实验二、三极管及其单级共射放大电路(一)
单级共射放大电路实验报告
单级共射放大电路实验报告
实验电路图如下:
一、调试静态工作点:
实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量UE=2V 左右,如果偏差太大可调节静态 工作点(电位器RP )。
然后测量UB 、UC
4)关掉电源,断开开关S ,用万用表的欧姆挡(1×1K )测量RB2。
将 所有测量结果记入表中。
5)根据实验结果可用:IC ≈IE=RE UE
,UBE=UB-UE,UCE=UC-UE ,求出静态工作点。
实验及计算数据如下表: 测量值 计算值 UB(V) UE(V) UC(V) RB2(Ω) UBE (V )
UCE(V) IC (mA )
2.6
2
7.2
60
0.6
5.2
2
1)接通电源,从信号发生器上输出一个频率为1KHZ ,幅值为10mV 的正弦信号加入到放大器输入端。
2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫伏表
三、测量输入电阻和输出电阻
输入电阻:Ri=Ii Ui =Rs Ui Us Ui /)(-=ui Us Ui
-Rs
输出电阻:Ro=UoL Uo -=UoL
Uo -RL
在输出电压波形不是真的情况下,用交流毫伏表测出uS 、ui 和uL 记入表中。
断开负载电阻RL ,保持uS 不变,测量输出电压Uo ,记入表中 四、电压放大倍数的测量
Au=Ui Uo =101500
=150。
单管共射放大电路实验报告
单管共射放大电路实验报告实验目的,通过实验,了解单管共射放大电路的基本原理和特性,掌握其工作原理和性能参数的测量方法,加深对电子技术的理论知识的理解。
实验仪器和器件,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单管共射放大电路是一种常用的放大电路,它由一个三极管和几个外围元件组成。
在这个电路中,三极管的基极接地,发射极接负电源,集电极接负载电阻,形成了一个共射放大电路。
当输入信号加在基极上时,三极管会产生放大效果,输出信号会在集电极上得到放大。
实验步骤:1. 按照电路图连接实验电路,接通直流电源,调节电源电压和电流,使其符合电路要求。
2. 使用信号发生器产生输入信号,接入电路,观察输出信号在示波器上的波形。
3. 调节信号发生器的频率和幅度,观察输出信号的变化。
4. 测量输入信号和输出信号的幅度,计算电压增益。
5. 改变负载电阻的数值,观察输出信号的变化。
实验结果与分析:在实验中,我们观察到输入信号在经过单管共射放大电路后,输出信号得到了明显的放大。
通过调节信号发生器的频率和幅度,我们发现输出信号的波形随着输入信号的变化而变化,但是整体上保持了放大的特性。
通过测量输入信号和输出信号的幅度,我们计算得到了电压增益的数值,验证了单管共射放大电路的放大性能。
在改变负载电阻的数值后,我们也观察到了输出信号的变化,进一步验证了电路的特性。
实验结论:通过本次实验,我们深入了解了单管共射放大电路的工作原理和特性,掌握了测量其性能参数的方法。
实验结果表明,单管共射放大电路具有良好的放大特性,能够将输入信号放大并输出。
同时,我们也发现了一些问题,比如在一定频率下,输出信号会出现失真等。
这些问题需要进一步的分析和解决。
实验的过程中,我们也遇到了一些困难和挑战,但通过认真的实验操作和思考,最终取得了满意的实验结果。
通过本次实验,我们不仅加深了对电子技术的理论知识的理解,还提高了实验操作的能力和实验分析的能力。
三极管放大电路实验报告范文
三极管放大电路实验报告范文要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20~200kHz范围内小于0.1dB2、问题分析:通过分析得出放大电路可以采用三极管放大电路。
2.1对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。
综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。
2.2放大电路的设计思路在此放大电路中采用两级放大的思路。
先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。
3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。
4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。
调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3 VA=R2〃R3〃(1+3)R5/[R2//R3//(1+3)R5+R1],其中由于R1较大因此R2、R3也相对较大。
第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。
则需要适当增大R2,减小R3的阻值。
