
摇瓶培养
7.1.2 细菌在生物进化树中的地位
产烷生物
盐杆菌
7.1.3 细菌和病毒在遗传研究中的优越性
❖ 建立纯系的方法——纯培养
➢ 纯系:由单个细胞繁殖而 来的菌落称为纯系。
➢ 菌种纯:采用平板表面涂 布法或划线法获得单株菌 落。这种方法获得的纯系, 称为“菌种纯”。
➢ 菌株纯:利用显微操纵器 进行菌丝尖端切割等方法 获得单个细胞,并直接培 养建立纯系,这种方法获 得的纯系称为“菌株纯”。
❖选择培养法鉴定突变型与重组型
类病毒:一个单链环状的裸露的RNA。 拟病毒:线状单链RNA+环状单链RNA。 朊病毒:蛋白质颗粒。
7.2.3 噬菌体的生活周期
❖烈性噬菌体(virulent phage)——噬菌体侵入宿主细
胞后,利用宿主细胞内的物质进行自身遗传物质和蛋白质
的合成,组装出许多子噬菌体,使宿主细胞裂解而释放子
许多细菌的突变都与培养基营养成分及培养条件有关。 ➢ 营养缺陷型的筛选、鉴定——选择培养法。是根据菌
+++
S C01 mi S++
+ C01 mi S C01 + + + mi
S + mi
+ C01 + 总数
975 924 30
2.9%
32 61 51 5.3% 5 13 0.86% 2091
Rf s-co1 =3.76% Rf s-mi =6.16% Rf co1-mi=9.92%

07遗传学 课后练习 复习题 总结 第七章 细菌和病毒的遗传

07遗传学 课后练习 复习题 总结 第七章 细菌和病毒的遗传

第七章细菌和病毒的遗传本章习题1.解释下列名词:F-菌株、F+菌株、Hfr菌株、F因子、F'因子、烈性噬菌体、温和性噬菌体、溶原性细菌、部分二倍体。

F-菌株:未携带F因子的大肠杆菌菌株。

F+菌株:包含一个游离状态F因子的大肠杆菌菌株。

Hfr菌株:包含一个整合到大肠杆菌染色体组内的F因子的菌株。

F因子:大肠杆菌中的一种附加体,控制大肠杆菌接合过程而使其成为供体菌的一种致育因子。

F'因子:整合在宿主细菌染色体上的F因子,在环出时不够准确而携带有染色体一些基因的一种致育因子。

烈性噬菌体:侵染宿主细胞后,进入裂解途径,破坏宿主细胞原有遗传物质,合成大量的自身遗传物质和蛋白质并组装成子噬菌体,最后使宿主裂解的一类噬菌体。

温和性噬菌体:侵染宿主细胞后,并不裂解宿主细胞,而是走溶原性生活周期的一类噬菌体。

溶原性细菌:含有温和噬菌体的遗传物质而又找不到噬菌体形态上可见的噬菌体粒子的宿主细菌。

部分二倍体:当F+和Hfr的细菌染色体进入F-后,在一个短时期内,F-细胞中对某些位点来说总有一段二倍体的DNA状态的细菌。

2.为什么说细菌和病毒是研究遗传学的好材料?答:与其他生物体相比,细菌和病毒能成为研究遗传学的好材料,具有以下7个方面的优越性:(1)世代周期短:每个世代以min或h计算,繁殖速度快,大大缩短了实验周期。

