光伏并网逆变器选型细则
光伏并网逆变器选型细则
并网逆变器选型细则并网逆变器就是将太阳能直流电转换为可接入交流市电得设备,就是太阳能光伏发电站不可缺少得重要组成部分。
以下对光伏电站设计过程中并网逆变器及其选型做比较详细得介绍与分析。
1. 并网逆变器在光伏电站中得作用光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统得基本特点就就是太阳电池组件产生得直流电经过并网逆变器转换成符合市电电网要求得交流电之后直接接入公共电网。
1、1 并网光伏电站得基本结构1、2 并网逆变器功作用与功能并网逆变器就是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合得综合体现,它就是光伏并网发电系统中不可缺少得关键部分。
并网逆变器得主要功能就是:◆最大功率跟踪◆DCAC转换◆频率、相位追踪◆相关保护2. 并网逆变器分类并网逆变器按其电路拓扑结构可以分为变压器型与无变压器型逆变器,其中变压器型又分为高频变压器型与低频变压器型。
变压器型与无变压器型逆变器得主要区别在于安全性与效率两个方面。
以下对三种类型逆变器做简单介绍:◆高频变压器型采用DCACDCAC得电路结构,设计较为复杂,采用较多得功率开关器件,因此损耗较大。
◆低频变压器型采用DCACAC得电路结构,电路简单,采用普通工频变压器,具有较好得电气安全性,但效率较低。
◆无变压器型采用DCAC得电路结构,无电气隔离,电压范围较窄,但就是损耗小、效率高。
3. 并网逆变器主要技术指标a、使用环境条件逆变器正常使用条件:包括工作温度、工作湿度以及逆变器得冷却方式等相关指标。
b、直流输入最大电流c、直流输入最大电压d、直流输入MPP电压范围逆变器对太阳能电池部分进行最大功率追踪(MPPT)得电压范围,一般小于逆变器允许得最大直流输入电压,设计电池组件得输出电压应当在MPP电压范围之内。
e、直流输入最大功率大于逆变器得额定输出功率,即通常所说得“逆变器功率”。
为了充分利用逆变器得容量,设计接入并网逆变器得电池组件得标称功率可以等于直流侧输入最大功率。
光伏发电工程逆变器选型技术规范 150422
将光伏子方阵连接,实现光伏子方阵间并联的箱体,并将必要的保护器件安装在此 箱体内。通常情况下,光伏直流配电柜的每一路输入与前端的光伏组串汇流箱相连接。 3.6 光伏组件 PV module
根据导电或吸湿的尘埃、电离气体或盐类由于相对湿度以及由于吸湿或凝露导致表 面介电强度和/或电阻率下降事件发生的频度而对环境条件作出的分级。 3.11 箱式光伏逆变房 box PV inverter room
第 2 页 共 35 页
Q/CPI XX—2014 光伏发电工程逆变器选型技术规范
集成的光伏发电成套设备,它应包括逆变房箱体、光伏逆变器、直流配电柜、通信 装置以及相应的辅助设备等。 3.12 隔离室 compartment
箱式光伏逆变房的一部分,除了内部连接,控制和通风需用的通道外,其余为封闭 的。
注:当箱式光伏逆变房集成了升压变压器部件后,通常需要增加隔室,隔室可以由其中包含的 主要元件来命名,例如分别成为变压器隔室、高压开关设备和控制设备隔室、低压开关设备和控制 隔室、逆变器发电单元隔室等。
- I-
Q/CPI XX—2014 光伏发电工程逆变器选型技术规范
8.5 地形....................................................... 18 9 关键元器件技术要求 .............................................. 18
9.1 总则....................................................... 18 9.2 外壳....................................................... 19 9.3 功率半导体器件............................................. 19 9.4 开关电器................................................... 19 9.5 直流侧浪涌保护器........................................... 20 9.6 母线电容................................................... 21 9.7 滤波器..................................................... 21 9.8 风扇....................................................... 21 10 质量保证能力要求 ............................................... 22 10.1 质量保证能力要求.......................................... 22 10.2 成品逆变器的出货前检验和交付放行.......................... 22 10.3 售后服务.................................................. 22 附录 A 箱式光伏逆变房通用技术条件 .................................. 24