总输出的调试:如果放大倍数不合适,则调节R4与R5的阻值。
即当放大倍数不足时,应增大R4,减小R5如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。
功率的调试:由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。
单级共射放大电路
实验一 单级共射放大电路一、实验目的1.熟悉电子元器件和模拟电子实验箱。
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q 点,A v ,r i ,r o 的方法,了解共射电路的特性。
4.理解放大电路的动态性能。
二、实验仪器1.模拟电子实验箱 2.低频信号发生器 3.交流毫伏表 4.示波器 5.万用表三、预习要求1.复习三极管及单管放大电路的工作原理。
2.了解放大电路静态和动态测量方法。
四、实验概述图1.1为电阻分压式工作点稳定单管共射放大电路。
它的偏置电路采用R b 和R b2组成的分压电路,并在发射极中接有电阻R e ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。
注意:图1.1所示电路中,R 1、R 2为分压衰减电路,除R 1、R 2以外的电路为放大电路。
U o A U s图1.1 工作点稳定的放大电路之所以采取这种结构,是由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R 1、R 2衰减形式。
1.输入电阻的定义为电路的输入电压U i 与输入电流I i 之比,即r i =iiI U r i 为从电路输入端看进去的交流等效电阻,r i 愈大,则电路从信号源取用电流I i 愈小,电路获得的U i 愈大。
2.输出电阻的定义为负载R L 开路,且信号源电压U s =0(但保留其内阻R s ),从输出端看进去的等效电阻。
即输出端开路时,采用戴维南定理求得等效电源内阻。
即r o =ooI U (U s =0,R L = ) r o 为从电路输出端看进去的交流等效电阻,r o 愈小,则电路接上负载后,输出电压下降愈少,即带负载能力愈强。
五、实验内容1.静态测量与调整按图1.1接线(不用接入由R 1、R 2组成的分压衰减电路),确认无误后接通电源,调整R p 使U e =2.2V ,测量电路的静态工作点的相关值(I b 、I c 、U ce ),在这里,为了测量的方便,我们只需测出三极管的三个脚对地的电压,也就是U e 、U b 、U c ,就可以相应推导出Q 点值。
实验三晶体管共射极单管放大器(1)
实验三晶体管共射极单管放⼤器(1)实验⼆晶体管共射极单管放⼤器预习部分⼀、实验⽬的⒈学会放⼤器静态⼯作点的调试⽅法,分析静态⼯作点对放⼤器性能的影响。
⒉掌握放⼤器主要性能指标及其测试⽅法。
⒊熟悉⽰波器、函数发⽣器、交流毫伏表、直流稳压电源及模拟实验箱的使⽤。
⼆、实验原理1.静态⼯作点对放⼤器性能的影响及调试1)静态⼯作点当放⼤电路未加输⼊信号(u i= 0)时,在直流电源作⽤下,晶体管基极和集电极回路的直流电流和电压⽤I BQ、U BEQ、I CQ、U CEQ表⽰,它们在晶体管输⼊和输出特性上各⾃对应⼀个点,称为静态⼯作点。
放⼤器静态⼯作点Q的位置对放⼤器的性能和输出波形有很⼤影响。
以NPN型三极管为例,如⼯作点偏⾼(如图2-2-1中的Q1点),放⼤器在加⼊交流信号以后易产⽣饱和失真,此时u o的负半周将被削底;如⼯作点偏低(如图2-2-1中的Q2点)则易产⽣截⽌失真,即u o的正半周被缩顶(⼀般截⽌失真不如饱和失真明显)。
这些情况都不符合不失真放⼤的要求。
所以在选定⼯作点以后还必须进⾏动态调试,即在放⼤器的输⼊端加⼊⼀定的u i,检查输出电压u o的⼤⼩和波形是否满⾜要求。
如不满⾜,则应调节静态⼯作点的位置。
图2-2-1 静态⼯作点不合适产⽣波形失真最后还要说明的是....:上⾯所说的⼯作点“偏⾼”或“偏低”不是绝对的,应该是相对信号的幅度⽽⾔,如信号幅度很⼩,即使⼯作点较⾼或较低也不⼀定会出现失真。
所以确切地说,产⽣波形失真是信号幅度与静态⼯作点设置配合不当所致。
若要获得最⼤的不失真输出电压,静态⼯作点最好尽量靠近交流负载线的中点,如图2-2-2中的Q 点。
u CEI图2-2-2 具有最⼤动态范围的静态⼯作点+U CC +12Vs U oU图2-2-3 共射极单管放⼤器2) 静态⼯作点的调试和测量⽅法静态⼯作点由偏置电路设置。
放⼤电路常⽤的偏置电路有固定和分压式偏置电路。
固定偏置电路仅由⼀个基极电阻构成,要求电阻在兆欧数量级上,Q 点易受晶体管参数变化和基极电阻值误差的影响。
项目1: 单级共射放大电路
实验一 单极共射放大电路一、实验目的1.掌握三极管(BJT )单极共射放大电路静态工作点的测量和调整方法。
2.了解电路参数变化对静态工作点的影响。
3.掌握BJT 单极共射放大电路主要性能(A v 、R i 、R o )的测量方法。
4.学习通频带的测量方法。