(2)易于管理和进行化学分析个体小,繁殖方便,可以大量节省人力、物力和财力;且代谢旺盛,繁殖又快,累积大量的代谢产物。

(3)便于研究基因的突变细菌和病毒均属于单倍体,所有突变都能立即表现出来,不存在显性掩盖隐性的问题。

(4)便于研究基因的作用通过基本培养基和选择培养基的影印培养,很容易筛选出营养缺陷型,利于生化研究。

(5)便于基因重组的研究通过细菌的转化、转导和接合作用,在一支试管中可以产生遗传性状不相同的后代。

(6)便于用于研究基因结构、功能及调控机制的材料细菌和病毒的遗传物质简单,基因定位和结构分析等易于进行且可用生理生化方法进行基因的表达和调控分析。

转载遗传学课后答案三

转载遗传学课后答案三

转载遗传学课后答案三[转载]遗传学课后答案三000第七章细菌和病毒的遗传3. 试比较大肠杆菌和玉米的染色体组。

答:大肠杆菌玉米染色体一条环状双链DNA形成的染色体十对线状染色体基因个数少多基因之间的关系连锁独立,连锁连锁图距时间,交换值交换值、 4.对两对基因的噬菌体杂交所测定的重组频率如下:a-b+×a+b- 3.0 %a-c+×a+c- 2.0%b-c+×b+c- 1.5%试问:(1) a、b、c三个突变在连锁图上的次序如何?为什么它们之间的距离不是累加的?(2) 假定三因子杂交,ab+c×a+bc+,你预期哪两种类型的重组体频率最低?(3)计算从(2)所假定的三因子杂交中出现的各种重组类型的频率。

解:噬菌体杂交能够在寄主中形成完整的二倍染色体,可以完全配对,所以噬菌体杂交中的基因重组与高等生物的遗传重组的分析方法完全相同。

本题相当于三个两点测验结果。

(1)3个相互连锁的基因a,b,c,重组频率越高,基因之间的距离越远,比较它们两两重组频率可知:a与b之间的遗传距离最大,c则是位于ab之间。

由于两点测验忽略了双交换,所以它们之间的距离不是累加的。

(2)ab+c×a+bc+是三点测验,双交换型重组型的频率最低,由于c位于ab之间,所以ab+ c+和a+b c应该最少。

(3)首先对照两点测验结果推算双交换值:对于ac b+×a+c+b 产生的6种重组型为:当对ac进行两点测验时:则a c+b,a+c b+,ac+b+, a+cb都是重组类型,所以两点测验与三点测验的结果相同;同样对cb进行两点测验时:a cb、a+c+b+、ac+b+、a+cb都是重组类型,与两点测验与三点测验的结果相同;对ab进行两点测验时:只包括了a c+b、a+c b+ 、a cb、 a+c+b+四种重组类型,而双交换ac+b+ 和a+cb却不是重组型。

已知ac重组值=2.0%,cb重组值=1.5%,根据三点测验,ab之间的重组值应该=2.0 %+1.5 %=3.5 %,它与两点测验所得非3.0 %相差两个双交换值,即2×双交换值=0.5%双交换值为0.25%。

细菌遗传分析

细菌遗传分析

第四章细菌和病毒的遗传(一) 名词解释:1.原养型:如果一种细菌能在基本培养基上生长,也就是它能合成它所需要的各种有机化合物,如氨基酸、维生素及脂类,这种细菌称为原养型。