并网光伏逆变器的选型与应用
电力技术应用Telecom Power Technology 2023年10月25日第40卷第20期69装方便,无须专业工具和设备,不用配备专门的配电室、直流汇流箱或直流配电柜等连接直流线路。
集中式和组串式逆变器光伏发电系统的配电方式与设备不同,导致整个发电系统铺设的线缆数量也不同。
集中式逆变器要使用直流汇流箱进行一次汇流,而直流汇流箱一般都安装在光伏方阵旁边,因此这部分线缆的使用量比组串式逆变器系统要少很多。
集中式逆变器系统要从直流汇流箱到直流配电柜进行二次汇流,这部分使用的线缆相对较粗。
而组串式逆变器系统无须直流汇流箱和直流配电柜,线路成本相对较低。
对于逆变器输出的交流侧线缆,集中式逆变器系统使用的线缆比组串式逆变器系统少。
3.2.2 系统效率方面目前,集中式和组串式并网逆变器的效率都可以达到98%以上。
集中式逆变器系统的光伏方阵需要经过2次汇流才输入逆变器,其MPPT 系统无法监控到每一路光伏组串的运行情况,因此无法确保每一路光伏组串都达到MPPT 状态,只能对整个光伏方阵进行跟踪调控。
相比之下,组串式逆变器将每组或每几组光伏组串输入1台逆变器,逆变器单独对输入的光伏组串进行MPPT ,使每组或每几组串产生最多的电量。
组串之间独立工作,即使某一组串因故障断开,其他组串也不受影响继续正常发电,从而实现整个发电系统最大化的能量输出。
3.2.3 系统运行特性方面不同类型的并网逆变器会对系统运行性能产生不同的效果。
集中式逆变器系统不具备冗余能力,一旦出现问题,整个系统都将停止发电。
而组串式逆变器系统具有冗余运行能力,当个别逆变器发生故障时,整个系统不受其影响,依然可以正常发电。
此外,集中式逆变器系统可集中并网,便于运行管理;组串式逆变器系统则是分散就近并网,系统损耗小。
4 结 论逆变器作为太阳能光伏发电的核心设备,通过合理的选型,可以有效提高能源利用效率,平衡供需关系,提高电网可靠性,稳定电力系统,同时节约系统成本。
光伏逆变器的选型原则
光伏逆变器的选型原则主要包括以下几点:
逆变器的功率匹配:逆变器的额定功率应与光伏电池组的总容量相匹配,以确保最大化发电效率。
通常情况下,逆变器的额定功率应略大于光伏电池组的总容量。
逆变器的效率和质量:选择高效率和高质量的逆变器可以提高光伏系统的发电效率和可靠性。
逆变器的效率越高,转换损耗越小,发电效率越高。
逆变器的输入电压范围:逆变器的输入电压范围应与光伏电池组的输出电压范围相匹配。
这样可以确保逆变器能够正常工作,并最大限度地利用光伏电池组的发电能力。
逆变器的可靠性和耐用性:选择具有良好的可靠性和耐用性的逆变器可以减少维护和更换的成本。
一些关键指标,如逆变器的寿命、温度范围、防水防尘等级等,都是评估逆变器可靠性的重要因素。
逆变器的监控和通信功能:选择具有良好的监控和通信功能的逆变器可以实时监测光伏系统的运行状态,及时发现和解决问题。
一些高级功能,如远程监控、数据存储和分析等,可以提升系统的管理和维护效率。
逆变器的成本和性价比:在满足以上要求的前提下,选择价格合理、性价比高的逆变器可以降低系统的总投资成本。
需要综合考虑逆变器的品牌声誉、售后服务等因素。
总之,光伏逆变器的选型原则是根据光伏电池组的容量、效率要求、电压范围、可靠性和耐用性、监控和通信功能、成本和性价比等因素综合考虑,选择合适的逆变器以实现最佳的发电效果和经济效益。
逆变器选型标准
逆变器选型标准
逆变器选型标准主要包括以下几个方面:
1.匹配光伏组件:逆变器的额定电压、电流和功率需要与光伏组件的输出特性匹配,以充分利用光伏组件的发电潜力。
2.适应环境:逆变器需要适应不同的环境条件,包括温度、湿度和海拔等。
在选型时需要考虑当地的环境条件。
3.高效稳定:逆变器需要保持高效和稳定的工作状态,以确保光伏电站的最大发电量和长期可靠性。
4.网络连接:逆变器需要与电网连接,因此需要选择适合当地电网的逆变器。
此外,逆变器需要具有网络监控功能,方便对光伏电站的运行状态进行实时监控。
5.安全可靠:逆变器需要保证安全可靠,以防止意外故障和火灾等安全事故。
因此,逆变器的质量和可靠性是选型时的重要考虑因素。
6.成本效益:逆变器的价格和性能是选型时需要考虑的重要因素。
需要综合考虑逆变器的性能、质量、可靠性和价格等因素,选择最适合的逆变器型号。
7.技术要求:逆变器的转换效率、稳定性和其他技术指标也需要考虑。
转换效率高的逆变器可以减少能量损失,提高系统发电效率。
8.并网光伏逆变器选型时,应注意以下几个方面的指标:具有
实时监测功能、具有最大功率跟踪功能(MPPT)、逆变器输出
效率要高、逆变器的输出波形要符合上网要求。
综上所述,逆变器选型时需要综合考虑以上几个方面的因素,选择适合项目需求的逆变器型号。
SG系列光伏并网逆变器选型手册
光伏并网逆变器选型指南
2.控制部分是采用高速度的微处理器为核心的控制部件,所以具有了输出过载,输出高、低电压保护动作快,抗干扰能力强,稳压精度高等特性。
E:附加功能,人性化设计
人性化界面设计
数据显示多样化
方便的窗口排列设置
避免重复运行的设计