二、实验仪器1.示波器2.函数信号发生器3.数字万用表4.数字毫伏表5.模拟电路实验平台三、实验原理与参考电路1. 参考电路实验参考电路如图4.2.1所示。
该电路采用自动稳定静态工作点的分压式射极偏置电路,其温度稳定性好。
三极管选用国产高频小功率三极管3DG6,或国外型号9013,电位器R P 为调整静态工作点而设。
LR 1c R 1b R 2b R 1e R '1e R eC 1T 1C CCV +2S +-+-PR 2c iV ∙oV ∙图4.2.1 单级共射放大电路2. 静态工作点的估算与调整静态工作点是指输入交流信号为零时三极管的基级电流I BQ 、集电极电流I CQ 和管压降V CEQ 。
在三极管放大电路的图解分析中已经介绍,为了获得最大不失真的输出电压,静态工作点应选在输出特性曲线上,交流负载线的中点。
若工作点选择的太高,易引起饱和失真,而选得太低,又引起截止失真,对于线性放大电路,这两种工作点都不合适的,必须对其进行调整。
图4.2.1所示电路的直流通路如图4.2.2所示。
其开路电压V BB 和内阻R B 分别为11b B R R =∥12b R CC b b b BB V R R R V 121112+=则 )R )(R 1(2e 1e +++-=βB BEQBB BQ R V V IBQ CQ I I β=CQ c CC CEQ I R V V )R R (2e 1e ++-≈BQI CQI CCV BR 1e R 2e R CR BBV图4.2.2 图4.5.1所示电路的直流通路由以上表达式可见,静态工作点与电路参数V CC 、R C 、R e1、R e2、R b11、R b12三极管的β都有关。
共射极放大电路实验报告
一、实验目的1.掌握放大电路静态工作点的测量和调试方法;2.掌握放大电路交流放大倍数、输入电阻、输出电阻的测量方法;3.研究静态工作点对输出波形的影响和负载对放大倍数的影响; 二、实验原理共发射极电路是放大电路三种基本组态之一,放大电路处于线性工作状态的必要条件是设置合适的静态工作点Q ,工作点的设置直接影响放大器的性能。
若Q 点选得太高,会引起饱和失真;若选得太低,会产生截止失真。
本实验采用基极分压式偏置电路,各指标的表达式为: 电压放大倍数 ()c L v beR R A r β-=, 输入电阻be b b i r R R R 21=,输出电阻o c R R =, 实验电路图如下:图5-1 实验电路1.静态工作点测试原理实验中,如果测得U CEQ <0.5V ,说明三极管已饱和;如果测得U CEQ ≈V CC ,则说明三极管已截止。
工作点偏高或者偏低,都会引起波形失真,如图5-2所示。
对于线性放大电路,这两种工作点都是不可取的,必须进行参数调整。
一般情况下,调整静态工作点,就是调整电路中的偏置电阻R b 的大小。
减小R b ,工作点升高;增大R b ,工作点降低,从而使U CEQ 达到合适的值。
为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。
图5-2 静态工作点设置不当引起的失真波形2. 动态指标测试原理放大器的动态指标的测试是在有合适的静态工作点时,保证放大电路处于线性工作状态下进行的。
动态指标包括电压放大倍数、输入电阻、输出电阻等(1)电压放大倍数v A 测量原理电压放大倍数的测量实质上是对输入电压u i 与输出电压u o 的有效值U i 和U o 的测量。
将所测出的U i 和U o 值代入下式,则得到的电压放大倍数为 ov iU A U =(2)输入电阻、输出电阻测量原理放大器的输入电阻i R 是向放大器输入端看进去的等效电阻,定义为输入电压i U 和输入电流i I 之比,即 ii iU R I =测量i R 的方法很多,本实验采用的测量方法称为换算法,测量电路如图5-3所示。
实验1-单级放大电路
实验1 单级放大电路1.实验目的1)学习使用电子仪器测量电路参数的方法。
2)学习共射放大电路静态工作点的调整方法。
3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。
2.实验仪器示波器、信号发生器、交流毫伏表、数字万用表。
3.预习内容1)三极管及共射放大器的工作原理。
2)阅读实验内容。
4.实验内容实验电路为共射极放大器,常用于放大电压。
由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。
1)联接电路(1)用万用表判断实验箱上的三极管的极性和好坏。
由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。
改用万用表测量二极管档测量。
对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。
这说明该三极管是好的。
用万用表判断实验箱上电解电容的极性和好坏。
对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。
这说明该电解电容是好的。
⑵按图1.1联接电路。
⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。
若正常,则将12V 电源接至图1.1的Vcc。
图1.1 共射极放大电路⑷ 测量电阻R C 的阻值。
将V i 端接地。
改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。
建议使用以下方法。
bB cc2b B B R V V R V I -=+p 1b b R R R += B C I I=β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。
单级共射放大电路实验报告.doc
单级共射放大电路实验报告.doc本实验通过搭建单级共射放大电路并进行测试和分析,加深了我们对基本电路的理解和实践技能的提升。
本文将从实验原理、实验步骤、实验结果及分析等方面进行阐述。
一、实验原理1、单级共射放大器的原理共射放大器即输人输出均在晶体管的基极和发射极之间,因此在放大系数上面具有一定的增益,其输入电阻比共集(电流随输入电阻的变化而变化)放大器高,输出电阻比共射(输出电阻不随输入电阻的变化而变化)放大器要低得多,因此同时具有输入输出阻抗都比较好的特点,也就是可以适用于各种电阻范围内的负载。
单级共射放大器是一种常见的基本放大电路,其基本结构如图1所示。
在正常工作状态下,晶体管的基极极间电位为0.6V时,为了使集电极端的电压维持在5V左右,必须给共射电路提供至少5.6V的电压。
为了让信号能够被放大,必须在基极端加上一个交流信号,造成基极到发射极的直流偏置电压波动,而这种交流电压就是引入的输入信号。
3、放大器的放大性能指标放大器的放大性能指标主要包括频率响应、幅度与相位特性、增益、输入输出电阻、噪声系数等多项指标,其中增益是一项非常关键的指标。
二、实验步骤1、实验所需器材和材料(1) C945B三极管1颗(2)1kΩ电阻4个(4)10μf电解电容1个(6)调码器一个(7)万用表(8)示波器(9)直流电源(10)信号发生器2、实验操作流程(1)根据电路图搭建实验电路。
(2)用万用表测出电路中各个元件的参数值。
(3)连接示波器和信号发生器,使信号发生器输出一个1kHz正弦波。
(4)打开直流电源,调节电源电压为5V.(5)显示器显示开始显示信号曲线,用示波器观察信号波形和增益。
(6)通过调节信号源和示波器来得到最佳的放大性能。
三、实验结果及分析搭建完实验电路并进行调试后,我们得到了以下数据:信号频率 | 10kHz | 100kHz | 1MHz |输入电压 | 200mV | 200mV | 200mV |输出电压 | 1.05V | 1.02V | 390mV |增益(Vout/Vin) | 5.25 | 5.1 | 1.95 |从表格数据中可以看出,在低频范围内,输出电压随着输入电压的增加而增加,实现了较好的信号放大效果。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的:本次实验旨在了解单级共射放大电路的工作原理和特点,通过实验掌握该电路的调试方法和测量技巧,提高学生的电路分析和设计能力。
实验原理:单级共射放大电路是一种常用的晶体管放大电路,它具有输入阻抗高、输出阻抗低、电压放大系数大等优点。
该电路的原理图如下所示:搭建电路:为了实现该电路的正常工作,我们需要准备以下元器件和设备:元器件:晶体管2N3904;电容器C1、C2;电阻R1、R2、R3;射极电阻RL。
设备:函数信号发生器;直流电源;示波器;万用表。
接下来,我们按照原理图搭建出如下电路:调试电路:搭建好电路之后,我们需要进行调试。
具体步骤如下:1. 调整直流工作点将电源输出电压调整为2V左右,观察示波器上的波形,调整可变电阻R1,使得直流工作点在Collector特性曲线的下降区域,同时保证该点的电压符合晶体管的工作条件。
2. 选择信号调节函数信号发生器,选择适当的信号源,要保证电路在输出信号时正常工作。
我们可以选择一个1kHz的正弦信号作为输入信号。
3. 测量电压放大系数使用万用表测量电路的输入电压Vi和输出电压Vo,计算出电压放大系数Av=Vo/Vi。
通过多组数据计算平均值,得到最终的电压放大系数。
4. 测量输入输出阻抗使用万用表测量输入阻抗Ri和输出阻抗Ro,记录下相应数据,并结合电路特性进行分析。
实验结果和分析:本次实验得出的数据如下:直流工作点:Uc=1.84V,Ic=1.8mA,Ue=580mV,Ie=1.8mA。
电压放大系数:Av≈55。
输入阻抗:Ri≈1.5kΩ。
输出阻抗:Ro≈200Ω。
通过以上数据可以得出以下分析结果:1. 该电路的输入阻抗较高,表明它能够很好地接受信号源的输入信号。
2. 该电路的输出阻抗较低,表明它能够很好地输出信号,能够在下一级电路中起到良好的负载作用。
3. 该电路的电压放大系数较大,表明它能够很好地增强输入信号,同时保证输出信号的稳定性。
单管共射放大电路实验报告