2.转化(transformation):指细菌细胞(或其他生物)将周围的供体DNA,摄入到体内,并整合到自己染色体组的过程。

3.转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。

即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。

4.性导(sexduction):细菌细胞在接合时,携带的外源DNA整合到细菌染色体上的过程。

5.接合(coniugation):指遗传物质从供体—“雄性”转移到受体—“雌性”的过程。

6.Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌染色体上。

7.共转导(并发转导)(cotransduction):两个基因一起被转导的现象称。

8.普遍性转导:能够转导细菌染色体上的任何基因。

9.]10.局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或限制性转导。

以λ噬菌体的转导,可被转导的只是λ噬菌体在细菌染色体上插入位点两侧的基因。

11.att位点:噬菌体和细菌染色体上彼此附着结合的位点,通过噬菌体与细菌的重组,噬菌体便在这些位点处同细菌染色体整合或由此离开细菌染色体。

12.原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整合到宿主细菌染色体中。

处于整合状态的噬菌体DNA称为~~。

13.溶原性细菌:含有原噬菌体的细胞,也称溶原体。

14.F+菌株:带有F因子的菌株作供体,提供遗传物质。

(二) 是非题:1.在大肠杆菌中,“部分二倍体”中发生单数交换,能产生重组体。

()2.由于F因子可以以不同的方向整合到环状染色体的不同位置上,从而在结合过程中产生不同的转移原点和转移方向。

()3.受体细菌可以在任何时候接受外来的大于800bp的双链DNA分子。

()4.在中断杂交试验中,越早进入F-细胞的基因距离F+因子的致育基因越远。

遗传学:10-第十章 细菌和病毒的遗传

遗传学:10-第十章 细菌和病毒的遗传
本章重点
噬菌体重组分析、顺反测验 细菌基因重组的特点 细菌的中断杂交实验与基因作图 细菌的转化与转导
细菌和病毒在遗传研究中的优越性
世代周期短 群体大
T7phage 20—30min
E.Coli 20min
一支试管 数以百万计
遗传物质简单 一条裸露的核酸
单倍体
不存在显隐关系
第一节 病毒的一般特性及类型
D++ 0 + ++ 0 + +
I E0 0 + 0 +++ 0 +
F+ + 0 + +++ + +
J G0 + + + 00 + + 0
H0 + + 0 0 0 + 0 0 569 I + + + + 0 0 + + 0
J+ + + + + +++ 0
4. 负干扰
一个单交换发生后,会增加另一个单交换的 频率的现象。
基因间
基因内
顺反位置效应 两突变位点杂合体由于排列方式不同
而表型不同的现象。
顺反子 是一个不同突变之间没有互补的功能区。功能
上最小的遗传单位,又称作用子。
拟等位基因 染色体不同位置上 彼此密切连锁,重组
率很低,具有顺反位置效应,决定同一性状的同功能基因。
基因间互补 任何两个非等位基因之间的功能补偿。 基因内互补 某一基因内部不同位点突变之间的互补。
快速溶菌突变体 r
形成较大的噬菌斑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章细菌和病毒的遗传第一节细菌和病毒遗传研究的意义本章教学时数:4-6学时。