多种时间日期显示
F:不断创新,力求完美(无线监控介绍)
系统描述:
设备只需插入一张SIM卡,就可通过GSM网络以短消息或数传(Data)的形式完成远程的双向数据传输。而远程终端可以是PC机,移动手机或其他移动设备。
4.1.1LED指示灯说明
LED 灯
含义
并网
并网工作(并网发电,灯亮)
离网
停止并网(离网,灯亮)
4.1.2按键说明
1)监控系统单元共设有五个按键,功能名称按顺序分别为:返回键(ESC)、上翻键( ),下翻键( ) 、确认键(read)、复位键(Reset)。
2)液晶显示菜单中的一级菜单包括:系统设置、实时时钟、实时监控、故障记录。
1、1MW以上光伏发电的系统:建议选择多台GSG250KC的电源进行并联运行;
2、500KW至1MW的系统:建议选择多台GSG100KC的电源进行并联运行;
3、200KW至500KW的光伏发电系统:建议选择多台GSG50KC的并联运行;
4、200KW以下的光伏发电系统:建议采用多台GSG20KC或GSG50KC的电源进行并联运行。
具体功能
A:实时数据显示与处理
采用召唤应答式规约,在线实现数据实时显示。
对于实时数据处理后,可以参照对比专家系统意见,提供最佳电源使用优化方案。
光伏逆变器选型与布置
光伏逆变器选型与布置光伏逆变器是将太阳能电池板所产生的直流电转换为交流电的关键设备。
在光伏发电系统中,逆变器的选型和布置是非常重要的,它直接影响到光伏系统的性能和效果。
本文将针对光伏逆变器选型与布置的相关问题进行探讨,希望能够为读者提供一些有用的指导和建议。
首先,对于光伏逆变器的选型,我们需要考虑以下几个方面:1. 功率要求:光伏逆变器的功率要与太阳能电池板的输出功率相匹配。
因此,我们需要了解太阳能电池板的额定功率,并根据其输出功率选择逆变器的容量。
一般而言,光伏逆变器的额定功率应略大于太阳能电池板的总输出功率,以确保系统的正常运行。
2. 逆变器类型:光伏逆变器分为单相逆变器和三相逆变器两种类型。
单相逆变器适用于小功率的家庭光伏发电系统,而三相逆变器适用于大功率的商业或工业光伏发电系统。
根据实际需求选择适当的逆变器类型可以提高系统的效能和可靠性。
3. 输出电压和频率:光伏逆变器的输出电压和频率应该适应当地的电网要求。
不同国家和地区的电网使用的电压和频率可能有所不同,因此,在选型时需要确保逆变器的输出电压和频率与当地电网匹配。
4. 效率和可靠性:在选型过程中,我们还需要考虑逆变器的效率和可靠性。
高效的逆变器可以将更多的太阳能电能转换为电网可用的交流电能,从而提高光伏发电系统的效率。
同时,可靠性也是一项重要考虑因素,可靠的逆变器可以确保系统的稳定运行。
除了逆变器的选型外,逆变器的布置也是影响光伏发电系统性能的重要因素。
以下是一些建议:1. 安装位置选择:光伏逆变器应该安装在通风良好、阴凉的地方,以确保其散热效果。
同时,还要避免暴露在阳光直射的地方,以防止过热。
逆变器的安装位置也应该尽量避免尘土、湿气等对其产生不利影响的环境。
2. 连接线路布置:逆变器和太阳能电池板之间的电缆连接线路应选用合适的规格和材质,以减少能量损耗。
此外,线路的长度和布置方式也需要合理设计,避免过长的线路和弯曲的布置方式对系统产生影响。
光伏发电逆变器的选择
光伏发电逆变器的选择
在国内外大型光伏并网发电站中,一般采用100kW(含)以上的逆变器。
功率等级一般分为:100kW、150kW、250kW、500kW、630kW和1MW,一般在交流输出端带有隔离变压器。
在250kW以上的逆变器中,也有不带输出隔离变压器的机型,即将升压变压器与逆变器的隔离变压器合二为一。
本项目中,拟选用500kW无隔离变的具有较高的转换效率的并网逆变器。
考量逆变器的安装使用环境、可靠性、市场价格,初步选用500kW逆变器。
本工程光伏并网发电设计20个1MWp发电矩阵单元,每个1MWp发电单元与两台500kW相连。
总计配置40台500kW并网液冷逆变器。
根据市场调研,拟选用的逆变器技术参数如下:
电网输出
辅助电源
光伏输入
逆变器柜体。
光伏项目逆变器选型要点全总结
光伏项目逆变器选型要点全总结43逆变器选型4.3.1逆变器技术指标逆变器选型主要对以下指标进行比较:逆变器输入直流电压的范围:由于太阳电池组串的输出电压随日照强度、天气条件及负载影响,其变化范围比较大。
要求逆变器能够在较大的直流输入电压范围内正常工作,并保证交流输出电压稳定。
逆变器输出效率:大功率逆变器在满载时,效率必须在95%~98%以上。
中小功率的逆变器在满载时效率必须在90%以上。
即使在逆变器额定功率10%的情况下也要保证90%(大功率逆变器)以上的转换效率。
逆变器输出波形:为使光伏阵列所产生的直流电经逆变后向公共电网并网供电,就要求逆变器的输出电压波形、幅值、相位及频率等与公共电网一致,以实现向电网无扰动平滑供电。
所选逆变器应输出电流波形良好,波形畸变以及频率波动低于国家标准要求值。
最大功率点跟踪:逆变器的输入终端阻抗应适应于光伏发电系统的实际运行特性。
保证光伏发电系统运行在最大功率点。
可靠性和可恢复性:逆变器应具有一定的抗干扰能力、环境适应能力、瞬时过载能力及各种保护功能,如:过电压情况下,光伏发电系统应正常运行;过负荷情况下,逆变器需自动向光伏电池特性曲线中的开路电压方向调整运行点,限定输入功率在给定范围内;故障情况下,逆变器必须自动从主网解列。