竭诚为您提供优质文档/双击可除单管共射放大电路实验报告篇一:实验二单管共射放大电路实验实验二单管共射放大电路实验一、实验目的:1.2.3.4.研究交流放大器的工作情况,加深对其工作原理的理解。
学习交流放大器静态调试和动态指标测量方法。
进一步熟悉示波器、实验箱等仪器仪表的使用方法。
掌握放大器电压放大倍数、输入电阻、输出电阻和最大不失真输出电压的测试方法。
二、实验仪器设备:1.实验箱2.示波器3.万用表三、实验内容及要求:1.按电路原理图在试验箱上搭接电路实验原理:如图为电阻分压式共射放大电路,它的偏置电路由Rw、Rb1和Rb2组成,并在发射极接有电阻Re’和Re’’,构成工作点稳定的放大电路。
电路静态工作点合适的情况下,放大器的输入端加入合适的输入信号Vi后,放大器的输出端便可得到一个与Vi 相位相反、幅度被放大了的输出信号V0,从而实现了电压放大。
2.静态工作点的测试打开电源,不接入输入交流信号,调节电位器w2使三极管发射极电位ue=2.8V。
用万用表测量基极电位ub、集电极电位uc和管压降uce,并计算集电极电流Ic。
、3.动态指标测量(1)由信号源输入一频率为1khz,峰峰值为400mv的正弦信号,用示波器观察输入、输出的波形,观察并在同一坐标系下画出输入ui和uo的波形示意图。
(2)按表中的条件,测量us、ui、uo、uo,并记算Au、ri和ro。
4.研究静态工作点与波形失真的关系riuiui??Rsisirouo??ouo?uooRL在以上放大电路动态工作情况下,缓慢调节增大和减小w2观察两种不同失真现象,并记录失真波形。
若调节w2到最大、最小后还不出现失真,可适当增大输入信号。
5.实验数据记录。
(1).静态工作点的测试(2).动态指标测量1.ui和uo的波形uoui(3)测量us、ui、uo、uo,并记算Au、Ri和Ro。
t(4)研究静态工作点与波形失真的关系uouituoui增大Rw2四、思考题(1)总结放大电路静态工作点、负载、旁路电容的变化,对放大电路的电压放大倍数及输出波形的影响。
实验二_单级共射放大电路实验
实验二_单级共射放大电路实验实验二单级共射放大电路实验原理图2,1为电阻分压式工作点稳定单管共射放大电路实验原理图。
它的偏置电路采用R和R组B1B2成的分压电路,并在发射极中接有电阻R,以稳定放大电路的静态工作点。
当在放大电路的输入端加E入输入信号u后,在放大电路的输出端便可得到一个与u相位相反,幅值被放大了的输出信号u,ii0从而实现了电压放大。
RP1 RC1100K 2KR B114.7K 47µF 47µFR B1210K 510C 3R E151图2,1 共射极单管放大电路实验电路在图2,1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B1B2 基极电流I时(一般5,10倍),则它的静态工作点可用下式估算: BRB1U,U BCCR,RB1B2U,UBBEI,,IECR EU,U,I(R,R) CECCCCE电压放大倍数R // RCLA,,β Vrbe输入电阻R,R// R// r iB1 B2 be实验二单级共射放大电路输出电阻R?R OC由于电子电路件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。
在设计前应测量所用元电路件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大电路的静态工作点和各项性能指标。
一个优质放大电路,必定是理论设计与实验调整相结合的产物。
因此,除了学习放大电路的理论知识和设计方法外,还必须掌握必要的测量和调试技术。
放大电路的测量和调试一般包括:放大电路静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态参数的测量与调试等。
1、放大电路静态工作点的测量与调试1)静态工作点的测量测量放大电路的静态工作点,应在输入信号u,0的情况下进行,即将放大电路输入端与地端i短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极C对地的电位U、U和U。
一般实验中,为了避免断开集电极,所以采用测量电压U或U,然后算出BCEECI的方法,例如,只要测出U,即可用 CEUU,UECCCI,I,I, 算出I(也可根据,由U确定I), CCCCECRREC同时也能算出U,U,U,U,U,U。
单管共射极放大电路实验报告
单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。
它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。
本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。
二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。
其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。