本章重点:低等生物的拟有性过程。

本章难点:利用拟有性过程绘制遗传连锁图。

第一节细菌和病毒遗传研究的意义自然界所有的生物都可以归入真核生物(eukaryote)和原核生物(prokaryote)两大类。

细菌和蓝绿藻属于原核生物。

构成原核生物的细胞是原核细胞。

原核细胞最基本的特征是没有明确的核膜和核结构,也没有线粒体等细胞器,不能进行典型的有丝分裂和减数分裂,只通过简单的裂殖方式增殖。

因此,它们的遗传物质传递和重组的方式与真核生物不同。

病毒是最原始的生物,没有细胞结构,甚至自己不能进行自主分裂,只能在宿主细胞内以集团形式增殖。

遗传学研究从经典水平发展到细胞水平,一个重要的条件是Morgan利用了果蝇这个模式试验材料。

从细胞水平发展到分子水平,有两个必不可少的条件:(1)对基因的物理结构和化学结构的了解;(2)以微生物为研究材料。

基因的物理结构和化学结构已经在第三章讲过了,本章主要讨论与细菌和病毒有关的一些问题。

一、细菌(Bacteria)细菌是单细胞原核生物,是地球上生物量最大的一类生物,它占据了地球上大部分的生物干重。

细菌的繁殖非常快,在适宜的条件下,每20分钟就能繁殖一代,从一个细胞裂殖变成两个细胞。

假如以一个细胞为基数,繁殖一代成为2个,繁殖2代成为4个。

繁殖n代,就有2n-1+1个。

一昼夜以24小时计,可以繁殖72代,总个数为271+1=2.36×1021。

细菌的基因组很小,只有一条染色体,研究起来非常方便。

细菌群体大,即使突变率很低,也很容易得到各种不同的生化突变型。

细菌遗传研究的方法:用液体培养基培养细菌,待其繁殖到一定程度,用吸管吸取几滴培养液,滴到固体的琼脂糖培养基上,用一根灭菌的玻璃棒涂布均匀。

若涂布的细菌浓度很低,单个细胞可以分散开来(图7-2)。

由于每个细胞不移动的裂殖增生,经过大约一夜,每个细胞的后代可达107个,且集合成群,成为肉眼可见的菌落(colony),或称为克隆(clone)。

单个细菌繁殖而成的菌落中,每个细胞的遗传组成都应该是一样的,但可以发生突变,突变后所形成的菌落也会发生相应的变化。

突变有几类:形态性状突变、生理特性突变、抗性突变。

菌落形状的突变包括菌落的大小、形状和颜色。

如引起小鼠肺炎的野生型肺炎双球菌本来形成大而光滑的菌落,而有一种突变形的菌落小而粗糙。

生理特性的突变主要是丧失合成某种营养物质的能力,称为营养缺陷型。

如野生型细菌可以自己合成色氨酸,可能突变以后就不能合成了,若不在培养基中添加色氨酸,该菌就会死亡。

营养缺陷型可以用不同的选择培养基来检测。

抗性突变主要是指抗药性的突变。

在野生型细菌培养基中加入青霉素(penicillin),可以阻止细胞壁的形成,从而杀死细菌。

但有抗penicillin的菌株,记为penr,对penicillin敏感的菌株(野生型)记为pens。

检测突变的方法——影印法(图7-3)。

①先在一个母板(master plate)上使细菌长成菌落。

②用一个比培养皿略小的木板,包上消过毒的丝绒。

在母板上印一下,使菌落吸附在丝绒上,再把丝绒印到各种不同成分的培养基上。

(事先应在培养皿的不同方向作好标记)假如在缺乏色氨酸的培养板上有一个菌落不能生长,则该菌落很可能是色氨酸营养缺陷型,记为try-。

即可在母板上的对应位置挑取菌落,继续培养,供进一步研究。

若在加有penicillin的培养板上能够生长的菌落,一定是penr突变型,可以直接挑取,供进一步研究中。

二、病毒(virus)病毒比细菌更为简单,也只有一条染色体(单倍体)。

病毒的结构很简单,只有蛋白质外壳和被外壳包裹着的核酸(遗传物质),没有自身进行代谢和分裂所必须的细胞质和细胞器,必须借助宿主细胞的代谢系统才能繁殖自己。

所以,病毒都是寄生性的,它们必须生活在活细胞内。

病毒按寄主可分为:动物病毒,植物病毒,细菌病毒。

病毒按遗传物质可分:RNA病毒,DNA病毒。

细菌病毒(Bacterio-phage)又称为噬菌体(phage)。

噬菌体是研究得比较清楚的病毒。

噬菌体侵染细菌后,使细菌不能生长,而在均匀生长的细菌培养板上形成噬菌斑(plaque)。

根据噬菌斑的形态和生长特点可以鉴别不同的噬菌体。

噬菌体按其在宿主细胞中的生活方式又可分为:温和噬菌体和烈性噬菌体两大类。

表7-1三、细菌和病毒在遗传研究中的优越性。

①世代周期短,繁殖块,繁殖系数高。

大肠杆菌每20分钟繁殖一代,噬菌体每小时可扩增百倍。

用它们作为研究材料,可以大大节约实验时间。

②易于管理和进行生物化学分析。

③遗传物质比较简单,用于研究基因结构、功能及表达调控机制比较方便。

细菌和病毒均只有一条染色体(DNA or RNA),结构简单,不必通过复杂的化学分析就可以对基因结构和功能进行精细的研究。

④便于研究基因的突变,因为它们是单倍体,所有的突变都能立即表现出来,没有显性掩盖隐性的问题,也不存在分离问题。

而且数量庞大,突变率很低的突变都能检测到。

⑤便于研究基因的作用,代谢作用旺盛,能在短时间内积累大量代谢产物,便于对其本身及其产物进行化学分析。

⑥可用作研究高等生物的简单模型。

高等生物体内机制复杂,目前还难以进行详细研究,而细菌和病毒结构简单,可作为模型研究,为开展高等生物的遗传研究奠定基础,积累资料。

病毒利用寄主的代谢系统进行繁殖,势必其代谢方式与寄主有相似之处,因此可作为研究寄主的简化模型。

四、细菌和病毒的拟有性过程。

细菌和病毒的遗传物质也可以从一个个体传递到另一个个体,也能形成重组体。

因为这不同于真核生物的有性生殖,被称之为拟有性过程。

实际上,所谓的拟有性过程指的是细菌或病毒获取外源遗传物质的方式或途径.第二节噬菌体的遗传分析一、噬菌体的结构与生活周期噬菌体是病毒的一类,结构很简单,基本上由一个蛋白质外壳包裹着一些核酸组成的。