监控和数据采集:逆变器应有多种通讯接口进行数据采集并发送到集控室,监控设备还应有模拟输入端口与外部传感器相连,测量日照和温度等甥g。
逆变器主要技术指标还有:额定容量,输出功率因数,额定输入电压,电流,电压调整率,总谐波畸变率等。
4.3.2逆变器选型并网逆变器主要分为:集中式光伏逆变器、组串式光伏逆变器和集散式光伏逆变器,现将三类逆变器比较分析如下。
(1)逆变器方案比较集中式光伏逆变器:设备功率在500kW到3150kW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20β体积较大,室内立式安装或加外壳室外安装。
SG系列光伏并网逆变器选型手册概要
SG系列光伏并网逆变器选型手册概要摘要为了更好地应对光伏发电领域的需求,本手册提供了SG系列光伏并网逆变器的选型指南。
本手册概述了SG系列逆变器的功能、性能和适用场景,为用户提供了详细的选型参考和建议。
通过本手册的阅读和理解,用户能够更好地选购适合自己需求的SG系列光伏并网逆变器,并在实际应用中发挥其最大价值。
SG系列光伏并网逆变器概述SG系列光伏并网逆变器是一种采用先进的电子技术和通讯技术开发的高效逆变器。
该系列逆变器可以将可再生能源(如太阳能)转换为电力,并将其汇入电网中。
它们可以在不同的应用场景下产生最佳效果,例如家庭、商业和工业用途。
SG系列光伏并网逆变器具有以下特点:•高效:该系列逆变器采用先进的功率电子器件和优化的控制算法,能够实现高效的能量转换和输出,提高系统总体效率。
•安全:该系列逆变器符合国际电力行业安全标准,具有可靠的人性化安全保护功能,确保用户和设备的安全可靠。
•稳定:该系列逆变器具有良好的抗干扰能力,能够应对不同的应用环境和复杂的电力工况,保证电力系统的稳定运行。
•智能:该系列逆变器具有智能化的管理功能,可以通过Web服务器、远程监控、数据分析等方式实现对系统的实时监测和管控,提高系统的可靠性和易用性。
SG系列光伏并网逆变器选型指南选型参考SG系列光伏并网逆变器的选型应考虑以下四个方面的因素:1.应用场景:根据应用环境、电力工况和需求特点等因素,选择适合场景的型号和规格。
2.输出功率:根据系统的总负载需求和组串的数量、功率等因素,选择输出功率最佳的型号和规格。
3.匹配组串:根据光伏组件的电压等参数,选配逆变器的输入工作电压范围,并保证组串的最大输出功率小于逆变器额定输入功率。
4.费用和投资回报率:根据预算和投资回报率的考虑,选择性价比最高的逆变器。
选型建议根据上述选型参考,建议用户在选购SG系列光伏并网逆变器时,应注意以下几个事项:1.确定应用场景:确定标的用途,例如工业用途、商业用途、住宅用途等。
光伏逆变器的选购技巧
1、确认自己的光伏电站适合安装多大功率的逆变器一般电站安装容量是根据土地或者屋顶使用面积来计算的,计算时要考虑到倾斜角度、支架安装方式等,以尽量不出现阴影遮挡为原则。
2、考察逆变器护有几路MPPT几路输入逆恋器MPPT的路数在很大程度上决定着一个光伏电站的发电量,而逆亦器输入路数往往决定了一个光伏电站是否更加容易进行配板设计,更加节省线缆等辅助材料。
3、逆变器的发电能力逆变器的发电能力跟逆变器的散热、元器件性能,故障率等很多方面都有关系,在参数上主要看效率和电压范围,逆变器工作电压范围下限越低则逆变器会启动越早,关机越晚,而工作电压范围上限越高,逆变器在高峰发电时的承受能力越强,光照更强的时候不容易降额甚至关机,运行更稳定。
4、保护问题通常并网逆变器的基本保护功能有:输入过压欠压保护,输入过流保护,短路保护,过热保护,防雷击保护。
并网保护有:输出过压保护,输出过流保护,过频,欠频保护以及防孤岛效应保护。
5、散热解决方案目前行业内通用的散热方式有强制风冷、自然冷却、水冷三种,其中水冷方式主要应用于大型集中式逆变器目前应用较少。
从逆变器角度来看,家庭用单相逆变器功率等级较低,散热较少目前应用于家庭。
6、超配能力逆变器的超配能力一般跟机器的输入路数及可以承担的最大直流输入功率有关,目前正规品牌逆变器在设计时都会预留部分超配余量,一般为1.1倍左右。
7、售后服务能力目前国内逆变器行业内一般采用5年质保,同时部分扶贫项目中也会提出6年或8年质保要求。
第二个要注意的是逆变器供应商的售后服务响应速度,逆变器出现故障后是否能迅速恢复发电是直接关系光伏电站发电量的大问题。
原标题:光伏逆变器的选购技巧。
并网光伏电站逆变器选型分析
并网光伏电站逆变器选型分析摘要:逆变器作为光伏发电站的重要组成部分,逆变器的可靠性、安全性直接关系太阳能发电系统整体的平稳运行,其转换效率直接影响太阳能光伏发电系统的发电效率,其使用寿命直接关系到光伏发电系统的使用年限。
关键词:定义及分类;功能;选择要点1.概述随着能源需求的增长以及化石能源消费带来的资源枯竭和环境污染问题的日益突出,太阳能等可再生能源越来越受到全球的重视。
在各国政府的推动下,近年来太阳能开发利用规模快速扩大,技术进步和产业升级加快,成本显著降低,已成为全球能源转型的重要领域。
截至 2017 年底,全球光伏发电站装机总规模已超过 400GW。
逆变器的可靠性、转换效率和成本是逆变器产品的核心要素,未来光伏逆变器的发展方向也将围绕这三个核心要素展开,主要朝着高可靠性、高转换效率和低成本的趋势发展。