通过调整偏置电压和负载电阻,可以使输出信号放大。
三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。
2. 按照电路图搭建单管共射极放大电路。
3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。
4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。
5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。
6. 记录实验数据,并进行分析。
四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。
输入信号的幅值越大,输出信号的幅值也越大。
2. 输出信号的相位与输入信号相位一致,没有发生反相变化。
3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。
4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。
五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。
该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。
同时,我们也了解到了电路中各个元器件的作用和调整方法。
通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。
此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。
六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。
单级共射放大电路实验报告
单级共射放大电路实验报告实验目的,通过搭建单级共射放大电路,了解其工作原理和特性,并通过实验验证其放大功能和频率响应。
实验仪器和器材,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。
实验原理,单级共射放大电路是一种常用的放大电路,其工作原理是利用三极管的放大特性,将输入信号进行放大。
在单级共射放大电路中,输入信号通过输入电容耦合到基极,经过输入电阻进入三极管的基极,通过基极-发射极间的电流放大作用,输出到负载电阻上,实现信号放大。
实验步骤:1. 按照电路图连接实验电路,注意接线正确,电路连接紧密。
2. 调节直流稳压电源,使其输出电压为所需工作电压。
3. 调节信号发生器,输入所需频率和幅值的正弦信号。
4. 连接示波器,观察输入信号和输出信号的波形,记录波形特点和参数。
5. 调节信号频率和幅值,观察输出信号的变化,记录频率响应曲线。
实验结果:经过实验观察和记录,我们得到了以下实验结果:1. 输入信号和输出信号的波形基本一致,幅值经过放大。
2. 随着输入信号频率的增加,输出信号的幅值有所下降,频率响应存在一定的衰减。
实验分析:通过实验结果的观察和分析,我们可以得出以下结论:1. 单级共射放大电路具有信号放大的功能,能够将输入信号进行放大。
2. 由于电容和电感元件的存在,单级共射放大电路存在一定的频率响应特性,随着频率的增加,放大倍数会有所下降。
实验总结:本次实验通过搭建单级共射放大电路,验证了其放大功能和频率响应特性。
同时,通过观察实验现象和分析实验结果,加深了对单级共射放大电路的工作原理和特性的理解。
在今后的学习和工作中,我们将更加熟练地运用单级共射放大电路,并加深对其特性的认识。
实验存在的不足和改进方向:在实验过程中,我们发现了一些不足之处,比如实验中可能存在的误差、实验数据的不够精确等。
因此,我们需要在以后的实验中加强对实验过程的控制,提高实验数据的准确性和可靠性。
通过本次实验,我们对单级共射放大电路有了更深入的了解,也为以后的学习和工作积累了宝贵的经验。
模拟电路应用实验—晶体管单级放大电路实验报告
1 实验二晶体管单级放大电路实验一、实验目的1、熟悉分压式偏置共射极单管放大电路和射极输出器的组成。
2、掌握放大电路静态工作点的调试方法,加深静态工作点对放大电路性能的影响。
3、进一步熟悉常用电子仪器的使用方法。
二、预习要求1、熟悉分压式偏置共射极单管放大电路的构成。
2、熟悉共射放大电路静态工作点及调试方法。
3、什么是信号源电压u s ?什么是放大器的输入信号u i ?什么是放大器的输出信号u o ?如何用示波器和交流毫伏表测量这些信号?4、如何通过动态指标的测量求出放大器的电压放大倍数A V 、输入电阻R i 和输出电阻R o ?5、了解负载变化对放大器的放大倍数的影响。
6、观察静态工作点选择得不合适或输入信号u i 过大所造成的失真现象,从而掌握放大器不失真的条件。
三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。
四、实验内容及步骤1、连线如图1.1所示的分压式偏置共射放大电路。