噬菌体的多样性来自于组成其外壳的蛋白质的种类,以及其染色体的类型和结构的不同。

(一)烈性噬菌体(virulent phage)遗传学上应用最广泛的烈性噬菌体是大肠杆菌(E.coli)的T偶列噬菌体。

它们的结构大同小异,外貌一般呈蝌蚪状。

T偶列和T奇列有些不同,T4是比较典型的T偶列噬菌体(图7-4)。

T4噬菌体T偶列噬菌体的头部为六角形,染色体为双链DNA分子。

T偶列噬菌体的尾丝附着在E.coli表面时,通过尾鞘的收缩将DNA经中空的尾部注入宿主细胞。

DNA进入宿主细胞以后,随即破坏宿主的遗传物质,并借助宿主细胞的代谢系统,转而合成大量的噬菌体DNA 和蛋白质,组装成许多许多新的小噬菌体。

最后使宿主细胞裂解(lysis),一下子释放出数百个子代噬菌体(图T4生活周期)。

这样的噬菌体称为烈性的噬菌体(virulent phage)。

T4噬菌体的生活周期(二)温和噬菌体(temperate phage)温和性噬菌体具有溶原性(lisogeny)的生活周期。

这类噬菌体侵入细菌以后,细菌细胞并不马上裂解。

温和性噬菌体有两种类型。

(1)以λ为代表, λ噬菌体侵入细菌后,细菌并不裂解,λ噬菌体的DNA附着于E.coli染色体的gal和bio位点之间的att位点上(attachment site),并通过交换而整合到细菌染色体上。

整合以后,就能阻止其它λ噬菌体的超数感染(superinfection)。

整合在寄主染色体中的噬菌体称为原噬菌体(prophage)。

超数感染:一个细菌受一个以上同种噬菌体感染的现象。

λ噬菌体的DNA被整合以后,既不大量复制,亦不大量转录和翻译。

往往只有一两个基因表达,表达产物作为阻遏物关闭其他基因的表达。

被溶原性噬菌体感染了的细菌称为溶原性细菌(lysogenic bacterium)。

当溶原性细菌分裂成两个子细胞时,λ噬菌体DNA随细菌染色体的复制而复制,每个细胞中有一个拷贝。

原噬菌体通过诱导(induction)可转变为烈性噬菌体,进入裂解周期。

诱导可以通过不同的方式进行,如UV照射、温度改变、与非溶原性细菌的接合等,诱导使阻遏物失活,使噬菌体的其他基因得以表达,促使噬菌体繁殖并进入裂解周期。

(2)P1 噬菌体P1 噬菌体感染E.coli以后,不整合到细菌DNA上,而是独立存在于寄主细胞内。

P1 DNA可以复制但不裂解宿主细胞,也不影响宿主细胞的正常代谢,但P1 的复制可以使宿主的子细胞中也会有P1 DNA,而且可以多于一个拷贝。

受P1 噬菌体感染的细菌也可以因诱导而进入裂解周期。

二、噬菌体的基因重组两个基因型不同的噬菌体同时感染一个宿主细胞,叫做混合感染(mixed infection)或双重感染(double infection)。

共同生存在同一个宿主细胞中的两个噬菌体的DNA也可以发生交换,产生基因重组。

比如,一个噬菌体的基因型是a+b-,另一个噬菌体的基因型是a-b+,同时感染同一个宿主细胞,宿主细胞裂解以后,可能释放出基因型为a+b+和a-b-的重组体来。

研究最深入的噬菌体突变体是T2 噬菌体的r-(rapid lysis速溶性)突变体。

一个正常的T2噬菌体产生的噬菌斑小而边缘模糊,记为r+,突变体r-产生的噬菌斑大而边缘清晰(图T2噬菌斑)。

正常的T2 噬菌体能感染E.coli B株。

突变型E.coli B株能抗T2的感染,记为B/2株,T2 噬菌体的突变型h-又能克服B/2株的抗性,既能侵染B株又能侵染B/2株,形成透明的噬菌斑。

正常T2噬菌体记为h+,只能侵染B株,形成半透明的噬菌斑。

h-和h+均能感染B株。

用基因型为r+h-和r-h+的两种T2 噬菌体同时感染E.coli B株。

这种现象称为双重感染(double infection)。

将双重感染后释放出来的子代噬菌体接种在同时长有B株和B/2株的培养皿内,记录噬菌斑的数目和形态。

h +r -半透明,大h -r +透明,小————亲本型h -r -透明,大h +r +半透明,小————重组型h-r-和h+r+为重组型。

重组值=(重组型噬菌斑数/总噬菌斑数)×100%=(h+r+ + h-r-)/ ( h+r+ + h-r-+ h+r-+ h-r+)×100%不同速溶菌突变型的表现型不完全相同,分别记为ra、rb、rc。

用r-xh+ ×r+h-获得的试验结果如下表。

表7-2杂交组合每种基因型的%重组值h + r -h -r +h + r +h -r -r a - h + × r + h -34.042.012.012.024/100=24%r b - h+ × r + h -32.056.05.96.412.3/100=12.3%r c - h + × r + h -39.059.00.70.91.6/99.6=1.6%根据表7-2的结果可以分别作出3个连锁图。

相关文档
最新文档