同时,也还有其他一些需考虑的因素,如因地制宜的逆变方案、智能化的逆变方案、光储一体化逆变方案等。
2.逆变器的定义及分类逆变器又称电源调整器、功率调节器。
光伏逆变器是连接太阳能光伏电池板和电网之间的电力电子设备,主要功能是将太阳能电池板产生的直流电通过功率模块转换成可以并网的交流电。
光伏逆变器按电站系统不同分为并网逆变器,离网逆变器,储能逆变器三大类。
按照逆变器输出分为单相逆变器、三相逆变器。
逆变器按照功率和用途可分为微型逆变器、组串式逆变器、集中式逆变器、集散式逆变器四大类。
目前建设的光伏电站绝大多数均为并网光伏电站,本文分析的逆变器选型均是指并网型逆变器的选型。
3.并网逆变器的功能并网逆变器是连接光伏阵列和电网的关键部件,除了把直流电能变成电网能接收的交流电外,还有以下特殊功能:最大功率跟踪功能,保证输出功率最大化。
太阳能电池板的电流和电压是随太阳辐射强度和太阳电池组件自身温度而变化的,因此输出的功率也会变化,为了保证输出电力最大化,就要尽可能的获取电池板的最大输出功率。
逆变器的MPPT跟踪功能就是针对这一特性设计的。
干货光伏逆变器种类及选型指导
干货光伏逆变器种类及选型指导光伏逆变器专用于太阳能光伏发电领域的逆变器,是光伏系统中不可缺少的核心部件,其最大的作用在于将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。
并网逆变器作为光伏电池与电网的接口装置,将光伏电池的电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用,为了实现最佳方式的太阳能转换,这势必要求逆变器多样化,这是由于建筑的多样性导致太阳能电池板安装的多样性,同时为了使太阳能的转换效率最高同时又兼顾建筑的夕卜形美观的缘故。
目前通用的太阳能逆变方式为:集中逆变器、组串逆变器,多组串逆变器和组件逆变(微型逆变器)。
01集中逆变器集中逆变器集中逆变器设备功率在5OKW到630KW之间,系统拓扑结构采用DC-A C 一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP 20。
体积较大,室内立式安装。
一般用与大型光伏发电站(>10kW)的系统中,大量并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,让它非常接近于正弦波电流。
其最大特点是系统的功率高,成本低。
但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。
同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。
最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。
02组串逆变器组串逆变器组串逆变器已成为目前国际市场上最流行的逆变器。
其是基于模块化概念基础上的,每个光伏组串QkW-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。
很多大型光伏电厂都使用的是组串逆变器。
其优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳点与逆变器不匹配的情况,从而增加了发电量。
02 光伏并网逆变器选型专题
光伏并网逆变器选型专题1 光伏并网逆变器选型逆变器是光伏发电系统的核心设备和技术关键,其选型对于发电系统的转换效率和可靠性具有重要作用。
它将方阵发出的直流电转换为易于升压后进行远距离传输的交流电,并网型逆变器还可根据并网点的电能特性调整逆变器交流输出侧的频率、电压、电流、相位、有功和无功。
1.1 并网型光伏逆变器类型及技术路线光伏逆变器把光伏组件产生的直流电转换成交流电后馈入电网,逆变器的性能和可靠性决定着发电的电能质量和发电效益,因此光伏逆变器在整个光伏发电系统里处于一个核心地位。
目前并网型光伏逆变器主要有四种技术路线,分别为集中式逆变器、组串式逆变器、集散式逆变器、微型逆变器。
1)集中式逆变器集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。
因此,逆变器的功率都相对较大。
光伏电站中一般采用500kW 以上的集中式逆变器。
图 1.1-1 集中式逆变器外形图集中式逆变器的特点如下:(1)功率大,数量少,便于管理;元器件少,稳定性好,便于维护;(2)谐波含量少,电能质量高;保护功能齐全,安全性高;(3)有功率因素调节功能和低电压穿越功能,电网调节性好。
(4)集中式逆变器MPPT数量少,MPPT电压范围较窄,应对不一致性的能力差,但价格便宜。
2)组串式逆变器组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。
因此,逆变器的功率都相对较小。
光伏电站中一般采用50kW以下的组串式逆变器。
图 1.1-2 组串式逆变器外形图组串式逆变器特点如下:(1)不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量,但价格相对集中式逆变器较贵;(2)MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长;(3)体积较小,占地面积小,无需专用机房,安装灵活;(4)自耗电低、故障影响小。