2、共射放大电路静态工作点的测量图1.1 三极管共射放大电路接通电源V CC ,调节电位器RP1RP1,使发射极电位,使发射极电位U E =2.6V 2.6V,用直流电压表测量,用直流电压表测量U B 、U C 以及电阻R C1上的电压U Rc 的值,填入表1.1中。
中。
表1.1 静态直流工作点参数测量测 量 值 (V ) 计 算 值U E U B U C U Rc I E (mA ) I C (mA ) U CE (V )共射放大电路交流参数测量共射放大电路交流参数测量维持已调好的静态工作点不变,在输入端加入f =1kHz 1kHz、、u s =100mVrms 的正弦波信号,分别用交流毫伏表和双踪示波器测量u s 、u i 、u o 的值,并观察输入、输出波形及其相位,将结果填入表1.2中。
中。
表1.2 动态交流参数测量条件条件 测量值(mV ) 计 算 值 波 形R L u su iu oA V A VS R i R o 输入(u i ) 输出(u o )∞2k Ω输入电阻和输出电阻的计算方法如下:∵ s s i ii u R R R u += ∴ is i s i u u u R R -=∵ L Lo oo o R R R u u +=∴ L o o oo o R u u u R -=式中:式中:u u oo 为R L =∞时的输出开路电压,=∞时的输出开路电压,u u o =2k Ω时的输出负载电压。
三极管共射放大电路实验报告
实验名称:三极管共射放大电路一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、学习共射放大电路的设计方法。
2、掌握放大电路静态工作点的测量与调整方法。
3、学习放大电路性能指标的测试方法。
4、了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。
5、进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。
二、实验内容1、静态工作点的调整和测量2、测量电压放大倍数3、测量最大不失真输出电压4、测量输入电阻和输出电阻5、测量上限频率和下限频率6、研究静态工作点对输出波形的影响三、主要仪器设备1、示波器、信号发生器、晶体管毫伏表2、共射电路实验板四、实验原理与实验步骤单管共射放大电路1、放大电路静态工作点的测量和调试准备工作:(1) 对照电路原理图,仔细检查电路的完整性和焊接质量。
(2) 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。
确认后,先关闭直流稳压电源。
(3) 将电路板的工作电源端与12V 直流稳压电源接通。
然后,开启直流稳压电源。
此时,放大电路处于工作状态。
静态工作点的调整,调节电位器,使Q 点满足要求(ICQ =1.5mA)。
直接测电流不方便,一般采用电压测量法来换算电流。
测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。
因此应通过测电阻Rc 两端的压降VRc ,然后计算出ICQ 。
(若测出VCEQ <0.5V ,则说明三极管已饱和;若VCEQ ≈+VCC ,则说明三极管已截止。
若VBEQ>2V ,则说明三极管已被击穿)2、测量电压放大倍数(1) 必须保持放大电路的静态工作点不变!(2) 从信号发生器输出1kHz 的正弦波,作为放大电路的输入(Vi=10mV 有效值) 。
(3) 用示波器监视输出波形,波形正确后再用交流毫伏表测出有效值。
单级放大电路实验报告
单级放大电路一.实验目的1、熟悉电子元器件和模拟电路实验箱。
2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。
3、学习测量放大器Q点,Av,ri,ro的方法,了解共射放大电路特性。
4、学习放大器的动态性能。
二.实验原理实验电路图1、三极管放大作用当三极管发射结处于正向偏置状态,而集电结处于反向偏置状态时,集电极电流受基极电流控制,且基极电流发生很小变化时集电极电流变化很大,如果将小信号加到基极与集电极之间,即会引起Ib变化,Ib放大后,导致Ic发生很大变化,根据U=Ic*R,电阻上电压发生很大变化,即得到放大信号。
2、静态工作点的测量测量静态工作点时,应在输入信号ui=0的情况下进行,将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位Uc、Ue。
当流过Rb1和Rb2的电流远大于晶体管基极电流Ib时,Ub=(Rb1/(Rb1+Rb2))Ucc,Ie=Ic。
3、放大器动态指标测试调整放大器到合适的静态工作点然后加入输入电压Ui在输出电压uo不失真的情况下,用数字万用表测出ui和uo的有效值Ui和Uo,则Au=Uo/Ui。
三.实验设备1、示波器2、数字万用表3、分立元件放大电路模块4、导线若干四.实验内容及步骤l 、实验电路如上图(1)、用万用表判断实验箱上三极管的极性和好坏、电容C的极性和好坏。
接通电源,用示波器调出准确的正弦波信号,关闭电源。