3)集散式逆变器集散式逆变器是新提出的一种逆变器形式,其主要特点是“集中逆变”和“分散MPPT跟踪”。
光伏斜屋顶并网逆变器选型及容量计算
光伏斜屋顶并网逆变器选型及容量计算近年来,随着可再生能源的快速发展和环保意识的提高,光伏发电作为一种清洁、可持续的能源形式,在建筑领域得到了广泛应用。
而光伏斜屋顶安装是其中一种常见的光伏发电系统配置方式。
本文将重点讨论光伏斜屋顶并网逆变器的选型及容量计算问题。
一、光伏斜屋顶并网逆变器选型光伏斜屋顶并网逆变器的选型是整个光伏发电系统配置中的重要环节之一。
在进行选型时,需要综合考虑以下几个方面的因素。
1.1 屋顶安装环境首先,需要对屋顶的安装环境进行充分的了解。
包括屋顶的朝向、倾角、阴影情况等。
这些因素将直接影响并网逆变器的选型。
例如,朝向正南的屋顶可以获得更充足的日照,因此可以选择功率较大的并网逆变器。
而有阴影情况的屋顶,则需要选择具有阴影容忍能力较强的逆变器。
1.2 光伏组件的参数光伏组件的参数也是选型过程中需要考虑的因素之一。
包括组件的额定功率、开路电压、短路电流等。
并网逆变器的选型需要保证其输入电压范围与光伏组件的参数相匹配,以提高系统的整体效率。
1.3 并网电压要求另外,还需要考虑并网逆变器的并网电压要求。
根据国家要求和电网标准,不同的地区和系统具有不同的并网电压要求。
因此,在进行逆变器选型时,需要选择符合相应要求的产品,以确保系统的安全运行和有效并网。
1.4 逆变器的质量和性能最后,选型过程中还要考虑逆变器的质量和性能。
逆变器作为整个光伏发电系统的核心部件,其稳定性、转换效率等性能指标将直接影响系统的发电效益。
因此,在选型时需选择具有可靠性高、效率较高的逆变器产品。
二、光伏斜屋顶并网逆变器容量计算光伏斜屋顶并网逆变器的容量计算需要根据实际的光伏组件容量、电网条件和用户需求来确定。
一般而言,可以按照以下步骤进行容量计算。
2.1 确定光伏组件总装机容量首先,需要根据实际情况确定光伏组件的总装机容量。
可以通过测算屋顶可利用面积以及光伏组件的安装密度来获得。
例如,若屋顶可利用面积为100平方米,光伏组件安装密度为150W/㎡,则总装机容量为100 * 150 = 15000W(即15kW)。
光伏发电站设计规范逆变器选取及安装要点
光伏发电站设计规范逆变器选取及安装要点光伏发电作为清洁能源的一种重要形式,受到越来越多人的关注和青睐。
在光伏发电站的设计与建设中,逆变器的选取和安装是至关重要的环节。
本文将从技术规范、逆变器类型、选取要点以及安装要点等方面,进行详细阐述。
一、技术规范1.国家标准:光伏逆变器选型与安装需要严格遵循国家相关标准,如国家标准《光伏发电站工程施工及验收规范》等。
根据标准要求选择逆变器产品,并确保施工与验收过程符合相关规定。
2.电网接入:光伏逆变器选用时需考虑与电网的接口问题。
应参照国家电网公司或地方电力公司的接入要求,确保逆变器可以与电网进行有效连接。
3.安全性能:逆变器的选取要符合国家安全规范,具备过压、过流、短路等各种保护措施。
此外,逆变器应具备防雷、防尘、防水等性能,并通过相关的安全认证。
二、逆变器类型1.集中式逆变器:适用于大型光伏发电站,具备高效、可靠的特点。
集中式逆变器可以实现多个光伏阵列的并网,集中式管理和控制。
2.串联式逆变器:适用于分布式光伏发电系统,可以根据具体需求选择串联式逆变器。
它能够实时监测光伏组件的发电情况,提供更加灵活的运行模式。
3.微逆变器:适用于小型光伏电站或屋顶光伏系统,具备高效转换和优秀的适应性。
微逆变器安装方便,且天然散热,使用寿命较长。
三、选取要点1.功率匹配:根据光伏组件的输出功率和逆变器的额定功率进行匹配。
逆变器的额定功率应略大于光伏组件的总功率,但不能过大,以充分利用光伏组件的发电能力。
2.效率要求:选取高效的逆变器可以提高光伏发电的总体效率。
考虑逆变器的转换效率、夜间耗电、无功功率等因素,选择性价比最高的产品。
3.可靠性评估:逆变器是光伏发电系统中的核心设备,其可靠性直接影响系统的稳定性。
选取有可靠运行记录和证书的品牌,并了解其售后服务体系。
四、安装要点1.安装位置:逆变器的安装位置应选择在通风良好、干燥、无阳光直射或蒸汽堆积的地方。
同时,应考虑逆变器的可视性,方便日常的运行监测与维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并网逆变器选型细则并网逆变器就是将太阳能直流电转换为可接入交流市电的设备,就是太阳能光伏发电站不可缺少的重要组成部分。
以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍与分析。
1. 并网逆变器在光伏电站中的作用光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。
1、1 并网光伏电站的基本结构1、2 并网逆变器功作用与功能并网逆变器就是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它就是光伏并网发电系统中不可缺少的关键部分。