(2)、按图连接电路,将R p的阻值调到阻值最大位置。
(3)、接线完毕仔细检查,确定无误后接通电源。
2、静态分析3、动态研究( 1 )将示波器接入输入输出端观察U i和U O端波形,并比较相位。
( 2 )信号源频率不变,逐渐加大信号幅度观察UO不失真时的最大值。
五.实验总结及感想1. 从实验数据来看,实验值和理论值还是存在一定差异。
实验中所采用的元件并非理想元件,理论计算时一般都忽略一些小量,所以两者都有误差。
实验一 单级共射放大电路(电类新)
工作点偏高
Q1
Q2 图3.1.1 单级共射放大电路
饱和失真 截止失真
图3.1.2 饱和失真与截止失真
2. 放大器的性能指标
(1)电压增益Au 在输出波形不失真的情况下,给定输入信号,测量相 应的输出信号,则电压增益Au=U0/Ui。 (2) 最大不失真输出电压Uomax 是指在给定静态工作点的条件下,放大器所输出的最 大不失真电压值。 (3) 输入电阻和输出电阻 输入电阻和输出电阻是放大器的重要指标。输入电阻 ri的大小对信号源有影响;输出电阻r0的大小决定着负载 发生变化时电压放大倍数的稳定性。
实验一
一、实验目的
单管交流放大电路
1. 熟悉单管放大电路原理和电子实验台的使用。 2. 掌握放大器静态工作点的调试方法及对放大电路性能 的影响。 3. 学习测量放大电路Q点,AV ,ri,r0 的方法,了解共 射放大电路的特性。 4. 学习放大电路的动态性能。
二、实验原理
1. 静态工作点的选取与调整 放大器的静态工作点是由晶体管的参数和放大器的 偏置电路共同决定的。三极管的输出特性曲线有放大区、 饱和区和截止区三个工作区。 静态工作点的调整方法: 在不加输入信号的情况下,测量放大器的静态工作点, 使之工作于线性放大区。静态工作点选取的过高或过低, 都会使输出失真。
下周实验前交实验报告,请按学号排好!
减小RP,饱和失真
增大Ui ,非线性失真
单管放大器接线示例
*5. 放大电路输入电阻和输出电阻测量 (1)输入电阻测量 如图3.1.4在输入端串接一个5.1K电阻,测量Us与Ui,即 可计算 ri=R· Ui/(Us -Ui) (2)输出电阻测量 根据图3.1.5和步骤2测量的放大器空载及接负载RL=5.1K 的数据,可计算输出电阻 r0=(U0 /U0L-1)RL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五 实验思考题: 1. 总结 Rc、RL 及静态工作点对放大器电压放大倍数的影响。
2. 讨论静态工作点变化对放大器输出波形的影响。
成绩评定:
指导教师签字: 年 月
日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2.测量电压放大倍数 在放大器输入端加入频率为 l kHz,Ui ≈ 10 mV 的正弦信号,同时用示波器观察放大器输出电压 Uo 波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的 Uo 值,并用双踪示波器观察 Uo 和 Ui 的相位关系,记入表 2。 表2 Rc(kΩ) RL(kΩ) Uo(V) AV Ui / Uo 波形
Rw1 100KΩ 20KΩ
Rc 2.4KΩ C2 + 10μF
VCC +12V
+
C1 +
+
Re1
10μF 100Ω Re2 1KΩ
+
Rb12 Vi 20KΩ -
RL 2.4KΩ Ce 100μF -
Vo
图 1 单级共射放大电路
四 实验内容(表格): 1.测量电路在线性放大状态时的静态工作点 按图 1 所示电路, 接通直流电源前, 先将 Rw 调至最大, 函数信号发生器输出旋钮旋至零。 接通+12V 电源,调节 Rw,使 Ic = 2.0 mA(即 UE = 2.0 V) 。用数字万用表直流电压表档测量 UB、UE、Uc 及用 万用表Ω 档测量 RB11 值,并记入表 1。 表1 测量值 计算值 UB(V) UE (V) Uc (V) Rb11(kΩ) UBE(V) UCE(V) I ( c mA) IB(μA) β
实
验
报
告
课程名称:
实验项目名称:三极管及其单级共射放大电路(一)
专业:
报告人:
学号:
班级:
实验时间:
天津城建大学
控制与机械工程学院
一 实验目的: 1.了解晶体三极管的命名方法和主要技术指标,学习识别其类型和管脚的技能。 2.学习共射极放大电路静态工作点的测量与调整,研究静态工作点对放大电路动态性能的影响。 3.学习放大电路主要性能指标(电压放大倍数)的测量方法。 二 实验设备和器材: 1.数字示波器;数字函数信号发生器;数字交流毫伏表;数字万用表;电子学综合实验装置 2.单管放大器实验板。
三 实验原理(电路): 工作点稳定的分压式共射放大电路,它既有电流放大作用,又有电压放大作用。该电路信号从基极 输入,集电极输出。输入电阻与相同材料的二极管正向偏置电阻相当,输出电阻较高,且输出电压与 输人电压反相,故用于小信号的放大,或用于多级放大电路的中间级。实验参考电路如图 1 所示。
Rb11