并网逆变器的主要功能就是:◆最大功率跟踪◆DC-AC转换◆频率、相位追踪◆相关保护2. 并网逆变器分类并网逆变器按其电路拓扑结构可以分为变压器型与无变压器型逆变器,其中变压器型又分为高频变压器型与低频变压器型。
变压器型与无变压器型逆变器的主要区别在于安全性与效率两个方面。
以下对三种类型逆变器做简单介绍:◆高频变压器型采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。
◆低频变压器型采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。
◆无变压器型采用DC-AC的电路结构,无电气隔离,电压范围较窄,但就是损耗小、效率高。
3. 并网逆变器主要技术指标a、使用环境条件逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。
b、直流输入最大电流c、直流输入最大电压d、直流输入MPP电压范围逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。
e、直流输入最大功率大于逆变器的额定输出功率,即通常所说的“逆变器功率”。
为了充分利用逆变器的容量,设计接入并网逆变器的电池组件的标称功率可以等于直流侧输入最大功率。
f、最大输入路数指逆变器直流侧可接入的直流回路数目。
g、额定输出电压在规定的输入条件下,逆变器应输出的电压值。
电压波动范围一般应:单相220V±5%,三相380±5%。
h、额定输出功率在规定的输出频率与负载功率因数下,逆变器应输出的额定电流值。
i、额定输出频率在并网系统中,额定输出频率要对应所并入的电网频率,而且当电网的频率与相位有微小波动时,逆变器输出的交流电应自动追踪电网的频率与相位。
当检测到电网频率波动过大,逆变器将自动切离电网。
我国的市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。
j、最大谐波含量正弦波逆变器,在阻性负载下,输出电压的最大谐波含量应≤10%。
k、过载能力在规定的条件下,在较短时间内,逆变器输出超过额定电流值的能力。
逆变器的过载能力应在规定的负载功率因数下,满足一定的要求。
l、效率在额定输出电压、输出,电流与规定的负载功率因数下,逆变器输出有功功率与输入有功功率(或直流功率)之比。
目前很多厂家的逆变器效率标示了“效率”与“欧洲效率”两种。
“效率”一般指一天内某时刻逆变器的最大效率,而欧洲效率就是根据一天内日照强度的变化计算加权值,通过特定的公式计算一天内的“平均效率”,相对比较科学。
很多公司的无变压器型逆变器的“效率”值很高很高,其实理论上不太可能,可能她们未考虑输出功率因素的影响,将无功功率也计算在内而得出的最大效率。
m、负载功率因数逆变器负载功率因数的允许变化范围,推荐值0、7—1、0。
n、负载的非对称性在10%的非对称负载下,固定频率的三相逆变器输出电压的非对称性应≤10%。
o、防护等级IP(INGRESS PROTECTION)防护等级系统就是由IEC(INTERNATIONAL ELECTROTECHNICAL COMMISSION)所起草。
IP防护等级就是由两个数字所组成,第1个数字表示灯具离尘、防止外物侵入的等级,第2个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高。
p、保护功能逆变器应设置:短路保护、过电流保护、过电压保护、欠电压保护及缺相保护。
q、干扰与抗干扰逆变器应在规定的正常工作条件下,能承受一般环境下的电磁干扰。
逆变器的抗干扰性能与电磁兼容性应符合有关标准的规定。
r、噪声不经常操作、监视与维护的逆变器,应小于95db。
经常操作、监视与维护的逆变器,应小于80db。
s、显示逆变器应设有交流输出电压、输出电流与输出频率等参数的数据显示,并有输入带电、通电与故障状态的信号显示。
t、通信接口主要用于系统运行监控,一般的逆变器通讯接口模式有RS-485、RS-232以及GPRS。
u、机械参数主要指逆变器的重量与尺寸。
4. 并网逆变器选型分析4、1 光伏逆变应用场合光伏发电站就是通过具有各种技术结构的逆变器连接到电网上的。
由于建筑的多样性,势必导致太阳能电池板安装的多样性,为了使太阳能的转换效率最高同时又兼顾建筑的外形美观,这就要求我们的逆变器的多样化,来实现最佳方式的太阳能转换。
现在世界上比较通行的太阳能逆变为:集中逆变、组串逆变与组件逆变,现将几种逆变器的特点与运用的场合加以分析。
(1)集中逆变主要用在大型光伏发电站(大于10KW)的系统中,先就是光伏组件连接成串,每串加上二极管,再就是将这些组串并行连接,然后正负直接连接到同一台集中逆变器的直流输入侧。
一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流。
集中型逆变的最大特点就是效率高,成本低,工作状态不稳定。
不稳定原因主要就是光伏组串与逆变器匹配不当,以及部分光伏组件的阴影会导致整个发电站的发电量下降。
某一光伏单元组的工作状态不良会造成整个发电站的不良运行。
(2)组串逆变a、普通组串逆变。
组串逆变器已成为现在国际市场上最流行的逆变器,光伏组件连接成串,每个组串(1—5KW)都连接到一台指定的逆变器上,每个组串并网逆变器都有独立的最大功率跟踪单元(MPPT)。
许多大型光伏电厂使用组串逆变器。
优点就是不受组串间模块差异与遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。
技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。
同时,在组串间引入“主—从”的概念,使得在系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。
最新的概念为几个逆变器相互组成一个“团队”来代替“主—从”的概念,使得系统的可靠性又进了一步。
目前,无变压器式组串逆变器已占了主导地位。
总的来说组串逆变器的特点就是减少了光伏组件之间的匹配错误、部分阴影带来的电量损失,以及组串连接二极管与大量直流电缆带来的电量损耗。
不仅大大降低了系统的成本,也增加了发电量与系统的可靠性。
b、多组串逆变。
多组串逆变技术在保留了组串逆变技术的优点上,通过一个共同的逆变桥将多个组串通过直流升压器连接起来,并实现最大功率跟踪,就是有效且成本低的解决方案。
多组串技术可以有效连接安装不同朝向(南方、东方、西方)的组件,也可以根据不同的发电时间实现最优化的转换效率。
多组串逆变适用于安装在3至10KW 的中等规模电站系统中。
(3)组件逆变器每个组件都连接一台逆变器。
组件逆变器的转换效率比组串低。
使用组件逆变器的系统中,每个组件都必须连接到230V电网上,因此会造成交流侧的电网连接比较复杂,这种技术一般只应用在50至400W的光伏发电站中。
4、2 逆变器选型设计的基本方法(1) 逆变器类型选择并网逆变器主要分高频变压器型、低频变压器型与无变压器型三大类。
根据所设计电站以及业主的具体要求,主要从安全性与效率两个层面来考虑变压器类型。
以下就是它们之间的对照表:(2) 容量匹配设计并网系统设计中要求电池阵列与所接逆变器的功率容量相匹配,一般的设计思路就是:组件标称功率×组件串联数×组件并联数=电池阵列功率在容量设计中,并网逆变器的最大输入功率应近似等于电池阵列功率,已实现逆变器资源的最大化利用。
(3) MPP电压范围与电池组电压匹配根据太阳能电池的输出特性,电池组件存在功率最大输出点,并网逆变器具有在特点输入电压范围内自动追踪最大功率点的功能,因此电池阵列的输出电压应处于逆变器MPP电压范围以内。
电池组件电压×组件串联数=电池阵列电压一般的设计思路就是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。
(4) 最大输入电流与电池组电流匹配电池组阵列的最大输出电流应小于逆变器最大输入电流。
为了减少组件到逆变器过程中的直流损耗,以及防止电流过大对逆变器造成过热或电气损坏,逆变器最大输入电流值与电池阵列的电流值的差值应尽量大一些。
电池组件短路电流×组件并联数=电池阵列最大输出电流(5) 转换效率并网逆变器的效率标示一般分最大效率与欧洲效率,通过加权系数修正的欧洲效率更为科学。
逆变器在其它条件满足的情况下,转换效率应越高越好。
(6) 配套设备并网发电系统就是完整的体系,逆变器就是重要的组成部分,与之配套相关的设备主要就是配电柜与监控系统。
并网电站的监控系统包括硬件与软件,根据自身特点而需要量身定做,一般大型的逆变器厂家都针对自己的逆变器而专门开发了一套监控系统,因此在逆变器选型过程中,应考虑相关的配套设备就是否齐全。
(7) 品牌与质量(8) 价格与服务5. 并网逆变器国内外生产厂家国内厂家(按首字母排序) 安徽长远绿色能源有限公司北京哈博阳光新能源科技有限公司北京科诺伟业科技有限公司北京日佳电源有限公司北京索英电气技术有限公司北京自动化技术研究院飞瑞股份有限公司佛山市中商国通电子有限公司合肥赛恩电子科技有限公司合肥市科光电源有限责任公司合肥阳光电源有限公司江苏津恒能源科技有限公司杰俐企业股份有限公司科风股份有限公司雷克森技术有限公司利佳兴业股份有限公司茂迪股份有限公司南京格瑞能源科技有限公司南京冠亚电源设备有限公司宁波圣彼电气有限公司山东博奥斯电源有限公司山东精久科技有限公司上海航锐电源科技有限公司上海科境电器有限公司尚晶科技集团深圳科士达科技股份有限公司深圳市安德森电子科技有限公司深圳市光澜世纪科技有限公司深圳市天源新能源有限公司深圳中泰威太阳能有限公司索莱耐(天津)太阳能应用技术有限公司天阳新能源科技有限公司西藏华冠科技股份有限公司新疆新能源股份有限公司兴毅科技股份有限公司耀能科技股份有限公司盈正豫顺电子股份有限公司兆伏新能源有限公司中海阳(北京)能源科技有限公司中山市宇之源太阳能科技有限公司珠海赛比特电气设备有限公司国外主要厂家Fronius International 奥地利Futronics Power DesignsKACO德国LTi REEnergy 德国路斯特绿能Power-One 美国SanRex Solar 日本Sansha Electric Manufacturing 日本Sharp Corporation 日本SMA Solar 德国Sputnik Engineering 瑞士Xantrex Technology 加拿大6. 常用并网逆变器型号参数附表(及时更新)光伏并网逆变器选型细则。